From 061e4be1f20ac78e3b52bc6429322d5fadcf5831 Mon Sep 17 00:00:00 2001 From: Hans-Christoph Steiner Date: Thu, 28 Apr 2005 00:25:05 +0000 Subject: cleaned up a number of patches; renamed all to the standard -help.pd format; added some more ideas to the style guide; finished up lists_vs_anythings svn path=/trunk/; revision=2841 --- doc/pddp/help-otherbinops.pd | 435 ------------------------------------------- 1 file changed, 435 deletions(-) delete mode 100644 doc/pddp/help-otherbinops.pd (limited to 'doc/pddp/help-otherbinops.pd') diff --git a/doc/pddp/help-otherbinops.pd b/doc/pddp/help-otherbinops.pd deleted file mode 100644 index e44a299e..00000000 --- a/doc/pddp/help-otherbinops.pd +++ /dev/null @@ -1,435 +0,0 @@ -#N canvas 16 22 895 663 10; -#X floatatom 217 438 0 0 0 0 - - -; -#X floatatom 267 517 0 0 0 0 - - -; -#X obj 466 28 &; -#X obj 494 28 |; -#X obj 574 28 &&; -#X obj 601 28 ||; -#X obj 7 25 >; -#X obj 36 25 >=; -#X obj 67 24 ==; -#X obj 125 24 <=; -#X obj 153 24 <; -#X obj 217 417 >; -#X obj 267 496 ==; -#X obj 96 24 !=; -#X obj 521 28 <<; -#X obj 548 28 >>; -#X obj 627 28 %; -#X text 464 5 THE LOGICAL OPERATORS -- A.K.A. "Bit Twiddling"; -#X text 6 6 THE RELATIONAL OPERATORS; -#N canvas 0 22 454 304 understanding_%_modulus 0; -#X text 24 23 MODULUS - [%]; -#X floatatom 28 187 0 0 0 0 - - -; -#X text 22 40 - this object has nothing to do with percentage!; -#X text 20 54 - a modulus is a number by which two given numbers can -be divided and produce the same remainder.; -#X text 21 81 - in the example below: 9 / 2 = 4.5 \, and 7 / 2 = 3.5. -Hence if 7 and 9 are divided by 2 \, then the remainder of both equations -is .5. Therefore \, the modulus of 7 and 9 is "2".; -#X msg 28 138 9; -#X obj 28 166 % 7; -#X floatatom 62 142 5 0 0 0 - - -; -#X text 20 222 Note that the modulus operator is not a "bitwise" operator -\, but a math function.; -#X connect 5 0 6 0; -#X connect 6 0 1 0; -#X connect 7 0 6 0; -#X restore 476 418 pd understanding_%_modulus; -#X text 478 252 Below is a brief explanation of each of these logical -operators.; -#X text 473 53 These objects are adopted from the mother of all object -oriented languages: C. They are "bitwise" operators which perform logical -and shift operations on 32-bit numbers.; -#X text 467 100 WHAT DOES "BITWISE" MEAN?; -#X text 478 208 Hence \, performing "bitwise" relational tests means -that PD can compare "1101" to "1001" instead of operating with the -integers that are represented by those binary codes.; -#N canvas 81 197 456 306 understanding_&_AND 0; -#X obj 33 216 &; -#X floatatom 87 182 5 0 0 0 - - -; -#X floatatom 129 183 5 0 0 0 - - -; -#X msg 33 154 13; -#X msg 62 155 9; -#X text 18 18 [&] -- This is the bitwise AND operator which returns -a "1" for each bit position where the corresponding bits of both its -operands are "1". For example:; -#X text 22 67 13 = "1101"; -#X text 28 79 9 = "1001"; -#X text 15 92 Hence:"1001"; -#X obj 33 114 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 33 132 t b b; -#X text 101 66 When comparing the binary codes for 13 and 9 \, we can -see that the first and fourth digits of both codes are 1 Hence the -result will be "1001" -- in other words "9".; -#X floatatom 33 238 0 0 0 0 - - -; -#X connect 0 0 12 0; -#X connect 1 0 0 0; -#X connect 2 0 0 1; -#X connect 