aboutsummaryrefslogtreecommitdiff
path: root/externals/extra/fiddle~
diff options
context:
space:
mode:
Diffstat (limited to 'externals/extra/fiddle~')
-rw-r--r--externals/extra/fiddle~/fiddle~-help.pd142
-rw-r--r--externals/extra/fiddle~/fiddle~.c1845
2 files changed, 1987 insertions, 0 deletions
diff --git a/externals/extra/fiddle~/fiddle~-help.pd b/externals/extra/fiddle~/fiddle~-help.pd
new file mode 100644
index 00000000..f396725a
--- /dev/null
+++ b/externals/extra/fiddle~/fiddle~-help.pd
@@ -0,0 +1,142 @@
+#N canvas 93 26 980 745 10;
+#X obj 262 522 phasor~;
+#X obj 531 616 unpack;
+#X floatatom 531 666 0 0 0 0 - - -;
+#X msg 437 449 print;
+#X obj 262 500 sig~;
+#X floatatom 262 478 0 0 0 0 - - -;
+#X obj 262 456 mtof;
+#X floatatom 262 434 0 0 0 0 - - -;
+#X floatatom 545 643 0 0 0 0 - - -;
+#X obj 531 576 route 1 2 3 4;
+#X obj 614 616 unpack;
+#X floatatom 614 666 0 0 0 0 - - -;
+#X floatatom 628 643 0 0 0 0 - - -;
+#X obj 698 616 unpack;
+#X floatatom 698 666 0 0 0 0 - - -;
+#X floatatom 712 643 0 0 0 0 - - -;
+#X obj 389 616 unpack;
+#X floatatom 389 666 0 0 0 0 - - -;
+#X floatatom 403 643 0 0 0 0 - - -;
+#X obj 334 545 *~;
+#X obj 322 394 loadbang;
+#X obj 353 522 sig~;
+#X floatatom 353 500 0 0 0 0 - - -;
+#X msg 322 478 1;
+#X msg 353 478 0;
+#X floatatom 466 666 0 0 0 0 - - -;
+#X obj 281 666 print attack;
+#X obj 190 666 print pitch;
+#X msg 555 45 \; pd dsp 1;
+#X text 460 39 click here;
+#X text 460 61 to start DSP;
+#X text 226 4 FIDDLE - pitch estimator and sinusoidal peak finder;
+#X text 8 70 The Fiddle object estimates the pitch and amplitude of
+an incoming sound \, both continuously and as a stream of discrete
+"note" events. Fiddle optionally outputs a list of detected sinusoidal
+peaks used to make the pitch determination. Fiddle is described theoretically
+in the 1998 ICMC proceedings \, reprinted on http://man104nfs.ucsd.edu/~mpuckett.
+;
+#X text 8 170 Fiddle's creation arguments specify an analysis window
+size \, the maximum polyphony (i.e. \, the number of simultaneous "pitches"
+to try to find) \, the number of peaks in the spectrum to consider
+\, and the number of peaks \, if any \, to output "raw." The outlets
+give discrete pitch (a number) \, detected attacks in the amplitude
+envelope (a bang) \, one or more voices of continuous pitch and amplitude
+\, overall amplitude \, and optionally a sequence of messages with
+the peaks.;
+#X text 8 296 The analysis hop size is half the window size so in the
+example shown here \, one analysis is done every 512 samples (11.6
+msec at 44K1) \, and the analysis uses the most recent 1024 samples
+(23.2 msec at 44K1). The minimum frequency that Fiddle will report
+is 2-1/2 cycles per analysis windows \, or about 108 Hz. (just below
+MIDI 45.);
+#X text 669 535 number of pitch outlets (1-3 \, default 1);
+#X text 669 557 number of peaks to find (1-100 \, default 20);
+#X text 669 579 number of peaks to output (default 0.);
+#X msg 441 107 amp-range 40 50;
+#X msg 439 227 reattack 100 10;
+#X msg 438 282 npartial 7;
+#X msg 438 170 vibrato 50 0.5;
+#X text 560 91 a low and high amplitude threshold: if signal amplitude
+is below the low threshold \, no pitches or peaks are output. The high
+threshold is a minimum at which "cooked" outputs may appear.;
+#X text 560 152 A period in milliseconds (50) over which the raw pitch
+may not deviate more than an interval in half-tones (0.5) from the
+average pitch to report it as a note to the "cooked" pitch outlet.
+;
+#X text 560 213 A period in milliseconds (100) over which a re-attack
+is reported if the amplitude rises more than (1) dB. The re-attack
+will result in a "bang" in the attack outlet and may give rise to repeated
+notes in the cooked pitch output.;
+#X text 142 432 test input pitch;
+#X text 330 444 test input;
+#X text 330 457 amplitude;
+#X obj 410 545 fiddle~ 1024 1 20 3;
+#X text 538 690 individual sinusoidal components;
+#X text 466 688 amplitude;
+#X text 476 703 (dB);
+#X text 389 688 raw pitch;
+#X text 376 712 and amplitude;
+#X text 364 729 (up to 3 outputs);
+#X text 287 686 bang on;
+#X text 287 708 attack;
+#X text 185 686 cooked pitch;
+#X text 202 703 output;
+#X text 545 545 ------ arguments:;
+#X msg 262 412 57;
+#X msg 440 331 auto 1;
+#X msg 440 353 auto 0;
+#X msg 439 418 bang;
+#X text 561 416 poll current values --- useful if not in auto mode
+\,;
+#X text 560 274 Higher partials are weighed less strongly than lower
+ones in determining the pitch. This specifies the number of the partial
+(7) which will be weighted half as strongly as the fundamental.;
+#X text 560 335 start and stop "auto" mode (on by default.) If off
+\, output only appears on "bang" (poll mode).;
+#X text 561 448 print out all settings;
+#X text 669 513 window size (128-2048 \, default 1024);
+#X msg 440 375 npoints 2048;
+#X text 562 384 number of points in analysis window (power of 2 \,
+128-2048);
+#X msg 439 396 npoints 1024;
+#X connect 0 0 19 0;
+#X connect 1 0 2 0;
+#X connect 1 1 8 0;
+#X connect 3 0 48 0;
+#X connect 4 0 0 0;
+#X connect 5 0 4 0;
+#X connect 6 0 5 0;
+#X connect 7 0 6 0;
+#X connect 9 0 1 0;
+#X connect 9 1 10 0;
+#X connect 9 2 13 0;
+#X connect 10 0 11 0;
+#X connect 10 1 12 0;
+#X connect 13 0 14 0;
+#X connect 13 1 15 0;
+#X connect 16 0 17 0;
+#X connect 16 1 18 0;
+#X connect 19 0 48 0;
+#X connect 20 0 60 0;
+#X connect 20 0 23 0;
+#X connect 21 0 19 1;
+#X connect 22 0 21 0;
+#X connect 23 0 22 0;
+#X connect 24 0 22 0;
+#X connect 38 0 48 0;
+#X connect 39 0 48 0;
+#X connect 40 0 48 0;
+#X connect 41 0 48 0;
+#X connect 48 0 27 0;
+#X connect 48 1 26 0;
+#X connect 48 2 16 0;
+#X connect 48 3 25 0;
+#X connect 48 4 9 0;
+#X connect 60 0 7 0;
+#X connect 61 0 48 0;
+#X connect 62 0 48 0;
+#X connect 63 0 48 0;
+#X connect 69 0 48 0;
+#X connect 71 0 48 0;
diff --git a/externals/extra/fiddle~/fiddle~.c b/externals/extra/fiddle~/fiddle~.c
new file mode 100644
index 00000000..d959b00f
--- /dev/null
+++ b/externals/extra/fiddle~/fiddle~.c
@@ -0,0 +1,1845 @@
+/* Copyright (c) 1997-1999 Miller Puckette and Ted Apel.
+* For information on usage and redistribution, and for a DISCLAIMER OF ALL
+* WARRANTIES, see the file, "LICENSE.txt," in this distribution. */
+
+/*
+ * Fiddle is a pitch tracker hardwired to have hop size ("H") equal to
+ * half its window size ("N").
+ *
+ * This version should compile for Max "0.26," JMAX, Pd, or Max/MSP.
+ *
+ * The "lastanalysis" field holds the shifted FT of the previous H
+ * samples. The buffer contains in effect points 1/2, 3/2, ..., (N-1)/2
+ * of the DTFT of a real vector of length N, half of whose points are zero,
+ * i.e., only the first H points are used. Put another way, we get the
+ * the odd-numbered points of the FFT of the H points, zero padded to 4*H in
+ * length. The integer points 0, 1, ..., H-1
+ * are found by interpolating these others, using the fact that the
+ * half-integer points are band-limited (they only have positive frequencies.)
+ * To facilitate the interpolation the "lastanalysis" buffer contains
+ * FILTSIZE extra points (1/2-FILTSIZE, ..., -1/2) at the beginning and
+ * FILTSIZE again at the end ((N+1)/2, ..., FILTSIZE+(N-1)/2). The buffer
+ * therefore has N+4*FILTSIZE floating-point numbers in it.
+ *
+ * after doing this I found out that you can just do a real FFT
+ * of the H new points, zero-padded to contain N points, and using a similar
+ * but simpler interpolation scheme you can still get 2N points of the DTFT
+ * of the N points. Jean Laroche is a big fat hen.
