#N canvas 0 0 555 619 10;
#X obj 0 595 cnv 15 552 21 empty \$0-pddp.cnv.footer empty 20 12 0
14 -228856 -66577 0;
#X obj 0 0 cnv 15 552 40 empty \$0-pddp.cnv.header (binops2-3) 3 12
0 18 -204280 -1 0;
#X obj 0 178 cnv 3 550 3 empty \$0-pddp.cnv.inlets inlets 8 12 0 13
-228856 -1 0;
#N canvas 46 242 494 344 META 0;
#X text 12 85 LIBRARY internal;
#X text 12 125 WEBSITE http://crca.ucsd.edu/~msp/;
#X text 12 45 LICENSE SIBSD;
#X text 12 105 AUTHOR Miller Puckette;
#X text 12 165 HELP_PATCH_AUTHORS This document was updated for Pd
version 0.35 test 29 by Dave Sabine as part of a project called pddp
proposed by Krzysztof Czaja to build comprehensive documentation for
Pd. Revised by Jonathan Wilkes to conform to the PDDP template.;
#X text 12 25 KEYWORDS control;
#X text 12 65 DESCRIPTION relational and logical operators;
#X text 12 5 NAME > >= == != <= < mod div & | << >> && || %;
#X text 12 145 RELEASE_DATE 1997;
#X restore 500 597 pd META;
#X obj 0 301 cnv 3 550 3 empty \$0-pddp.cnv.outlets outlets 8 12 0
13 -228856 -1 0;
#X obj 0 338 cnv 3 550 3 empty \$0-pddp.cnv.argument arguments 8 12
0 13 -228856 -1 0;
#X obj 0 381 cnv 3 550 3 empty \$0-pddp.cnv.more_info more_info 8 12
0 13 -228856 -1 0;
#N canvas 69 435 428 156 Related_objects 0;
#X obj 1 1 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 8 2 (binops2-3) Related Objects;
#X text 138 57 - binary arithmetic operators;
#X obj 19 57 pddp/pddplink operators-help.pd;
#X obj 19 77 pddp/pddplink math-help.pd;
#X text 138 77 - higher math in Pd;
#X text 19 37 Links to other control operators;
#X text 19 107 Links to signal operators;
#X obj 19 127 pddp/pddplink sigbinops-help.pd;
#X restore 102 598 pd Related_objects;
#X obj 79 187 cnv 17 3 75 empty \$0-pddp.cnv.let.0 0 5 9 0 16 -228856
-162280 0;
#X text 98 309 float;
#X obj 79 310 cnv 17 3 17 empty \$0-pddp.cnv.let.0 0 5 9 0 16 -228856
-162280 0;
#X obj 79 273 cnv 17 3 17 empty \$0-pddp.cnv.let.1 1 5 9 0 16 -228856
-162280 0;
#X text 98 272 float;
#X obj 465 20 pddp/pddplink http://wiki.puredata.info/en/bag -text
pdpedia: bag;
#X text 11 23 relational and logical operators;
#X obj 127 4 >;
#X obj 154 4 >=;
#X obj 182 4 ==;
#X obj 236 4 <=;
#X obj 264 4 <;
#X obj 209 4 !=;
#X obj 290 4 mod;
#X obj 317 4 div;
#X obj 366 4 &;
#X obj 394 4 |;
#X obj 474 4 &&;
#X obj 501 4 ||;
#X obj 421 4 <<;
#X obj 448 4 >>;
#X obj 527 4 %;
#X text 341 4 and;
#X floatatom 254 51 5 0 0 0 - - -;
#X floatatom 296 51 5 0 0 0 - - -;
#X obj 254 88 >;
#X floatatom 254 125 5 0 0 0 - - -;
#X msg 219 51 bang;
#X text 98 186 bang;
#X text 168 186 - a bang outputs the last value computed by the object.