3 0 0 0; -#X connect 4 0 0 1; -#X connect 9 0 10 0; -#X connect 10 0 3 0; -#X connect 10 1 4 0; -#X restore 478 286 pd understanding_&_AND; -#N canvas 190 317 454 304 understanding_|_OR 0; -#X floatatom 32 247 0 0 0 0 - - -; -#X floatatom 86 191 5 0 0 0 - - -; -#X floatatom 128 192 5 0 0 0 - - -; -#X msg 32 163 13; -#X msg 61 164 9; -#X text 21 76 13 = "1101"; -#X text 27 88 9 = "1001"; -#X obj 32 123 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 32 141 t b b; -#X text 18 18 [|] -- This is the bitwise OR operator which returns -a "1" for each bit position where one OR both of the corresponding -bits of both its operands is a "1". For example:; -#X text 14 101 Hence:"1101"; -#X text 98 76 When comparing the binary codes for 13 and 9 \, we can -see that the first and fourth digits of both codes are both 1 and the -second position of 13 is a one. Hence the result will be "1101" -- -in other words "13".; -#X obj 32 225 |; -#X connect 1 0 12 0; -#X connect 2 0 12 1; -#X connect 3 0 12 0; -#X connect 4 0 12 1; -#X connect 7 0 8 0; -#X connect 8 0 3 0; -#X connect 8 1 4 0; -#X connect 12 0 0 0; -#X restore 478 307 pd understanding_|_OR; -#N canvas 0 22 454 304 understanding_<<_LEFT-SHIFT 0; -#X obj 46 142 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 46 160 t b b; -#X msg 46 181 13; -#X obj 46 222 <<; -#X floatatom 46 244 5 0 0 0 - - -; -#X msg 74 181 2; -#X floatatom 112 193 5 0 0 0 - - -; -#X floatatom 160 193 5 0 0 0 - - -; -#X text 29 25 [<<] -- This is the left shift operator and it works -by shifting the digits of the binary representation of the first operand -(left inlet) to the left by the number of places specified by the second -operand (right inlet). The spaces created to the right are filled by -zeros \, and any digits falling off the left are discarded. The following -code returns 52 as the binary of 13 ("1101") is shifted two places -to the left giving "110100":; -#X connect 0 0 1 0; -#X connect 1 0 2 0; -#X connect 1 1 5 0; -#X connect 2 0 3 0; -#X connect 3 0 4 0; -#X connect 5 0 3 1; -#X connect 6 0 3 0; -#X connect 7 0 3 1; -#X restore 477 328 pd understanding_<<_LEFT-SHIFT; -#N canvas 0 22 456 380 understanding_>>_RIGHT-SHIFT 0; -#X obj 41 155 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 41 173 t b b; -#X floatatom 41 257 5 0 0 0 - - -; -#X floatatom 107 206 5 0 0 0 - - -; -#X floatatom 155 206 5 0 0 0 - - -; -#X msg 41 194 13; -#X obj 41 235 >>; -#X msg 69 194 2; -#X text 33 21 [>>] -- This is the sign-propagating right shift operator -which shifts the digits of the binary representation of the first operand -(left inlet) to the right by the number of places specified by the -second operand (right inlet) \, discarding any shifted off to the right. -The copies of the leftmost bit are added on from the left \, thereby -preserving the sign of the number. This next examples returns 3 ("11") -as the two right-most bits of 13 ("1101") are shifted off to the right -and discarded.; -#X text 33 284 Note that this object preserves negative values for -negative operands. ("sign-propagating").; -#X connect 0 0 1 0; -#X connect 1 0 5 0; -#X connect 1 1 7 0; -#X connect 3 0 6 0; -#X connect 4 0 6 1; -#X connect 5 0 6 0; -#X connect 6 0 2 0; -#X connect 7 0 6 1; -#X restore 477 350 pd understanding_>>_RIGHT-SHIFT; -#N canvas 