+ *
+ */
+
+#ifdef NT
+#define flog log
+#define fexp exp
+#define fsqrt sqrt
+#pragma warning (disable: 4305 4244)
+#else
+#define flog log
+#define fexp exp
+#define fsqrt sqrt
+#endif
+
+char fiddle_version[] = "fiddle version 1.1 TEST4";
+
+#ifdef JMAX
+#include "fts.h"
+#include <stdio.h>
+#include <stdlib.h>
+typedef float t_float;
+typedef float t_floatarg;
+typedef fts_symbol_t t_symbol;
+
+static void *getbytes(size_t nbytes)
+{
+ void *ret;
+ if (nbytes < 1) nbytes = 1;
+ ret = (void *)malloc(nbytes);
+ return (ret);
+}
+
+static void *resizebytes(void *old, size_t oldsize, size_t newsize)
+{
+ void *ret;
+ if (newsize < 1) newsize = 1;
+ ret = (void *)realloc((char *)old, newsize);
+ return (ret);
+}
+
+static void freebytes(void *fatso, size_t nbytes)
+{
+ free(fatso);
+}
+
+#define CLASSNAME "fiddle"
+
+#define OUTLETpower 5
+#define OUTLETmicropitch1 4
+#define OUTLETmicropitch2 3
+#define OUTLETmicropitch3 2
+#define OUTLETattack 1
+#define OUTLETpitch 0
+
+static fts_symbol_t *dsp_symbol = 0;
+#define error post
+
+#endif /* FTS */
+
+#ifdef MAX26
+#define t_floatarg double
+#include "m_extern.h"
+#include "d_graph.h"
+#include "d_ugen.h"
+#endif /* MAX26 */
+
+#ifdef PD
+#include "m_pd.h"
+#endif /* PD */
+
+#ifdef MSP
+#define flog log
+#define fexp exp
+#define fsqrt sqrt
+#endif /* MSP */
+
+#ifdef MSP
+#define t_floatarg double
+#include "ext.h"
+#include "z_dsp.h"
+#include "fft_mayer.proto.h"
+
+#endif /* MSP */
+
+#include <math.h>
+
+
+#define MINBIN 3
+#define DEFAMPLO 40
+#define DEFAMPHI 50
+#define DEFATTACKTIME 100
+#define DEFATTACKTHRESH 10
+#define DEFVIBTIME 50
+#define DEFVIBDEPTH 0.5
+#define GLISS 0.7f
+#define DBFUDGE 30.8f
+#define MINFREQINBINS 5 /* minimum frequency in bins for reliable output */
+
+#define MAXNPITCH 3
+#define MAXHIST 3 /* find N hottest peaks in histogram */
+
+#define MAXPOINTS 8192
+#define MINPOINTS 128
+#define DEFAULTPOINTS 1024
+
+#define HISTORY 20
+#define MAXPEAK 100 /* maximum number of peaks */
+#define DEFNPEAK 20 /* default number of peaks */
+
+#define MAXNPEAK (MAXLOWPEAK + MAXSTRONGPEAK)
+#define MINBW (0.03f) /* consider BW >= 0.03 FFT bins */
+
+#define BINPEROCT 48 /* bins per octave */
+#define BPERO_OVER_LOG2 69.24936196f /* BINSPEROCT/log(2) */
+#define FACTORTOBINS (float)(4/0.0145453) /* 4 / (pow(2.,1/48.) - 1) */
+#define BINGUARD 10 /* extra bins to throw in front */
+#define PARTIALDEVIANCE 0.023f /* acceptable partial detuning in % */
+#define LOGTODB 4.34294481903f /* 20/log(10) */
+
+#define KNOCKTHRESH 10.f /* don't know how to describe this */
+
+
+static float sigfiddle_partialonset[] =
+{
+0,
+48,
+76.0782000346154967102,
+96,
+111.45254855459339269887,
+124.07820003461549671089,
+134.75303625876499715823,
+144,
+152.15640006923099342109,
+159.45254855459339269887,
+166.05271769459026829915,
+172.07820003461549671088,
+177.62110647077242370064,
+182.75303625876499715892,
+187.53074858920888940907,
+192,
+};
+
+#define NPARTIALONSET ((int)(sizeof(sigfiddle_partialonset)/sizeof(float)))
+
+static int sigfiddle_intpartialonset[] =
+{
+0,
+48,
+76,
+96,
+111,
+124,
+135,
+144,
+152,
+159,
+166,
+172,
+178,
+183,
+188,
+192,
+};
+
+/* these coefficients, which come from the "upsamp" subdirectory,
+are a filter kernel for upsampling by a factor of two, assuming
+the sound to be upsampled has no energy above half the Nyquist, i.e.,
+that it's already 2x oversampled compared to the theoretically possible
+sample rate. I got these by trial and error. */
+
+#define FILT1 ((float)(.5 * 1.227054))
+#define FILT2 ((float)(.5 * -0.302385))
+#define FILT3 ((float)(.5 * 0.095326))
+#define FILT4 ((float)(.5 * -0.022748))
+#define FILT5 ((float)(.5 * 0.002533))
+#define FILTSIZE 5
+
+typedef struct peakout /* a peak for output */
+{
+ float po_freq; /* frequency in hz */
+ float po_amp; /* amplitude */
+} t_peakout;
+
+typedef struct peak /* a peak for analysis */
+{
+ float p_freq; /* frequency in bins */
+ float p_width; /* peak width in bins */
+ float p_pow; /* peak power */
+ float p_loudness; /* 4th root of power */
+ float *p_fp; /* pointer back to spectrum */
+} t_peak;
+
+typedef struct histopeak
+{
+ float h_pitch; /* estimated pitch */
+ float h_value; /* value of peak */
+ float h_loud; /* combined strength of found partials */
+ int h_index; /* index of bin holding peak */
+ int h_used; /* true if an x_hist entry points here */
+} t_histopeak;
+
+typedef struct pitchhist /* struct for keeping history by pitch */
+{
+ float h_pitch; /* pitch to output */
+ float h_amps[HISTORY]; /* past amplitudes */
+ float h_pitches[HISTORY]; /* past pitches */
+ float h_noted; /* last pitch output */
+ int h_age; /* number of frames pitch has been there */
+ t_histopeak *h_wherefrom; /* new histogram peak to incorporate */
+ void *h_outlet;
+} t_pitchhist;
+
+typedef struct sigfiddle /* instance struct */
+{
+#ifdef JMAX
+ fts_object_t x_h; /* object header */
+ fts_alarm_t x_clock; /* callback for timeouts */
+#endif
+#ifdef MAX26
+ t_head x_h; /* header for tilde objects */
+ t_sig *x_io[IN1+OUT0]; /* number of signal inputs and outputs */
+ void *x_clock; /* a "clock" object */
+#endif
+#ifdef PD
+ t_object x_ob; /* object header */
+ t_clock *x_clock; /* callback for timeouts */
+#endif
+#ifdef MSP
+ t_pxobject x_obj;
+ void *x_clock;
+ long x_downsample; /* downsample feature because of
+ MSP's large sig vector sizes */
+#endif
+ float *x_inbuf; /* buffer to analyze, npoints/2 elems */
+ float *x_lastanalysis; /* FT of last buffer (see main comment) */
+ float *x_spiral; /* 1/4-wave complex exponential */
+ t_peakout *x_peakbuf; /* spectral peaks for output */
+ int x_npeakout; /* number of spectral peaks to output */
+ int x_npeakanal; /* number of spectral peaks to analyze */
+ int x_phase; /* number of points since last output */
+ int x_histphase; /* phase into amplitude history vector */
+ int x_hop; /* period of output, npoints/2 */
+ float x_sr; /* sample rate */
+ t_pitchhist x_hist[MAXNPITCH]; /* history of current pitches */
+ int x_nprint; /* how many periods to print */
+ int x_npitch; /* number of simultaneous pitches */
+ float x_dbs[HISTORY]; /* DB history, indexed by "histphase" */
+ float x_peaked; /* peak since last attack */
+ int x_dbage; /* number of bins DB has met threshold */
+ int x_auto; /* true if generating continuous output */
+/* parameters */
+ float x_amplo;
+ float x_amphi;
+ int x_attacktime;
+ int x_attackbins;
+ float x_attackthresh;
+ int x_vibtime;
+ int x_vibbins;
+ float x_vibdepth;
+ float x_npartial;
+/* outlets & clock */
+ void *x_envout;
+ int x_attackvalue;
+ void *x_attackout;
+ void *x_noteout;
+ void *x_peakout;
+} t_sigfiddle;
+
+#if CHECKER
+float fiddle_checker[1024];
+#endif
+
+#ifdef MSP
+/* Mac compiler requires prototypes for everything */
+
+int sigfiddle_ilog2(int n);
+float fiddle_mtof(float f);
+float fiddle_ftom(float f);
+void sigfiddle_doit(t_sigfiddle *x);
+void sigfiddle_debug(t_sigfiddle *x);
+void sigfiddle_print(t_sigfiddle *x);
+void sigfiddle_assist(t_sigfiddle *x, void *b, long m, long a, char *s);
+void sigfiddle_amprange(t_sigfiddle *x, double amplo, double amphi);
+void sigfiddle_reattack(t_sigfiddle *x, t_floatarg attacktime, t_floatarg
+attackthresh);
+void sigfiddle_vibrato(t_sigfiddle *x, t_floatarg vibtime, t_floatarg
+vibdepth);
+void sigfiddle_npartial(t_sigfiddle *x, double npartial);
+void sigfiddle_auto(t_sigfiddle *x, t_floatarg f);
+void sigfiddle_setnpoints(t_sigfiddle *x, t_floatarg f);
+int sigfiddle_doinit(t_sigfiddle *x, long npoints, long npitch, long
+npeakanal, long npeakout);
+static t_int *fiddle_perform(t_int *w);
+void sigfiddle_dsp(t_sigfiddle *x, t_signal **sp);
+void sigfiddle_tick(t_sigfiddle *x);
+void sigfiddle_bang(t_sigfiddle *x);
+void sigfiddle_ff(t_sigfiddle *x);
+void *sigfiddle_new(long npoints, long npitch,
+ long npeakanal, long npeakout);
+void msp_fft(float *buf, long np, long inv);
+float msp_ffttemp[MAXPOINTS*2];
+int errno;
+#endif
+
+int sigfiddle_ilog2(int n)
+{
+ int ret = -1;
+ while (n)
+ {
+ n >>= 1;
+ ret++;
+ }
+ return (ret);
+}
+
+float fiddle_mtof(float f)
+{
+ return (8.17579891564 * exp(.0577622650 * f));
+}
+
+float fiddle_ftom(float f)
+{
+ return (17.3123405046 * log(.12231220585 * f));
+}
+#define ftom fiddle_ftom
+#define mtof fiddle_mtof
+
+void sigfiddle_doit(t_sigfiddle *x)
+{
+#ifdef MSP
+ /* prevents interrupt-level stack overflow crash with Netscape. */
+ static float spect1[4*MAXPOINTS];
+ static float spect2[MAXPOINTS + 4*FILTSIZE];
+#else
+ float spect1[4*MAXPOINTS];
+ float spect2[MAXPOINTS + 4*FILTSIZE];
+#endif
+#if CHECKER
+ float checker3[4*MAXPOINTS];
+#endif
+
+ t_peak peaklist[MAXPEAK + 1], *pk1;
+ t_peakout *pk2;
+ t_histopeak histvec[MAXHIST], *hp1;
+ int i, j, k, hop = x->x_hop, n = 2*hop, npeak, npitch,
+ logn = sigfiddle_ilog2(n), newphase, oldphase;
+ float *fp, *fp1, *fp2, *fp3, total_power, total_loudness, total_db;
+ float maxbin = BINPEROCT * (logn-2), *histogram = spect2 + BINGUARD;
+ t_pitchhist *phist;
+ float hzperbin = x->x_sr / (2.0f * n);
+ int npeakout = x->x_npeakout, npeakanal = x->x_npeakanal;
+ int npeaktot = (npeakout > npeakanal ? npeakout : npeakanal);
+
+ oldphase = x->x_histphase;
+ newphase = x->x_histphase + 1;
+ if (newphase == HISTORY) newphase = 0;
+ x->x_histphase = newphase;
+
+ /*
+ * multiply the H points by a 1/4-wave complex exponential,
+ * and take FFT of the result.