;
#X text 98 206 list;
#X text 168 206 - a pair of floats is distributed to the two inlets.
Lists with more than two elements will be truncated.;
#X text 98 236 float;
#X text 168 236 - a float will be stored at the left inlet and used
to evaluate and output a value.;
#X text 167 272 - a float to the right inlet will be stored.;
#X text 168 309 - all relational and logical operators output a float
value.;
#X text 80 358 1) float;
#X text 167 358 - (optional) initial value for the right inlet.;
#X text 142 154 All these objects share similar behavior.;
#X msg 183 51 2 1;
#N canvas 49 53 428 611 understanding_MOD_and_DIV 0;
#X text 24 35 [mod] and [div] are helpful objects to determine whether
or not a fraction produces a remainder \, or to determine the value
of the remainder.;
#X floatatom 28 195 0 0 0 0 - - -;
#X floatatom 28 237 0 0 0 0 - - -;
#X floatatom 140 197 0 0 0 0 - - -;
#X text 60 196 divided by;
#X text 175 198 has a remainder of;
#X floatatom 302 198 0 0 0 0 - - -;
#X obj 28 216 mod;
#X text 25 108 [mod] takes a number in its left inlet and will divide
that number by either the creation argument or the number given at
its left inlet and will produce the value of the remainder at its outlet.
If no creation argument is given \, then the default value is 1;
#X obj 80 178 loadbang;
#X msg 140 178 1;
#X text 25 260 [div] takes a number in its left inlet and will divide
that number by either the creation argument or the number given at
its left inlet and will produce the result without a remainder. If
no creation argument is given \, then the default value is 1;
#X floatatom 28 341 0 0 0 0 - - -;
#X floatatom 28 383 0 0 0 0 - - -;
#X floatatom 140 343 0 0 0 0 - - -;
#X text 60 342 divided by;
#X floatatom 256 344 0 0 0 0 - - -;
#X obj 80 324 loadbang;
#X msg 140 324 1;
#X obj 28 362 div;
#X text 176 343 is equal to;
#X text 294 343 with no remainder.;
#X obj 257 371 /;
#X floatatom 257 391 0 0 0 0 - - -;
#X text 227 389 or;
#X text 297 392 with a remainder.;
#X text 25 413 In the following example \, I've built a metronome which
counts bar numbers and beat numbers: default time signature is 4/4
(Common Time).;
#X obj 28 474 metro 500;
#X obj 28 455 tgl 15 0 empty empty Start-Stop 20 8 0 8 -262144 -1 -1
0 1;
#X obj 53 495 + 1;
#X floatatom 28 515 0 0 0 0 - - -;
#X text 57 513 Total Beat Count;
#X obj 28 539 div 4;
#X obj 139 540 mod 4;
#X floatatom 224 581 0 0 0 0 - - -;
#X floatatom 113 580 0 0 0 0 - - -;
#X obj 28 495 f 1;
#X msg 112 453 1;
#X obj 28 559 + 1;
#X obj 139 559 + 1;
#X text 136 453 Reset;
#X text 39 579 Bar number;
#X text 152 581 Beat Count;
#X floatatom 344 491 0 0 0 0 - - -;
#X text 181 491 How many beats per bar?;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) [mod] and [div];
#X text 25 76 For example \, 3 / 3 = 1 with a remainder of zero (i.e.