56 51 528 425 understanding_&&_LOGICAL-AND 0; -#X msg 56 269 5; -#X obj 25 319 &&; -#X floatatom 25 339 5 0 0 0 - - -; -#X floatatom 194 277 5 0 0 0 - - -; -#X text 12 26 [&&] - This is the logical AND operator \, which returns -a Boolean true (a one) if both operands are true. Logically it follows -that if the first operand is false \, then the whole expression is -false \, and this is how the objects works: It first evaluates the -left hand operand (left inlet) and if this returns false (zero) then -\, without going any further \, it returns a false (a zero). Otherwise -it returns the value of the second operand (right inlet).; -#X floatatom 237 277 5 0 0 0 - - -; -#X text 25 364 Note that this is not a bitwise operator. It compares -floats.; -#X obj 25 227 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 25 245 t b b; -#X msg 25 269 17; -#X text 12 145 In other words \, IF the left inlet is zero \, THEN -output zero. ELSEIF the left inlet is non-zero AND the right inlet -is zero \, then output zero. ELSEIF the left inlet is non-zero AND -the right inlet is non-zero \, THEN output non-zero!; -#X obj 91 227 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 91 245 t b b; -#X msg 91 269 17; -#X msg 122 269 0; -#X connect 0 0 1 1; -#X connect 1 0 2 0; -#X connect 3 0 1 0; -#X connect 5 0 1 1; -#X connect 7 0 8 0; -#X connect 8 0 9 0; -#X connect 8 1 0 0; -#X connect 9 0 1 0; -#X connect 11 0 12 0; -#X connect 12 0 13 0; -#X connect 12 1 14 0; -#X connect 13 0 1 0; -#X connect 14 0 1 1; -#X restore 477 373 pd understanding_&&_LOGICAL-AND; -#N canvas 244 51 530 427 understanding_||_LOGICAL-OR 0; -#X msg 56 269 5; -#X floatatom 25 339 5 0 0 0 - - -; -#X floatatom 196 280 5 0 0 0 - - -; -#X floatatom 239 280 5 0 0 0 - - -; -#X text 25 364 Note that this is not a bitwise operator. It compares -floats.; -#X obj 25 227 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 25 245 t b b; -#X msg 25 269 17; -#X text 17 21 [||] -- This is the logical OR operator and it returns -a value of true (non-zero) if one or both of the operands is true. -It works by first evaluating the left-hand operand (left inlet) and -\, if this is true \, diregarding the right-hand operand (right inlet) -and returning a non-zero. If \, however \, the left-hand operand (left -inlet) is false \, then it returns the value of the right-hand operand -(right inlet).; -#X text 12 145 In other words \, IF the left inlet is non-zero \, THEN -output non-zero. ELSEIF the left inlet is zero AND the right inlet -is zero \, then output zero. ELSEIF the left inlet is zero AND the -right inlet is non-zero \, THEN output non-zero!; -#X obj 25 319 ||; -#X obj 96 226 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 96 244 t b b; -#X msg 96 268 0; -#X msg 127 268 0; -#X connect 0 0 10 1; -#X connect 2 0 10 0; -#X connect 3 0 10 1; -#X connect 5 0 6 0; -#X connect 6 0 7 0; -#X connect 6 1 0 0; -#X connect 7 0 10 0; -#X connect 10 0 1 0; -#X connect 11 0 12 0; -#X connect 12 0 13 0; -#X connect 12 1 14 0; -#X connect 13 0 10 0; -#X connect 14 0 10 1; -#X restore 477 395 pd understanding_||_LOGICAL-OR; -#X obj 432 12 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 432 607 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X obj 54 186 == 42; -#X floatatom 54 165 5 0 0 0 - - -; -#X floatatom 