+ */
+ for (i = 0, fp1 = x->x_inbuf, fp2 = x->x_spiral, fp3 = spect1;
+ i < hop; i++, fp1++, fp2 += 2, fp3 += 2)
+ fp3[0] = fp1[0] * fp2[0], fp3[1] = fp1[0] * fp2[1];
+
+#ifdef MAX26
+ fft(spect1, hop, 0);
+#endif
+#ifdef PD
+ pd_fft(spect1, hop, 0);
+#endif
+#ifdef JMAX
+ fts_cfft_inplc((complex *)spect1, hop);
+#endif
+#ifdef MSP
+ msp_fft(spect1,hop,0);
+#endif
+ /*
+ * now redistribute the points to get in effect the odd-numbered
+ * points of the FFT of the H points, zero padded to 4*H in length.
+ */
+ for (i = 0, fp1 = spect1, fp2 = spect2 + (2*FILTSIZE);
+ i < (hop>>1); i++, fp1 += 2, fp2 += 4)
+ fp2[0] = fp1[0], fp2[1] = fp1[1];
+ for (i = 0, fp1 = spect1 + n - 2, fp2 = spect2 + (2*FILTSIZE+2);
+ i < (hop>>1); i++, fp1 -= 2, fp2 += 4)
+ fp2[0] = fp1[0], fp2[1] = -fp1[1];
+ for (i = 0, fp1 = spect2 + (2*FILTSIZE), fp2 = spect2 + (2*FILTSIZE-2);
+ i<FILTSIZE; i++, fp1+=2, fp2-=2)
+ fp2[0] = fp1[0], fp2[1] = -fp1[1];
+ for (i = 0, fp1 = spect2 + (2*FILTSIZE+n-2), fp2 = spect2 + (2*FILTSIZE+n);
+ i<FILTSIZE; i++, fp1-=2, fp2+=2)
+ fp2[0] = fp1[0], fp2[1] = -fp1[1];
+#if 0
+ {
+ fp = spect2 + 2*FILTSIZE;
+ post("x1 re %12.4f %12.4f %12.4f %12.4f %12.4f",
+ fp[0], fp[2], fp[4], fp[6], fp[8]);
+ post("x1 im %12.4f %12.4f %12.4f %12.4f %12.4f",
+ fp[1], fp[3], fp[5], fp[7], fp[9]);
+ }
+#endif
+ /* spect2 is now prepared; now combine spect2 and lastanalysis into
+ * spect1. Odd-numbered points of spect1 are the points of "last"
+ * plus (-i, i, -i, ...) times spect1. Even-numbered points are
+ * the interpolated points of "last" plus (1, -1, 1, ...) times the
+ * interpolated points of spect1.
+ *
+ * To interpolate, take FILT1 exp(-pi/4) times
+ * the previous point, FILT2*exp(-3*pi/4) times 3 bins before,
+ * etc, and FILT1 exp(pi/4), FILT2 exp(3pi/4), etc., to weight
+ * the +1, +3, etc., points.
+ *
+ * In this calculation, we take (1, i, -1, -i, 1) times the
+ * -9, -7, ..., -1 points, and (i, -1, -i, 1, i) times the 1, 3,..., 9
+ * points of the OLD spectrum, alternately adding and subtracting
+ * the new spectrum to the old; then we multiply the whole thing
+ * by exp(-i pi/4).
+ */
+ for (i = 0, fp1 = spect1, fp2 = x->x_lastanalysis + 2*FILTSIZE,
+ fp3 = spect2 + 2*FILTSIZE;
+ i < (hop>>1); i++)
+ {
+ float re, im;
+
+ re= FILT1 * ( fp2[ -2] -fp2[ 1] +fp3[ -2] -fp3[ 1]) +
+ FILT2 * ( fp2[ -3] -fp2[ 2] +fp3[ -3] -fp3[ 2]) +
+ FILT3 * (-fp2[ -6] +fp2[ 5] -fp3[ -6] +fp3[ 5]) +
+ FILT4 * (-fp2[ -7] +fp2[ 6] -fp3[ -7] +fp3[ 6]) +
+ FILT5 * ( fp2[-10] -fp2[ 9] +fp3[-10] -fp3[ 9]);
+
+ im= FILT1 * ( fp2[ -1] +fp2[ 0] +fp3[ -1] +fp3[ 0]) +
+ FILT2 * (-fp2[ -4] -fp2[ 3] -fp3[ -4] -fp3[ 3]) +
+ FILT3 * (-fp2[ -5] -fp2[ 4] -fp3[ -5] -fp3[ 4]) +
+ FILT4 * ( fp2[ -8] +fp2[ 7] +fp3[ -8] +fp3[ 7]) +
+ FILT5 * ( fp2[ -9] +fp2[ 8] +fp3[ -9] +fp3[ 8]);
+
+ fp1[0] = 0.7071f * (re + im);
+ fp1[1] = 0.7071f * (im - re);
+ fp1[4] = fp2[0] + fp3[1];
+ fp1[5] = fp2[1] - fp3[0];
+
+ fp1 += 8, fp2 += 2, fp3 += 2;
+ re= FILT1 * ( fp2[ -2] -fp2[ 1] -fp3[ -2] +fp3[ 1]) +
+ FILT2 * ( fp2[ -3] -fp2[ 2] -fp3[ -3] +fp3[ 2]) +
+ FILT3 * (-fp2[ -6] +fp2[ 5] +fp3[ -6] -fp3[ 5]) +
+ FILT4 * (-fp2[ -7] +fp2[ 6] +fp3[ -7] -fp3[ 6]) +
+ FILT5 * ( fp2[-10] -fp2[ 9] -fp3[-10] +fp3[ 9]);
+
+ im= FILT1 * ( fp2[ -1] +fp2[ 0] -fp3[ -1] -fp3[ 0]) +
+ FILT2 * (-fp2[ -4] -fp2[ 3] +fp3[ -4] +fp3[ 3]) +
+ FILT3 * (-fp2[ -5] -fp2[ 4] +fp3[ -5] +fp3[ 4]) +
+ FILT4 * ( fp2[ -8] +fp2[ 7] -fp3[ -8] -fp3[ 7]) +
+ FILT5 * ( fp2[ -9] +fp2[ 8] -fp3[ -9] -fp3[ 8]);
+
+ fp1[0] = 0.7071f * (re + im);
+ fp1[1] = 0.7071f * (im - re);
+ fp1[4] = fp2[0] - fp3[1];
+ fp1[5] = fp2[1] + fp3[0];
+
+ fp1 += 8, fp2 += 2, fp3 += 2;
+ }
+#if 0
+ if (x->x_nprint)
+ {
+ for (i = 0, fp = spect1; i < 16; i++, fp+= 4)
+ post("spect %d %f %f --> %f", i, fp[0], fp[1],
+ sqrt(fp[0] * fp[0] + fp[1] * fp[1]));
+ }
+#endif
+ /* copy new spectrum out */
+ for (i = 0, fp1 = spect2, fp2 = x->x_lastanalysis;
+ i < n + 4*FILTSIZE; i++) *fp2++ = *fp1++;
+
+ for (i = 0; i < MINBIN; i++) spect1[4*i + 2] = spect1[4*i + 3] = 0;
+ /* starting at bin MINBIN, compute hanning windowed power spectrum */
+ for (i = MINBIN, fp1 = spect1+4*MINBIN, total_power = 0;
+ i < n-2; i++, fp1 += 4)
+ {
+ float re = fp1[0] - 0.5f * (fp1[-8] + fp1[8]);
+ float im = fp1[1] - 0.5f * (fp1[-7] + fp1[9]);
+ fp1[3] = (total_power += (fp1[2] = re * re + im * im));
+ }
+
+ if (total_power > 1e-9f)
+ {
+ total_db = (100.f - DBFUDGE) + LOGTODB * log(total_power/n);
+ total_loudness = fsqrt(fsqrt(total_power));
+ if (total_db < 0) total_db = 0;
+ }
+ else total_db = total_loudness = 0;
+ /* store new db in history vector */
+ x->x_dbs[newphase] = total_db;
+ if (total_db < x->x_amplo) goto nopow;
+#if 1
+ if (x->x_nprint) post("power %f", total_power);
+#endif
+
+#if CHECKER
+ /* verify that our FFT resampling thing is putting out good results */
+ for (i = 0; i < hop; i++)
+ {
+ checker3[2*i] = fiddle_checker[i];
+ checker3[2*i + 1] = 0;
+ checker3[n + 2*i] = fiddle_checker[i] = x->x_inbuf[i];
+ checker3[n + 2*i + 1] = 0;
+ }
+ for (i = 2*n; i < 4*n; i++) checker3[i] = 0;
+ fft(checker3, 2*n, 0);
+ if (x->x_nprint)
+ {
+ for (i = 0, fp = checker3; i < 16; i++, fp += 2)
+ post("spect %d %f %f --> %f", i, fp[0], fp[1],
+ sqrt(fp[0] * fp[0] + fp[1] * fp[1]));
+ }
+
+#endif
+ npeak = 0;
+
+ /* search for peaks */
+ for (i = MINBIN, fp = spect1+4*MINBIN, pk1 = peaklist;
+ i < n-2 && npeak < npeaktot; i++, fp += 4)
+ {
+ float height = fp[2], h1 = fp[-2], h2 = fp[6];
+ float totalfreq, pfreq, f1, f2, m, var, stdev;
+
+ if (height < h1 || height < h2 ||
+ h1 < 0.00001f*total_power || h2 < 0.00001f*total_power)
+ continue;
+
+ /* use an informal phase vocoder to estimate the frequency.
