#N canvas 3 1 906 656 10;
#X floatatom 517 224 0 0 0;
#X floatatom 440 309 0 0 0;
#X floatatom 440 223 0 0 0;
#X floatatom 559 464 0 0 0;
#X floatatom 616 464 0 0 0;
#X floatatom 710 464 0 0 0;
#X floatatom 249 242 0 0 0;
#X floatatom 249 203 0 0 0;
#X floatatom 478 464 0 0 0;
#X floatatom 478 414 0 0 0;
#X floatatom 741 133 0 0 0;
#X floatatom 648 134 0 0 0;
#X obj 555 99 sin;
#X floatatom 432 54 0 0 0;
#X floatatom 555 133 0 0 0;
#X obj 432 94 * 6.28319;
#X obj 432 74 / 360;
#X obj 648 100 cos;
#X obj 741 99 tan;
#X obj 478 444 sqrt;
#X obj 249 222 atan;
#X obj 710 445 log;
#X obj 616 444 exp;
#X obj 559 444 abs;
#X obj 440 261 float;
#X obj 517 261 t b f;
#X obj 440 289 atan2;
#X text 32 14 Higher math in Pd --;
#X obj 162 14 sin;
#X obj 188 14 cos;
#X obj 214 14 tan;
#X obj 241 14 atan;
#X obj 274 14 atan2;
#X obj 314 14 exp;
#X obj 342 14 log;
#X obj 369 14 abs;
#X obj 397 14 sqrt;
#X obj 432 14 pow;
#X text 495 94 2 x Pi;
#X text 21 46 Trigonometry functions take input in Radians. To find
a radian \, simply divide a number by 360 (to make it a fraction of
a circle) and multiply it by 2(Pi) where Pi is equal to approximately
3.14159265.;
#X floatatom 432 114 0 0 0;
#X text 495 114 Radian;
#X obj 432 134 s radians;
#X obj 555 73 r radians;
#X text 20 139 [tan] will produce a number which represents the tangent
of an angle.;
#X text 20 105 [sin] and [cos] will return numbers between -1 and 1:
the sine and cosine of a number repectively.;
#X text 20 186 The [atan] object produces the arctangent of a number
as a numeric value between -Pi/2 and Pi/2.;
#X text 71 284 The [atan2] object produces the arctangent of the quotient
of its two arguments. The number produced is a value between Pi and
-Pi and represents the counterclockwise angle in radians (not degrees)
between the positive X axis and the point (x \, y). Note that the X
coordinate is passed to the right inlet and the Y coordinate is passed
to the left inlet.;
#X text 425 223 Y;
#X text 506 223 X;
#X floatatom 759 329 0 0 0;
#X obj 759 289 /;
#X obj 759 309 atan;
#X obj 759 209 r X_Y;
#X obj 517 309 s X_Y;
#X obj 517 288 pack f f;
#X obj 759 228 unpack f f;
#X obj 759 247 swap;
#X text 585 223 This example on the;
#X text 584 239 right is an alternative;
#X text 584 257 of finding the arctangent;
#X text 584 274 of two coordinates \, but;
#X text 585 291 it runs slightly slower;
#X text 585 307 than [atan2].;
#X text 782 290 Y;
#X text 746 290 X;
#X floatatom 795 268 0 0 0;
#X floatatom 759 268 0 0 0;
#X obj 6 169 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 846 184 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 8 368 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 848 383 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X floatatom 782 463 0 0 0;
#X text 19 392 [sqrt] will output the square root of a number. Negative
numbers are ignored.;
#X text 416 391 [abs] will output the absolute value of a number.;
#X text 611 488 i;
#X text 418 491 [exp] will output the value of E where E is Euler's
constant and i is the value of the inlet.;
#X text 18 427 [log] will output the natural logarithm (base E) of
a number. The value of zero will produce "-1000" which represents "negative
infinity".;
#X obj 782 443 pow 2;
#X floatatom 807 423 0 0 0;
#X text 17 474 [pow] is used to exponentiate a number. 2 to the power
of 2 = 4 The right inlet or creation argument is the exponent while
the left inlet is the base.;
#X obj 10 515 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 850 530 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X text 16 537 RELATED OBJECTS;
#X obj 18 557 cos~;
#X obj 50 557 osc~;
#X obj 18 577 +;
#X text 40 577 Other Math Objects;
#X obj 18 597 <;
#X text 41 597 Math/Binary operators;
#X obj 84 557 expr;
#X text 420 563 This document was updated for Pd version 0.35 test
28 by Dave Sabine as part of a project called pddp proposed by Krzysztof
Czaja to build comprehensive documentation for Pd.;
#X connect 0 0 25 0;
#X connect 2 0 24 0;
#X connect 7 0 20 0;
#X connect 9 0 19 0;
#X connect 9 0 23 0;
#X connect 9 0 22 0;
#X connect 9 0 21 0;
#X connect 9 0 78 0;
#X connect 12 0 14 0;
#X connect 13 0 16 0;
#X connect 15 0 40 0;
#X connect 16 0 15 0;
#X connect 17 0 11 0;
#X connect 18 0 10 0;
#X connect 19 0 8 0;
#X connect 20 0 6 0;
#X connect 21 0 5 0;
#X connect 22 0 4 0;
#X connect 23 0 3 0;
#X connect 24 0 26 0;
#X connect 24 0 55 0;
#X connect 25 0 24 0;
#X connect 25 1 26 1;
#X connect 25 1 55 1;
#X connect 26 0 1 0;
#X connect 40 0 42 0;
#X connect 43 0 12 0;
#X connect 43 0 17 0;
#X connect 43 0 18 0;
#X connect 51 0 52 0;
#X connect 52 0 50 0;
#X connect 53 0 56 0;
#X connect 55 0 54 0;
#X connect 56 0 57 0;
#X connect 56 1 57 1;
#X connect 57 0 67 0;
#X connect 57 1 66 0;
#X connect 66 0 51 1;
#X connect 67 0 51 0;
#X connect 68 0 69 0;
#X connect 70 0 71 0;
#X connect 78 0 72 0;
#X connect 79 0 78 1;
#X connect 81 0 82 0;