28 212 2 0 0 0 - - -; -#X obj 53 211 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 --1; -#X msg 24 161 42; -#X text 9 143 For example: IF 42 is equal to x \, then "1" (True); -#X text 73 203 Note that the object outputs 1 or 0 with every incoming -message.; -#X text 10 233 All of these objects operate the same way. The right -inlet or creation argument sets the "condition" to which the incoming -messages are compared. The left inlet accepts numbers or a "bang" -- -a number will reset the value and output a true or false (1 or 0) depending -on whether or not the incoming value meets the necessary condition. -A "bang" will force the object to output a true or false (1 or 0) based -on the value that is already stored in the left inlet.; -#X floatatom 25 378 5 0 0 0 - - -; -#X floatatom 98 345 5 0 0 0 - - -; -#X text 10 376 a; -#X text 138 344 b; -#X text 63 439 Is a greater than b?; -#X floatatom 242 478 0 0 0 0 - - -; -#X text 17 478 Is a greater than or equal to b?; -#X obj 242 457 >=; -#X text 136 517 Is a equal to b?; -#X obj 295 534 !=; -#X floatatom 295 554 0 0 0 0 - - -; -#X obj 325 367 r a_b; -#X obj 325 386 unpack f f; -#X obj 25 395 pack f f; -#X obj 25 415 s a_b; -#X obj 98 361 bang; -#X text 142 555 Is a NOT equal to b?; -#X floatatom 321 592 0 0 0 0 - - -; -#X text 185 592 Is a less than b?; -#X obj 321 572 <; -#X floatatom 346 631 0 0 0 0 - - -; -#X obj 346 611 <; -#X text 138 631 Is a less than or equal to b?; -#X text 464 583 This document was updated for PD version 0.35 test -29 by Dave Sabine as part of a project called pddp proposed by Krzysztof -Czaja to build comprehensive documentation for PD.; -#X text 461 460 RELATED OBJECTS; -#X obj 853 477 +; -#X text 460 477 Visit the Help document for MATH for more math objects: -; -#N canvas 0 22 452 302 related_objects_from_other_libraries 0; -#X obj 47 34 strcomp; -#X text 102 33 Relational tests for strings.; -#X text 29 104 These objects are offered in PD only if you have downloaded -and properly installed the appropriate library. These objects may or -may not exist in a single library.; -#X text 28 153 The best places to find information about PD's libraries -is:; -#X text 25 175 www.puredata.org and click on "Downloads" then "Software" -; -#X text 27 190 or; -#X text 27 205 iem.kug.ac.at/pdb/; -#X restore 482 501 pd related_objects_from_other_libraries; -#X text 478 120 Well \, these objects perform "relational" tests on -the binary forms of 32-bit numbers. For example \, the number 13 is -represented in your computer's operating system in binary code by "1101" -and the number 9 is "1001". Each of those binary digits is an 8-bit -word: 8 bits * 4 digits = 32-bits!; -#X obj 179 24 mod; -#X obj 206 24 div; -#X text 8 84 Most relational operators output a boolean value: true -or false (1 or 0) depending on the relation between the input (left -inlet) and the condition (right inlet or creation argument).; -#N canvas 7 22 514 656 understanding_MOD_and_DIV 0; -#X text 24 5 [mod] and [div] are helpful objects to determine whether -or not a fraction produces a remainder \, or to determine the value -of the remainder.; -#X text 24 80 while \, 4 / 3 = 1 with a remainder of 1; -#X text 25 51 For example \, 3 / 3 = 1 with a remainder of zero (i.e. -no remainder).; -#X floatatom 26 190 0 