+ Do this for the two adjacent bins too. */
+ pfreq= ((fp[-8] - fp[8]) * (2.0f * fp[0] - fp[8] - fp[-8]) +
+ (fp[-7] - fp[9]) * (2.0f * fp[1] - fp[9] - fp[-7])) /
+ (2.0f * height);
+ f1= ((fp[-12] - fp[4]) * (2.0f * fp[-4] - fp[4] - fp[-12]) +
+ (fp[-11] - fp[5]) * (2.0f * fp[-3] - fp[5] - fp[-11])) /
+ (2.0f * h1) - 1;
+ f2= ((fp[-4] - fp[12]) * (2.0f * fp[4] - fp[12] - fp[-4]) +
+ (fp[-3] - fp[13]) * (2.0f * fp[5] - fp[13] - fp[-3])) /
+ (2.0f * h2) + 1;
+
+ /* get sample mean and variance of the three */
+ m = 0.333333f * (pfreq + f1 + f2);
+ var = 0.5f * ((pfreq-m)*(pfreq-m) + (f1-m)*(f1-m) + (f2-m)*(f2-m));
+
+ totalfreq = i + m;
+ if (var * total_power > KNOCKTHRESH * height || var < 1e-30)
+ {
+#if 0
+ if (x->x_nprint)
+ post("cancel: %.2f hz, index %.1f, power %.5f, stdev=%.2f",
+ totalfreq * hzperbin, BPERO_OVER_LOG2 * log(totalfreq) - 96,
+ height, sqrt(var));
+#endif
+ continue;
+ }
+ stdev = fsqrt(var);
+ if (totalfreq < 4)
+ {
+ if (x->x_nprint) post("oops: was %d, freq %f, m %f, stdev %f h %f",
+ i, totalfreq, m, stdev, height);
+ totalfreq = 4;
+ }
+ pk1->p_width = stdev;
+
+ pk1->p_pow = height;
+ pk1->p_loudness = fsqrt(fsqrt(height));
+ pk1->p_fp = fp;
+ pk1->p_freq = totalfreq;
+ npeak++;
+#if 1
+ if (x->x_nprint)
+ {
+ post("peak: %.2f hz. index %.1f, power %.5f, stdev=%.2f",
+ pk1->p_freq * hzperbin,
+ BPERO_OVER_LOG2 * log(pk1->p_freq) - 96,
+ height, stdev);
+ }
+#endif
+ pk1++;
+ }
+
+ /* prepare the raw peaks for output */
+ for (i = 0, pk1 = peaklist, pk2 = x->x_peakbuf; i < npeak;
+ i++, pk1++, pk2++)
+ {
+ float loudness = pk1->p_loudness;
+ if (i >= npeakout) break;
+ pk2->po_freq = hzperbin * pk1->p_freq;
+ pk2->po_amp = (2.f / (float)n) * (loudness * loudness);
+ }
+ for (; i < npeakout; i++, pk2++) pk2->po_amp = pk2->po_freq = 0;
+
+ /* now, working back into spect2, make a sort of "liklihood"
+ * spectrum. Proceeding in 48ths of an octave, from 2 to
+ * n/2 (in bins), the likelihood of each pitch range is contributed
+ * to by every peak in peaklist that's an integer multiple of it
+ * in frequency.
+ */
+
+ if (npeak > npeakanal) npeak = npeakanal; /* max # peaks to analyze */
+ for (i = 0, fp1 = histogram; i < maxbin; i++) *fp1++ = 0;
+ for (i = 0, pk1 = peaklist; i < npeak; i++, pk1++)
+ {
+ float pit = BPERO_OVER_LOG2 * flog(pk1->p_freq) - 96.0f;
+ float binbandwidth = FACTORTOBINS * pk1->p_width/pk1->p_freq;
+ float putbandwidth = (binbandwidth < 2 ? 2 : binbandwidth);
+ float weightbandwidth = (binbandwidth < 1.0f ? 1.0f : binbandwidth);
+ /* float weightamp = 1.0f + 3.0f * pk1->p_pow / pow; */
+ float weightamp = 4. * pk1->p_loudness / total_loudness;
+ for (j = 0, fp2 = sigfiddle_partialonset; j < NPARTIALONSET; j++, fp2++)
+ {
+ float bin = pit - *fp2;
+ if (bin < maxbin)
+ {
+ float para, pphase, score = 30.0f * weightamp /
+ ((j+x->x_npartial) * weightbandwidth);
+ int firstbin = bin + 0.5f - 0.5f * putbandwidth;
+ int lastbin = bin + 0.5f + 0.5f * putbandwidth;
+ int ibw = lastbin - firstbin;
+ if (firstbin < -BINGUARD) break;
+ para = 1.0f / (putbandwidth * putbandwidth);
+ for (k = 0, fp3 = histogram + firstbin,
+ pphase = firstbin-bin; k <= ibw;
+ k++, fp3++, pphase += 1.0f)
+ {
+ *fp3 += score * (1.0f - para * pphase * pphase);
+ }
+ }
+ }
+ }
+#if 1
+ if (x->x_nprint)
+ {
+ for (i = 0; i < 6*5; i++)
+ {
+ float fhz = hzperbin * exp ((8*i + 96) * (1./BPERO_OVER_LOG2));
+ if (!(i % 6)) post("-- bin %d pitch %f freq %f----", 8*i,
+ ftom(fhz), fhz);;
+ post("%3d %3d %3d %3d %3d %3d %3d %3d",
+ (int)(histogram[8*i]),
+ (int)(histogram[8*i+1]),
+ (int)(histogram[8*i+2]),
+ (int)(histogram[8*i+3]),
+ (int)(histogram[8*i+4]),
+ (int)(histogram[8*i+5]),
+ (int)(histogram[8*i+6]),
+ (int)(histogram[8*i+7]));
+ }
+ }
+
+#endif
+
+ /*
+ * Next we find up to NPITCH strongest peaks in the histogram.
+ * if a peak is related to a stronger one via an interval in
+ * the sigfiddle_partialonset array, we suppress it.
+ */
+
+ for (npitch = 0; npitch < x->x_npitch; npitch++)
+ {
+ int indx;
+ float best;
+ if (npitch)
+ {
+ for (best = 0, indx = -1, j=1; j < maxbin-1; j++)
+ {
+ if (histogram[j] > best && histogram[j] > histogram[j-1] &&
+ histogram[j] > histogram[j+1])
+ {
+ for (k = 0; k < npitch; k++)
+ if (histvec[k].h_index == j)
+ goto peaknogood;
+ for (k = 0; k < NPARTIALONSET; k++)
+ {
+ if (j - sigfiddle_intpartialonset[k] < 0) break;
+ if (histogram[j - sigfiddle_intpartialonset[k]]
+ > histogram[j]) goto peaknogood;
+ }
+ for (k = 0; k < NPARTIALONSET; k++)
+ {
+ if (j + sigfiddle_intpartialonset[k] >= maxbin) break;
+ if (histogram[j + sigfiddle_intpartialonset[k]]
+ > histogram[j]) goto peaknogood;
+ }
+ indx = j;
+ best = histogram[j];
+ }
+ peaknogood: ;
+ }
+ }
+ else
+ {
+ for (best = 0, indx = -1, j=0; j < maxbin; j++)
+ if (histogram[j] > best)
+ indx = j, best = histogram[j];
+ }
+ if (indx < 0) break;
+ histvec[npitch].h_value = best;
+ histvec[npitch].h_index = indx;
+ }
+#if 1
+ if (x->x_nprint)
+ {
+ for (i = 0; i < npitch; i++)
+ {
+ post("index %d freq %f --> value %f", histvec[i].h_index,
+ exp((1./BPERO_OVER_LOG2) * (histvec[i].h_index + 96)),
+ histvec[i].h_value);
+ post("next %f , prev %f",
+ exp((1./BPERO_OVER_LOG2) * (histvec[i].h_index + 97)),
+ exp((1./BPERO_OVER_LOG2) * (histvec[i].h_index + 95)) );
+ }
+ }
+#endif
+
+ /* for each histogram peak, we now search back through the
+ * FFT peaks. A peak is a pitch if either there are several
+ * harmonics that match it, or else if (a) the fundamental is
+ * present, and (b) the sum of the powers of the contributing peaks
+ * is at least 1/100 of the total power.
+ *
+ * A peak is a contributor if its frequency is within 25 cents of
+ * a partial from 1 to 16.
+ *
+ * Finally, we have to be at least 5 bins in frequency, which
+ * corresponds to 2-1/5 periods fitting in the analysis window.
+ */
+
+ for (i = 0; i < npitch; i++)
+ {
+ float cumpow = 0, cumstrength = 0, freqnum = 0, freqden = 0;
+ int npartials = 0, nbelow8 = 0;
+ /* guessed-at frequency in bins */
+ float putfreq = fexp((1.0f / BPERO_OVER_LOG2) *
+ (histvec[i].h_index + 96.0f));
+ for (j = 0; j < npeak; j++)
+ {
+ float fpnum = peaklist[j].p_freq/putfreq;
+ int pnum = fpnum + 0.5f;
+ float fipnum = pnum;
+ float deviation;
+ if (pnum > 16 || pnum < 1) continue;
+ deviation = 1.0f - fpnum/fipnum;
+ if (deviation > -PARTIALDEVIANCE && deviation < PARTIALDEVIANCE)
+ {
+ /*
+ * we figure this is a partial since it's within 1/4 of
+ * a halftone of a multiple of the putative frequency.
+ */
+
+ float stdev, weight;
+ npartials++;
+ if (pnum < 8) nbelow8++;
+ cumpow += peaklist[j].p_pow;
+ cumstrength += fsqrt(fsqrt(peaklist[j].p_pow));
+ stdev = (peaklist[j].p_width > MINBW ?
+ peaklist[j].p_width : MINBW);
+ weight = 1.0f / ((stdev*fipnum) * (stdev*fipnum));
+ freqden += weight;
+ freqnum += weight * peaklist[j].p_freq/fipnum;
+#if 1
+ if (x->x_nprint)
+ {
+ post("peak %d partial %d f=%f w=%f",
+ j, pnum, peaklist[j].p_freq/fipnum, weight);
+ }
+#endif
+ }
+#if 1
+ else if (x->x_nprint) post("peak %d partial %d dev %f",
+ j, pnum, deviation);
+#endif
+ }
+ if ((nbelow8 < 4 || npartials < 7) && cumpow < 0.01f * total_power)
+ histvec[i].h_value = 0;
+ else
+ {
+ float pitchpow = (cumstrength * cumstrength) *
+ (cumstrength * cumstrength);
+ float freqinbins = freqnum/freqden;
+ /* check for minimum output frequency */
+
+ if (freqinbins < MINFREQINBINS)
+ histvec[i].h_value = 0;
+ else
+ {
+ /* we passed all tests... save the values we got */
+ histvec[i].h_pitch = ftom(hzperbin * freqnum/freqden);
+ histvec[i].h_loud = (100.0f -DBFUDGE) +
+ (LOGTODB) * log(pitchpow/n);
+ }
+ }
+ }
+#if 1
+ if (x->x_nprint)
+ {
+ for (i = 0; i < npitch; i++)
+ {
+ if (histvec[i].h_value > 0)
+ post("index %d pit %f loud %f", histvec[i].h_index,
+ histvec[i].h_pitch, histvec[i].h_loud);
+ else post("-- cancelled --");
+ }
+ }
+#endif
+
+ /* now try to find continuous pitch tracks that match the new
+ * pitches. First mark each peak unmatched.
+ */
+ for (i = 0, hp1 = histvec; i < npitch; i++, hp1++)
+ hp1->h_used = 0;
+
+ /* for each old pitch, try to match a new one to it. */
+ for (i = 0, phist = x->x_hist; i < x->x_npitch; i++, phist++)
+ {
+ float thispitch = phist->h_pitches[oldphase];
+ phist->h_pitch = 0; /* no output, thanks */
+ phist->h_wherefrom = 0;
+ if (thispitch == 0.0f) continue;
+ for (j = 0, hp1 = histvec; j < npitch; j++, hp1++)
+ if ((hp1->h_value > 0) && hp1->h_pitch > thispitch - GLISS
+ && hp1->h_pitch < thispitch + GLISS)
+ {
+ phist->h_wherefrom = hp1;
+ hp1->h_used = 1;
+ }
+ }
+ for (i = 0, hp1 = histvec; i < npitch; i++, hp1++)
+ if ((hp1->h_value > 0) && !hp1->h_used)
+ {
+ for (j = 0, phist = x->x_hist; j < x->x_npitch; j++, phist++)
+ if (!phist->h_wherefrom)
+ {
+ phist->h_wherefrom = hp1;
+ phist->h_age = 0;
+ phist->h_noted = 0;
+ hp1->h_used = 1;
+ goto happy;
+ }
+ break;
+ happy: ;
+ }
+ /* copy the pitch info into the history vector */
+ for (i = 0, phist = x->x_hist; i < x->x_npitch; i++, phist++)
+ {
+ if (phist->h_wherefrom)
+ {
+ phist->h_amps[newphase] = phist->h_wherefrom->h_loud;
+ phist->h_pitches[newphase] =
+ phist->h_wherefrom->h_pitch;
+ (phist->h_age)++;
+ }
+ else
+ {
+ phist->h_age = 0;
+ phist->h_amps[newphase] = phist->h_pitches[newphase] = 0;
+ }
+ }
+#if 1
+ if (x->x_nprint)
+ {
+ post("vibrato %d %f", x->x_vibbins, x->x_vibdepth);
+ for (i = 0, phist = x->x_hist; i < x->x_npitch; i++, phist++)
+ {
+ post("noted %f, age %d", phist->h_noted, phist->h_age);
+#ifndef I860
+ post("values %f %f %f %f %f",
+ phist->h_pitches[newphase],
+ phist->h_pitches[(newphase + HISTORY-1)%HISTORY],
+ phist->h_pitches[(newphase + HISTORY-2)%HISTORY],
+ phist->h_pitches[(newphase + HISTORY-3)%HISTORY],
+ phist->h_pitches[(newphase + HISTORY-4)%HISTORY]);
+#endif
+ }
+ }
+#endif
+ /* look for envelope attacks */
+
+ x->x_attackvalue = 0;
+
+ if (x->x_peaked)
+ {
+ if (total_db > x->x_amphi)
+ {
+ int binlook = newphase - x->x_attackbins;
+ if (binlook < 0) binlook += HISTORY;
+ if (total_db > x->x_dbs[binlook] + x->x_attackthresh)
+ {
+ x->x_attackvalue = 1;
+ x->x_peaked = 0;
+ }
+ }
+ }
+ else
+ {
+ int binlook = newphase - x->x_attackbins;
+ if (binlook < 0) binlook += HISTORY;
+ if (x->x_dbs[binlook] > x->x_amphi && x->x_dbs[binlook] > total_db)
+ x->x_peaked = 1;
+ }
+
+ /* for each current frequency track, test for a new note using a
+ * stability criterion. Later perhaps we should also do as in
+ * pitch~ and check for unstable notes a posteriori when
+ * there's a new attack with no note found since the last onset;
+ * but what's an attack &/or onset when we're polyphonic?
+ */
+
+ for (i = 0, phist = x->x_hist; i < x->x_npitch; i++, phist++)
+ {
+ /*
+ * if we've found a pitch but we've now strayed from it turn
+ * it off.
+ */
+ if (phist->h_noted)
+ {
+ if (phist->h_pitches[newphase] > phist->h_noted + x->x_vibdepth
+ || phist->h_pitches[newphase] < phist->h_noted - x->x_vibdepth)
+ phist->h_noted = 0;
+ }
+ else
+ {
+ if (phist->h_wherefrom && phist->h_age >= x->x_vibbins)
+ {
+ float centroid = 0;
+ int not = 0;
+ for (j = 0, k = newphase; j < x->x_vibbins; j++)
+ {
+ centroid += phist->h_pitches[k];
+ k--;
+ if (k < 0) k = HISTORY-1;
+ }
+ centroid /= x->x_vibbins;
+ for (j = 0, k = newphase; j < x->x_vibbins; j++)
+ {
+ /* calculate deviation from norm */
+ float dev = centroid - phist->h_pitches[k];
+ k--;
+ if (k < 0) k = HISTORY-1;
+ if (dev > x->x_vibdepth ||
+ -dev > x->x_vibdepth) not = 1;
+ }
+ if (!not)
+ {
+ phist->h_pitch = phist->h_noted = centroid;
+ }
+ }
+ }
+ }
+ return;
+
+nopow:
+ for (i = 0; i < x->x_npitch; i++)
+ {
+ x->x_hist[i].h_pitch = x->x_hist[i].h_noted =
+ x->x_hist[i].h_pitches[newphase] =
+ x->x_hist[i].h_amps[newphase] = 0;
+ x->x_hist[i].h_age = 0;
+ }
+ x->x_peaked = 1;
+ x->x_dbage = 0;
+}
+
+void sigfiddle_debug(t_sigfiddle *x)
+{
+ x->x_nprint = 1;
+}
+
+void sigfiddle_print(t_sigfiddle *x)
+{
+ post("npoints %d,", 2 * x->x_hop);
+ post("amp-range %f %f,", x->x_amplo, x->x_amphi);
+ post("reattack %d %f,", x->x_attacktime, x->x_attackthresh);
+ post("vibrato %d %f", x->x_vibtime, x->x_vibdepth);
+ post("npartial %f", x->x_npartial);
+ post("auto %d", x->x_auto);
+}
+
+void sigfiddle_amprange(t_sigfiddle *x, t_floatarg amplo, t_floatarg amphi)
+{
+ if (amplo < 0) amplo = 0;
+ if (amphi < amplo) amphi = amplo + 1;
+ x->x_amplo = amplo;
+ x->x_amphi = amphi;
+}
+
+void sigfiddle_reattack(t_sigfiddle *x,
+ t_floatarg attacktime, t_floatarg attackthresh)
+{
+ if (attacktime < 0) attacktime = 0;
+ if (attackthresh <= 0) attackthresh = 1000;
+ x->x_attacktime = attacktime;
+ x->x_attackthresh = attackthresh;
+ x->x_attackbins = (x->x_sr * 0.001 * attacktime) / x->x_hop;
+ if (x->x_attackbins >= HISTORY) x->x_attackbins = HISTORY - 1;
+}
+
+void sigfiddle_vibrato(t_sigfiddle *x, t_floatarg vibtime, t_floatarg vibdepth)
+{
+ if (vibtime < 0) vibtime = 0;
+ if (vibdepth <= 0) vibdepth = 1000;
+ x->x_vibtime = vibtime;
+ x->x_vibdepth = vibdepth;
+ x->x_vibbins = (x->x_sr * 0.001 * vibtime) / x->x_hop;
+ if (x->x_vibbins >= HISTORY) x->x_vibbins = HISTORY - 1;
+ if (x->x_vibbins < 1) x->x_vibbins = 1;
+}
+
+void sigfiddle_npartial(t_sigfiddle *x, t_floatarg npartial)
+{
+ if (npartial < 0.1) npartial = 0.1;
+ x->x_npartial = npartial;
+}
+
+void sigfiddle_auto(t_sigfiddle *x, t_floatarg f)
+{
+ x->x_auto = (f != 0);
+}
+
+static void sigfiddle_freebird(t_sigfiddle *x)
+{
+ if (x->x_inbuf)
+ {
+ freebytes(x->x_inbuf, sizeof(float) * x->x_hop);
+ x->x_inbuf = 0;
+ }
+ if (x->x_lastanalysis)
+ {
+ freebytes(x->x_lastanalysis,
+ sizeof(float) * (2 * x->x_hop + 4 * FILTSIZE));
+ x->x_lastanalysis = 0;
+ }
+ if (x->x_spiral)
+ {
+ freebytes(x->x_spiral, sizeof(float) * 2 * x->x_hop);
+ x->x_spiral = 0;
+ }
+ x->x_hop = 0;
+}
+
+int sigfiddle_setnpoints(t_sigfiddle *x, t_floatarg fnpoints)
+{
+ int i, npoints = fnpoints;
+ sigfiddle_freebird(x);
+ if (npoints < MINPOINTS || npoints > MAXPOINTS)
+ {
+ error("fiddle~: npoints out of range; using %d",
+ npoints = DEFAULTPOINTS);
+ }