0 0 0 - - -; -#X floatatom 26 232 0 0 0 0 - - -; -#X floatatom 138 192 0 0 0 0 - - -; -#X text 58 191 divided by; -#X text 173 193 has a remainder of; -#X floatatom 300 193 0 0 0 0 - - -; -#X obj 26 211 mod; -#X text 22 103 [mod] takes a number in its left inlet and will divide -that number by either the creation argument or the number given at -its left inlet and will produce the value of the remainder at its outlet. -If no creation argument is given \, then the default value is 1; -#X obj 78 173 loadbang; -#X msg 138 173 1; -#X text 23 255 [div] takes a number in its left inlet and will divide -that number by either the creation argument or the number given at -its left inlet and will produce the result without a remainder. If -no creation argument is given \, then the default value is 1; -#X floatatom 28 341 0 0 0 0 - - -; -#X floatatom 28 383 0 0 0 0 - - -; -#X floatatom 140 343 0 0 0 0 - - -; -#X text 60 342 divided by; -#X floatatom 256 344 0 0 0 0 - - -; -#X obj 80 324 loadbang; -#X msg 140 324 1; -#X obj 28 362 div; -#X text 176 343 is equal to; -#X text 294 343 with no remainder.; -#X obj 257 371 /; -#X floatatom 257 391 0 0 0 0 - - -; -#X text 227 389 or; -#X text 297 392 with a remainder.; -#X text 23 408 In the following example \, I've built a metronome which -counts bar numbers and beat numbers: default time signature is 4/4 -(Common Time).; -#X obj 23 489 metro 500; -#X obj 23 470 tgl 15 0 empty empty Start-Stop 0 -6 0 8 -262144 -1 -1 -0 1; -#X obj 48 510 + 1; -#X floatatom 23 530 0 0 0 0 - - -; -#X text 52 532 Total Beat Count; -#X obj 23 559 div 4; -#X obj 134 560 mod 4; -#X floatatom 219 601 0 0 0 0 - - -; -#X floatatom 108 600 0 0 0 0 - - -; -#X obj 23 510 f 1; -#X msg 107 468 1; -#X obj 23 579 + 1; -#X obj 134 579 + 1; -#X text 131 468 Reset; -#X text 34 599 Bar number; -#X text 147 601 Beat Count; -#X floatatom 339 511 0 0 0 0 - - -; -#X text 176 511 How many beats per bar?; -#X connect 3 0 9 0; -#X connect 4 0 8 0; -#X connect 5 0 9 1; -#X connect 9 0 4 0; -#X connect 11 0 12 0; -#X connect 12 0 5 0; -#X connect 14 0 21 0; -#X connect 14 0 24 0; -#X connect 15 0 18 0; -#X connect 16 0 21 1; -#X connect 16 0 24 1; -#X connect 19 0 20 0; -#X connect 20 0 16 0; -#X connect 21 0 15 0; -#X connect 24 0 25 0; -#X connect 29 0 38 0; -#X connect 30 0 29 0; -#X connect 31 0 38 1; -#X connect 32 0 34 0; -#X connect 32 0 35 0; -#X connect 34 0 40 0; -#X connect 35 0 41 0; -#X connect 38 0 31 0; -#X connect 38 0 32 0; -#X connect 39 0 38 1; -#X connect 40 0 37 0; -#X connect 41 0 36 0; -#X connect 45 0 35 1; -#X connect 45 0 34 1; -#X restore 9 58 pd understanding_MOD_and_DIV; -#X connect 11 0 0 0; -#X connect 12 0 1 0; -#X connect 30 0 31 0; -#X connect 32 0 34 0; -#X connect 32 0 35 0; -#X connect 33 0 32 0; -#X connect 36 0 32 0; -#X connect 40 0 53 0; -#X connect 41 0 53 1; -#X connect 41 0 55 0; -#X connect 47 0 45 0; -#X connect 49 0 50 0; -#X connect 51 0 52 0; -#X connect 52 0 11 0; -#X connect 52 0 47 0; -#X connect 52 0 12 0; -#X connect 52 0 49 0; -#X connect 52 0 59 0; -#X connect 52 0 61 0; -#X connect 52 1 11 1; -#X connect 52 1 47 1; -#X connect 52 1 12 1; -#X connect 52 1 49 1; -#X connect 52 1 59 1; -#X connect 52 1 61 1; -#X connect 53 0 54 0; -#X connect 55 0 40 0; -#X connect 59 0 57 0; -#X connect 61 0 60 0; -- cgit v1.2.1