+ if (npoints != (1 << sigfiddle_ilog2(npoints)))
+ {
+ error("fiddle~: npoints not a power of 2; using %d",
+ npoints = (1 << sigfiddle_ilog2(npoints)));
+ }
+ x->x_hop = npoints >> 1;
+ if (!(x->x_inbuf = (float *)getbytes(sizeof(float) * x->x_hop)))
+ goto fail;
+ if (!(x->x_lastanalysis = (float *)getbytes(
+ sizeof(float) * (2 * x->x_hop + 4 * FILTSIZE))))
+ goto fail;
+ if (!(x->x_spiral = (float *)getbytes(sizeof(float) * 2 * x->x_hop)))
+ goto fail;
+ for (i = 0; i < x->x_hop; i++)
+ x->x_inbuf[i] = 0;
+ for (i = 0; i < npoints + 4 * FILTSIZE; i++)
+ x->x_lastanalysis[i] = 0;
+ for (i = 0; i < x->x_hop; i++)
+ x->x_spiral[2*i] = cos((3.14159*i)/(npoints)),
+ x->x_spiral[2*i+1] = -sin((3.14159*i)/(npoints));
+ x->x_phase = 0;
+ return (1);
+fail:
+ sigfiddle_freebird(x);
+ return (0);
+}
+
+int sigfiddle_doinit(t_sigfiddle *x, long npoints, long npitch,
+ long npeakanal, long npeakout)
+{
+ float *buf1, *buf2, *buf3;
+ t_peakout *buf4;
+ int i;
+
+ if (!npeakanal && !npeakout) npeakanal = DEFNPEAK, npeakout = 0;
+ if (!npeakanal < 0) npeakanal = 0;
+ else if (npeakanal > MAXPEAK) npeakanal = MAXPEAK;
+ if (!npeakout < 0) npeakout = 0;
+ else if (npeakout > MAXPEAK) npeakout = MAXPEAK;
+ if (npitch <= 0) npitch = 0;
+ else if (npitch > MAXNPITCH) npitch = MAXNPITCH;
+ if (npeakanal && !npitch) npitch = 1;
+ if (!npoints)
+ npoints = DEFAULTPOINTS;
+ if (!sigfiddle_setnpoints(x, npoints))
+ {
+ error("fiddle~: out of memory");
+ return (0);
+ }
+ if (!(buf4 = (t_peakout *)getbytes(sizeof(*buf4) * npeakout)))
+ {
+ sigfiddle_freebird(x);
+ error("fiddle~: out of memory");
+ return (0);
+ }
+ for (i = 0; i < npeakout; i++)
+ buf4[i].po_freq = buf4[i].po_amp = 0;
+ x->x_peakbuf = buf4;
+
+ x->x_npeakout = npeakout;
+ x->x_npeakanal = npeakanal;
+ x->x_phase = 0;
+ x->x_histphase = 0;
+ x->x_sr = 44100; /* this and the next are filled in later */
+ for (i = 0; i < MAXNPITCH; i++)
+ {
+ int j;
+ x->x_hist[i].h_pitch = x->x_hist[i].h_noted = 0;
+ x->x_hist[i].h_age = 0;
+ x->x_hist[i].h_wherefrom = 0;
+ x->x_hist[i].h_outlet = 0;
+ for (j = 0; j < HISTORY; j++)
+ x->x_hist[i].h_amps[j] = x->x_hist[i].h_pitches[j] = 0;
+ }
+ x->x_nprint = 0;
+ x->x_npitch = npitch;
+ for (i = 0; i < HISTORY; i++) x->x_dbs[i] = 0;
+ x->x_dbage = 0;
+ x->x_peaked = 0;
+ x->x_auto = 1;
+ x->x_amplo = DEFAMPLO;
+ x->x_amphi = DEFAMPHI;
+ x->x_attacktime = DEFATTACKTIME;
+ x->x_attackbins = 1; /* real value calculated afterward */
+ x->x_attackthresh = DEFATTACKTHRESH;
+ x->x_vibtime = DEFVIBTIME;
+ x->x_vibbins = 1; /* real value calculated afterward */
+ x->x_vibdepth = DEFVIBDEPTH;
+ x->x_npartial = 7;
+ x->x_attackvalue = 0;
+ return (1);
+}
+
+ /* formalities for JMAX */
+
+#ifdef JMAX
+
+void sigfiddle_debug13(fts_object_t *o, int winlet, fts_symbol_t s, int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ sigfiddle_debug(x);
+}
+
+void sigfiddle_print13(fts_object_t *o, int winlet, fts_symbol_t s,
+ int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ sigfiddle_print(x);
+}
+
+void sigfiddle_amprange13(fts_object_t *o, int winlet, fts_symbol_t s,
+ int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ float lo = (float) fts_get_float_arg(ac, at, 0, 0);
+ float hi = (float) fts_get_float_arg(ac, at, 1, 0);
+ sigfiddle_amprange(x, lo, hi);
+}
+
+void sigfiddle_reattack13(fts_object_t *o, int winlet, fts_symbol_t s,
+ int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ long msec = fts_get_float_arg(ac, at, 0, 0);
+ float db = (float) fts_get_float_arg(ac, at, 1, 0);
+ sigfiddle_reattack(x, msec, db);
+}
+
+void sigfiddle_vibrato13(fts_object_t *o, int winlet, fts_symbol_t s,
+ int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ long msec = fts_get_float_arg(ac, at, 0, 0);
+ float halftones = (float) fts_get_float_arg(ac, at, 1, 0);
+ sigfiddle_vibrato(x, msec, halftones);
+}
+
+void sigfiddle_npartial13(fts_object_t *o, int winlet, fts_symbol_t s,
+ int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ float npartial = (float) fts_get_float_arg(ac, at, 0, 0);
+ sigfiddle_npartial(x, npartial);
+}
+
+
+void ftl_sigfiddle(fts_word_t *a)
+{
+ t_sigfiddle *x = (t_sigfiddle *)fts_word_get_long(a);
+ float *in = (float *)fts_word_get_long(a + 1);
+ long n_tick = fts_word_get_long(a + 2);
+
+ int count;
+ float *fp, *fp2;
+ for (count = 0, fp = x->x_inbuf + x->x_phase;
+ count < n_tick; count++) *fp++ = *in++;
+ if (fp == x->x_inbuf + x->x_hop)
+ {
+ sigfiddle_doit(x);
+ x->x_phase = 0;
+ fts_alarm_set_delay(&x->x_clock, 0L); /* output bang */
+ fts_alarm_arm(&x->x_clock);
+
+ if (x->x_nprint) x->x_nprint--;
+ }
+ else x->x_phase += n_tick;
+}
+
+void sigfiddle_put(fts_object_t *o, int winlet, fts_symbol_t *s, int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ fts_dsp_descr_t *dsp = (fts_dsp_descr_t *)fts_get_long_arg(ac, at, 0, 0);
+ fts_atom_t a[3];
+
+ x->x_sr = fts_dsp_get_input_srate(dsp, 0);
+ sigfiddle_reattack(x, x->x_attacktime, x->x_attackthresh);
+ sigfiddle_vibrato(x, x->x_vibtime, x->x_vibdepth);
+
+ fts_set_long(a, (long)x);
+ fts_set_symbol(a+1, fts_dsp_get_input_name(dsp, 0));
+ fts_set_long(a+2, fts_dsp_get_input_size(dsp, 0));
+ dsp_add_funcall(dsp_symbol, 3, a);
+}
+
+void sigfiddle_tick(fts_alarm_t *alarm, void *p)
+{
+ fts_object_t *o = (fts_object_t *)p;
+ t_sigfiddle *x = (t_sigfiddle *)p;
+
+ int i;
+ t_pitchhist *ph;
+ fts_outlet_float(o, OUTLETpower, x->x_dbs[x->x_histphase]);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ {
+ fts_atom_t at[2];
+ fts_set_float(at, ph->h_pitches[x->x_histphase]);
+ fts_set_float(at+1, ph->h_amps[x->x_histphase]);
+ fts_outlet_list(o, OUTLETmicropitch3 - i, 2, at);
+ }
+ if (x->x_attackvalue) fts_outlet_bang(o, OUTLETattack);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ if (ph->h_pitch) fts_outlet_float(o, OUTLETpitch, ph->h_pitch);
+}
+
+static void sigfiddle_delete(fts_object_t *o, int winlet, fts_symbol_t *s, int ac,
+ const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+
+ fts_free(x->x_inbuf);
+ fts_free(x->x_lastanalysis);
+ fts_free(x->x_spiral);
+ dsp_list_remove(o);
+}
+
+static void sigfiddle_init(fts_object_t *o, int winlet, fts_symbol_t *s, int ac, const fts_atom_t *at)
+{
+ t_sigfiddle *x = (t_sigfiddle *)o;
+ float *buf1, *buf2, *buf3;
+ int i, hop;
+ long npoints = fts_get_long_arg(ac, at, 1, 0);
+ long npitch = fts_get_long_arg(ac, at, 2, 0);
+ long npeakanal = fts_get_long_arg(ac, at, 3, 0);
+ long npeakout = fts_get_long_arg(ac, at, 4, 0);
+
+ if (!sigfiddle_doinit(x, npoints, npitch, npeakanal, npeakout))
+ {
+ post("fiddle~: initialization failed");
+ return;
+ }
+ hop = npoints>>1;
+ if (fts_fft_declaresize(hop) != fts_Success)
+ post("fiddle~: bad FFT size");
+
+ fts_alarm_init(&(x->x_clock), 0, sigfiddle_tick, x);
+ dsp_list_insert(o);
+}
+
+static fts_status_t sigfiddle_instantiate(fts_class_t *cl, int ac,
+ const fts_atom_t *at)
+{
+ int i;
+ fts_type_t a[5];
+
+ fts_class_init(cl, sizeof(t_sigfiddle), 1, 6, 0); /* 1 inlet + 6 outlets */
+
+ /* the system methods */
+
+ a[0] = fts_Symbol;
+ a[1] = fts_Long | fts_OptArg;
+ a[2] = fts_Long | fts_OptArg;
+ fts_method_define(cl, fts_SystemInlet, fts_s_init, sigfiddle_init, 3, a);
+
+ fts_method_define(cl, fts_SystemInlet, fts_s_delete, sigfiddle_delete, 0, a);
+ a[0] = fts_Object;
+ fts_method_define(cl, fts_SystemInlet, fts_s_put, sigfiddle_put, 1, a);
+
+ /* class' own methods */
+ fts_method_define(cl, 0, fts_new_symbol("print"), sigfiddle_print13, 0, a);
+ fts_method_define(cl, 0, fts_new_symbol("debug"), sigfiddle_debug13, 0, a);
+ fts_method_define(cl, 0, fts_new_symbol("amp-range"), sigfiddle_amprange13,
+ 0, a);
+ fts_method_define(cl, 0, fts_new_symbol("reattack"), sigfiddle_reattack13,
+ 0, a);
+ fts_method_define(cl, 0, fts_new_symbol("vibrato"), sigfiddle_vibrato13,
+ 0, a);
+ fts_method_define(cl, 0, fts_new_symbol("npartial"), sigfiddle_npartial13,
+ 0, a);
+
+ /* classes signal inlets */
+ dsp_sig_inlet(cl, 0); /* declare signal input #0 */
+
+ /* classes outlets */
+ a[0] = fts_Float;
+ fts_outlet_type_define(cl, OUTLETpitch, fts_s_float, 1, a); /* declare outlet #0 */
+ fts_outlet_type_define(cl, OUTLETattack, fts_s_bang, 0, a); /* declare outlet #1 */
+ a[0] = fts_VarArgs;
+ fts_outlet_type_define(cl, OUTLETmicropitch1, fts_s_list, 1, a); /* declare outlet #2 */
+ fts_outlet_type_define(cl, OUTLETmicropitch2, fts_s_list, 1, a); /* declare outlet #3 */
+ fts_outlet_type_define(cl, OUTLETmicropitch3, fts_s_list, 1, a); /* declare outlet #4 */
+ a[0] = fts_Float;
+ fts_outlet_type_define(cl, OUTLETpower, fts_s_float, 1, a); /* declare outlet #5 */
+
+ dsp_symbol = fts_new_symbol("fiddle");
+ dsp_declare_function(dsp_symbol, ftl_sigfiddle);
+
+ /* DSP properties */
+
+ fts_class_put_prop(cl, fts_s_dsp_is_sink, fts_true);
+
+ return(fts_Success);
+}
+
+void fiddle_config(void)
+{
+ sys_log(fiddle_version);
+ fts_metaclass_create(fts_new_symbol(CLASSNAME), sigfiddle_instantiate, fts_always_equiv);
+}
+
+fts_module_t fiddle_module =
+ {"fiddle", "sonic meat fiddle", fiddle_config, 0};
+
+#endif /* JMAX */
+
+#ifdef PD
+
+static t_int *fiddle_perform(t_int *w)
+{
+ t_float *in = (t_float *)(w[1]);
+ t_sigfiddle *x = (t_sigfiddle *)(w[2]);
+ int n = (int)(w[3]);
+ int count;
+ float *fp;
+ if (!x->x_hop)
+ goto nono;
+ for (count = 0, fp = x->x_inbuf + x->x_phase; count < n; count++)
+ *fp++ = *in++;
+ if (fp == x->x_inbuf + x->x_hop)
+ {
+ sigfiddle_doit(x);
+ x->x_phase = 0;
+ if (x->x_auto) clock_delay(x->x_clock, 0L);
+ if (x->x_nprint) x->x_nprint--;
+ }
+ else x->x_phase += n;
+nono:
+ return (w+4);
+}
+
+void sigfiddle_dsp(t_sigfiddle *x, t_signal **sp)
+{
+ x->x_sr = sp[0]->s_sr;
+ sigfiddle_reattack(x, x->x_attacktime, x->x_attackthresh);
+ sigfiddle_vibrato(x, x->x_vibtime, x->x_vibdepth);
+ dsp_add(fiddle_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
+}
+
+ /* This is the callback function for the clock, but also acts as
+ the "bang" method; you can leave "auto" on to get this called
+ automatically (the default) or turn auto off and bang it yourself. */
+
+void sigfiddle_bang(t_sigfiddle *x)
+{
+ int i;
+ t_pitchhist *ph;
+ if (x->x_npeakout)
+ {
+ int npeakout = x->x_npeakout;
+ t_peakout *po;
+ for (i = 0, po = x->x_peakbuf; i < npeakout; i++, po++)
+ {
+ t_atom at[3];
+ SETFLOAT(at, i+1);
+ SETFLOAT(at+1, po->po_freq);
+ SETFLOAT(at+2, po->po_amp);
+ outlet_list(x->x_peakout, 0, 3, at);
+ }
+ }
+ outlet_float(x->x_envout, x->x_dbs[x->x_histphase]);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ {
+ t_atom at[2];
+ SETFLOAT(at, ph->h_pitches[x->x_histphase]);
+ SETFLOAT(at+1, ph->h_amps[x->x_histphase]);
+ outlet_list(ph->h_outlet, 0, 2, at);
+ }
+ if (x->x_attackvalue) outlet_bang(x->x_attackout);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ if (ph->h_pitch) outlet_float(x->x_noteout, ph->h_pitch);
+}
+
+void sigfiddle_ff(t_sigfiddle *x) /* cleanup on free */
+{
+ if (x->x_inbuf)
+ {
+ freebytes(x->x_inbuf, sizeof(float) * x->x_hop);
+ freebytes(x->x_lastanalysis, sizeof(float) * (2*x->x_hop + 4 * FILTSIZE));
+ freebytes(x->x_spiral, sizeof(float) * 2*x->x_hop);
+ freebytes(x->x_peakbuf, sizeof(*x->x_peakbuf) * x->x_npeakout);
+ clock_free(x->x_clock);
+ }
+}
+
+static t_class *sigfiddle_class;
+
+void *sigfiddle_new(t_floatarg npoints, t_floatarg npitch,
+ t_floatarg fnpeakanal, t_floatarg fnpeakout)
+{
+ t_sigfiddle *x = (t_sigfiddle *)pd_new(sigfiddle_class);
+ int i;
+ int npeakanal = fnpeakanal, npeakout = fnpeakout;
+
+
+ if (!sigfiddle_doinit(x, npoints, npitch,
+ npeakanal, npeakout))
+ {
+ x->x_inbuf = 0; /* prevent the free routine from cleaning up */
+ pd_free(&x->x_ob.ob_pd);
+ return (0);
+ }
+ x->x_noteout = outlet_new(&x->x_ob, gensym("float"));
+ x->x_attackout = outlet_new(&x->x_ob, gensym("bang"));
+ for (i = 0; i < x->x_npitch; i++)
+ x->x_hist[i].h_outlet = outlet_new(&x->x_ob, gensym("list"));
+ x->x_envout = outlet_new(&x->x_ob, gensym("float"));
+ if (x->x_npeakout)
+ x->x_peakout = outlet_new(&x->x_ob, gensym("list"));
+ else x->x_peakout = 0;
+ x->x_clock = clock_new(&x->x_ob.ob_pd, (t_method)sigfiddle_bang);
+ return (x);
+}
+
+void fiddle_tilde_setup(void)
+{
+ sigfiddle_class = class_new(gensym("fiddle~"), (t_newmethod)sigfiddle_new,
+ (t_method)sigfiddle_ff, sizeof(t_sigfiddle), 0,
+ A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_dsp,
+ gensym("dsp"), 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_debug,
+ gensym("debug"), 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_setnpoints,
+ gensym("npoints"), A_FLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_amprange,
+ gensym("amp-range"), A_FLOAT, A_FLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_reattack,
+ gensym("reattack"), A_FLOAT, A_FLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_vibrato,
+ gensym("vibrato"), A_FLOAT, A_FLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_npartial,
+ gensym("npartial"), A_FLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_auto,
+ gensym("auto"), A_FLOAT, 0);
+ class_addmethod(sigfiddle_class, (t_method)sigfiddle_print,
+ gensym("print"), 0);
+ class_addmethod(sigfiddle_class, nullfn, gensym("signal"), 0);
+ class_addbang(sigfiddle_class, sigfiddle_bang);
+ class_addcreator((t_newmethod)sigfiddle_new, gensym("fiddle"),
+ A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
+ post(fiddle_version);
+}
+
+void fiddle_setup(void)
+{
+ fiddle_tilde_setup();
+}
+#endif /* PD */
+
+#ifdef MAX26
+
+void cu_fiddle(float *in1, t_sigfiddle *x, int n)
+{
+ int count;
+ float *fp, *fp2;
+ for (count = 0, fp = x->x_inbuf + x->x_phase;
+ count < n; count++) *fp++ = *in1++;
+ if (fp == x->x_inbuf + x->x_hop)
+ {
+ sigfiddle_doit(x);
+ x->x_phase = 0;
+ if (x->x_auto) clock_delay(x->x_clock, 0L);
+ if (x->x_nprint) x->x_nprint--;
+ }
+ else x->x_phase += n;
+}
+
+void sigfiddle_put(t_sigfiddle *x, long whether)
+{
+ if (whether)
+ {
+ u_stdout(x);
+ x->x_sr = x->x_io[0]->s_sr;
+ sigfiddle_reattack(x, x->x_attacktime, x->x_attackthresh);
+ sigfiddle_vibrato(x, x->x_vibtime, x->x_vibdepth);
+ dspchain_addc(cu_fiddle, 3,
+ x->x_io[0]->s_shit, x, x->x_io[0]->s_n);
+ }
+}
+
+void sigfiddle_tick(t_sigfiddle *x) /* callback function for the clock */
+{
+ int i;
+ t_pitchhist *ph;
+ outlet_float(x->x_envout, x->x_dbs[x->x_histphase]);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ {
+ t_atom at[2];
+ SETFLOAT(at, ph->h_pitches[x->x_histphase]);
+ SETFLOAT(at+1, ph->h_amps[x->x_histphase]);
+ outlet_list(ph->h_outlet, NIL, 2, at);
+ }
+ if (x->x_attackvalue) outlet_bang(x->x_attackout);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ if (ph->h_pitch) outlet_float(x->x_noteout, ph->h_pitch);
+}
+
+void sigfiddle_ff(t_sigfiddle *x) /* cleanup on free */
+{
+ if (x->x_inbuf)
+ {
+ freebytes(x->x_inbuf, sizeof(float) * x->x_hop);
+ freebytes(x->x_lastanalysis, sizeof(float) * (2*x->x_hop + 4 * FILTSIZE));
+ freebytes(x->x_spiral, sizeof(float) * 2*x->x_hop);
+ clock_free(x->x_clock);
+ u_clean(x);
+ }
+}
+
+t_externclass *sigfiddle_class;
+
+void *sigfiddle_new(long npoints, long npitch,
+ long npeakanal, long npeakout)
+{
+ t_sigfiddle *x = (t_sigfiddle *)obj_new(&sigfiddle_class, 0);
+ int i;
+
+ if (!sigfiddle_doinit(x, npoints, npitch, npeakanal, npeakout))
+ {
+ x->x_inbuf = 0; /* prevent the free routine from cleaning up */
+ obj_free(x);
+ return (0);
+ }
+ u_setup(x, IN1, OUT0);
+ x->x_envout = outlet_new(x, gensym("float"));
+ for (i = 0; i < x->x_npitch; i++)
+ x->x_hist[i].h_outlet = outlet_new(x, gensym("list"));
+ x->x_attackout = outlet_new(x, gensym("bang"));
+ x->x_noteout = outlet_new(x, gensym("float"));
+ x->x_clock = clock_new(x, sigfiddle_tick);
+ return (x);
+}
+
+void fiddle_setup()
+{
+ c_extern(&sigfiddle_class, sigfiddle_new, sigfiddle_ff,
+ gensym("fiddle"), sizeof(t_sigfiddle), 0, A_DEFLONG, A_DEFLONG,
+ A_DEFLONG, A_DEFLONG, 0);
+ c_addmess(sigfiddle_put, gensym("put"), A_CANT, 0);
+ c_addmess(sigfiddle_debug, gensym("debug"), 0);
+ c_addmess(sigfiddle_amprange, gensym("amp-range"), A_FLOAT, A_FLOAT, 0);
+ c_addmess(sigfiddle_reattack, gensym("reattack"), A_FLOAT, A_FLOAT, 0);
+ c_addmess(sigfiddle_vibrato, gensym("vibrato"), A_LONG, A_FLOAT, 0);
+ c_addmess(sigfiddle_npartial, gensym("npartial"), A_FLOAT, 0);
+ c_addmess(sigfiddle_print, gensym("print"), 0);
+ u_inletmethod(0); /* one signal input */
+#ifdef MAX
+ post(fiddle_version);
+#endif
+}
+
+#endif /* MAX26 */
+
+/************* Beginning of MSP Code ******************************/
+
+#ifdef MSP
+
+static t_int *fiddle_perform(t_int *w)
+{
+ t_float *in = (t_float *)(w[1]);
+ t_sigfiddle *x = (t_sigfiddle *)(w[2]);
+ int n = (int)(w[3]);
+ int count,inc = x->x_downsample;
+ float *fp;
+
+ if (x->x_obj.z_disabled)
+ goto skip;
+ for (count = 0, fp = x->x_inbuf + x->x_phase; count < n; count+=inc) {
+ *fp++ = *in;
+ in += inc;
+ }
+ if (fp == x->x_inbuf + x->x_hop)
+ {
+ sigfiddle_doit(x);
+ x->x_phase = 0;
+ if (x->x_auto) clock_delay(x->x_clock, 0L);
+ if (x->x_nprint) x->x_nprint--;
+ }
+ else x->x_phase += n;
+skip:
+ return (w+4);
+}
+
+void sigfiddle_dsp(t_sigfiddle *x, t_signal **sp)
+{
+ if (sp[0]->s_n > x->x_hop) {
+ x->x_downsample = sp[0]->s_n / x->x_hop;
+ post("* warning: fiddle~: will downsample input by %ld",x->x_downsample);
+ x->x_sr = sp[0]->s_sr / x->x_downsample;
+ } else {
+ x->x_downsample = 1;
+ x->x_sr = sp[0]->s_sr;
+ }
+ sigfiddle_reattack(x, x->x_attacktime, x->x_attackthresh);
+ sigfiddle_vibrato(x, x->x_vibtime, x->x_vibdepth);
+ dsp_add(fiddle_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
+}
+
+void sigfiddle_tick(t_sigfiddle *x) /* callback function for the clock MSP*/
+{
+ int i;
+ t_pitchhist *ph;
+ if (x->x_npeakout)
+ {
+ int npeakout = x->x_npeakout;
+ t_peakout *po;
+ for (i = 0, po = x->x_peakbuf; i < npeakout; i++, po++)
+ {
+ t_atom at[3];
+ SETINT(at, i+1);
+ SETFLOAT(at+1, po->po_freq);
+ SETFLOAT(at+2, po->po_amp);
+ outlet_list(x->x_peakout, 0, 3, at);
+ }
+ }
+ outlet_float(x->x_envout, x->x_dbs[x->x_histphase]);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ {
+ t_atom at[2];
+ SETFLOAT(at, ph->h_pitches[x->x_histphase]);
+ SETFLOAT(at+1, ph->h_amps[x->x_histphase]);
+ outlet_list(ph->h_outlet, 0, 2, at);
+ }
+ if (x->x_attackvalue) outlet_bang(x->x_attackout);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ if (ph->h_pitch) outlet_float(x->x_noteout, ph->h_pitch);
+}
+
+void sigfiddle_bang(t_sigfiddle *x)
+{
+ int i;
+ t_pitchhist *ph;
+ if (x->x_npeakout)
+ {
+ int npeakout = x->x_npeakout;
+ t_peakout *po;
+ for (i = 0, po = x->x_peakbuf; i < npeakout; i++, po++)
+ {
+ t_atom at[3];
+ SETLONG(at, i+1);
+ SETFLOAT(at+1, po->po_freq);
+ SETFLOAT(at+2, po->po_amp);
+ outlet_list(x->x_peakout, 0, 3, at);
+ }
+ }
+ outlet_float(x->x_envout, x->x_dbs[x->x_histphase]);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ {
+ t_atom at[2];
+ SETFLOAT(at, ph->h_pitches[x->x_histphase]);
+ SETFLOAT(at+1, ph->h_amps[x->x_histphase]);
+ outlet_list(ph->h_outlet, 0, 2, at);
+ }
+ if (x->x_attackvalue) outlet_bang(x->x_attackout);
+ for (i = 0, ph = x->x_hist; i < x->x_npitch; i++, ph++)
+ if (ph->h_pitch) outlet_float(x->x_noteout, ph->h_pitch);
+}
+
+
+void sigfiddle_ff(t_sigfiddle *x) /* cleanup on free MSP */
+{
+
+ if (x->x_inbuf)
+ {
+ t_freebytes(x->x_inbuf, sizeof(float) * x->x_hop);
+ t_freebytes(x->x_lastanalysis, sizeof(float) * (2*x->x_hop + 4 *
+FILTSIZE));
+ t_freebytes(x->x_spiral, sizeof(float) * 2*x->x_hop);
+ t_freebytes(x->x_peakbuf, sizeof(*x->x_peakbuf) * x->x_npeakout);
+ }
+ dsp_free((t_pxobject *)x);
+}
+
+void *sigfiddle_class;
+
+void *sigfiddle_new(long npoints, long npitch,
+ long npeakanal, long npeakout)
+{
+ t_sigfiddle *x = (t_sigfiddle *)newobject(sigfiddle_class);
+ int i;
+
+ if (!sigfiddle_doinit(x, npoints, npitch, npeakanal, npeakout))
+ {
+ x->x_inbuf = 0; /* prevent the free routine from cleaning up */
+ return (0);
+ }
+ dsp_setup((t_pxobject *)x,1);
+
+ x->x_clock = clock_new(x, (method)sigfiddle_tick);
+ if (x->x_npeakout)
+ x->x_peakout = listout((t_object *)x);
+ else x->x_peakout = 0;
+ x->x_envout = floatout((t_object *)x);
+ for (i = 0; i < x->x_npitch; i++)
+ x->x_hist[i].h_outlet = listout((t_object *)x);
+ x->x_attackout = bangout((t_object *)x);
+ x->x_noteout = floatout((t_object *)x);
+ return (x);
+
+
+}
+
+void main()
+{
+ setup(&sigfiddle_class, sigfiddle_new, (method)sigfiddle_ff,
+ (short)sizeof(t_sigfiddle), 0L, A_DEFLONG, A_DEFLONG,
+A_DEFLONG, A_DEFLONG, 0);
+ addmess((method)sigfiddle_dsp, "dsp",
+ A_CANT, 0);
+ addmess((method)sigfiddle_debug, "debug", 0);
+ addmess((method)sigfiddle_setnpoints, "npoints", A_FLOAT, 0);
+ addmess((method)sigfiddle_amprange, "amp-range", A_FLOAT, A_FLOAT, 0);
+ addmess((method)sigfiddle_reattack, "reattack", A_FLOAT, A_FLOAT, 0);
+ addmess((method)sigfiddle_vibrato, "vibrato", A_FLOAT,
+A_FLOAT, 0);
+ addmess((method)sigfiddle_npartial, "npartial", A_FLOAT, 0);
+ addmess((method)sigfiddle_auto, "auto",
+ A_FLOAT, 0);
+ addmess((method)sigfiddle_print, "print", 0);
+ addmess((method)sigfiddle_assist, "assist",
+ A_CANT, 0);
+ addbang((method)sigfiddle_bang);
+ dsp_initclass();
+ rescopy('STR#',3748);
+ post(fiddle_version);
+}
+
+void sigfiddle_assist(t_sigfiddle *x, void *b, long m, long a, char *s)
+{
+ assist_string(3748,m,a,1,2,s);
+}
+
+void msp_fft(float *buf, long np, long inv)
+{
+ float *src,*real,*rp,*imag,*ip;
+ long i;
+
+ /*
+ // because this fft algorithm uses separate real and imaginary
+ // buffers
+ // we must split the real and imaginary parts into two buffers,
+ // then do the opposite on output
+ // a more ambitious person would either do an in-place conversion
+ // or rewrite the fft algorithm
+ */
+
+ real = rp = msp_ffttemp;
+ imag = ip = real + MAXPOINTS;
+ src = buf;
+ for (i = 0; i < np; i++) {
+ *rp++ = *src++;
+ *ip++ = *src++;
+ }
+ if (inv)
+ ifft(np,real,imag);
+ else
+ fft(np,real,imag);
+ rp = real;
+ ip = imag;
+ src = buf;
+ for (i = 0; i < np; i++) {
+ *src++ = *rp++;
+ *src++ = *ip++;
+ }
+}
+
+#endif /* MSP */