no remainder) \, while \, 4 / 3 = 1 with a remainder of one.;
#X connect 1 0 7 0;
#X connect 2 0 6 0;
#X connect 3 0 7 1;
#X connect 7 0 2 0;
#X connect 9 0 10 0;
#X connect 10 0 3 0;
#X connect 12 0 19 0;
#X connect 12 0 22 0;
#X connect 13 0 16 0;
#X connect 14 0 19 1;
#X connect 14 0 22 1;
#X connect 17 0 18 0;
#X connect 18 0 14 0;
#X connect 19 0 13 0;
#X connect 22 0 23 0;
#X connect 27 0 36 0;
#X connect 28 0 27 0;
#X connect 29 0 36 1;
#X connect 30 0 32 0;
#X connect 30 0 33 0;
#X connect 32 0 38 0;
#X connect 33 0 39 0;
#X connect 36 0 29 0;
#X connect 36 0 30 0;
#X connect 37 0 36 1;
#X connect 38 0 35 0;
#X connect 39 0 34 0;
#X connect 43 0 33 1;
#X connect 43 0 32 1;
#X restore 101 430 pd understanding_MOD_and_DIV;
#N canvas 61 337 428 254 understanding_%_modulus 0;
#X floatatom 21 184 0 0 0 0 - - -;
#X text 18 36 - this object has nothing to do with percentage!;
#X text 18 56 - a modulus is a number by which two given numbers can
be divided and produce the same remainder.;
#X text 18 86 - in the example below: 9 / 2 = 4.5 \, and 7 / 2 = 3.5.
Hence if 7 and 9 are divided by 2 \, then the remainder of both equations
is .5. Therefore \, the modulus of 7 and 9 is "2".;
#X msg 21 135 9;
#X obj 21 163 % 7;
#X floatatom 55 135 5 0 0 0 - - -;
#X text 18 214 Note that the modulus operator is not a "bitwise" operator
\, but a math function.;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) Modulus [%];
#X connect 4 0 5 0;
#X connect 5 0 0 0;
#X connect 6 0 5 0;
#X restore 281 562 pd understanding_%_modulus;
#N canvas 87 181 428 280 understanding_&_AND 0;
#X obj 174 221 &;
#X floatatom 228 187 5 0 0 0 - - -;
#X floatatom 270 188 5 0 0 0 - - -;
#X msg 174 164 13;
#X msg 203 165 9;
#X text 26 119 13 = "1101";
#X text 32 131 9 = "1001";
#X text 19 144 Hence:"1001";
#X obj 174 124 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 174 142 t b b;
#X floatatom 174 243 0 0 0 0 - - -;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 18 35 [&] -- This is the bitwise AND operator which returns
a "1" for each bit position where the corresponding bits of both its
operands are "1".;
#X text 19 77 When comparing the binary codes for 13 and 9 (below)
\, we can see that the first and fourth digits of both codes are "1".
Hence the result will be "1001" -- in other words "9".;
#X text 7 1 (binops2-3) The [&] Object;
#X connect 0 0 10 0;
#X connect 1 0 0 0;
#X connect 2 0 0 1;
#X connect 3 0 0 0;
#X connect 4 0 0 1;
#X connect 8 0 9 0;
#X connect 9 0 3 0;
#X connect 9 1 4 0;
#X restore 281 430 pd understanding_&_AND;
#N canvas 92 219 428 293 understanding_|_OR 0;
#X floatatom 137 261 0 0 0 0 - - -;
#X floatatom 191 205 5 0 0 0 - - -;
#X floatatom 233 206 5 0 0 0 - - -;
#X msg 137 177 13;
#X msg 166 178 9;
#X text 26 131 13 = "1101";
#X text 32 143 9 = "1001";
#X obj 137 137 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 137 155 t b b;
#X text 19 156 Hence:"1101";
#X obj 137 239 |;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) Related Objects;
#X text 17 35 [|] -- This is the bitwise OR operator which returns
a "1" for each bit position where one OR both of the corresponding
bits of both its operands is a "1".;
#X text 18 77 When comparing the binary codes for 13 and 9 (below)
\, we can see that the first and fourth digits of both codes are both
1 and the second position of 13 is a one. Hence the result will be
"1101" -- in other words "13".;
#X connect 1 0 10 0;
#X connect 2 0 10 1;
#X connect 3 0 10 0;
#X connect 4 0 10 1;
#X connect 7 0 8 0;
#X connect 8 0 3 0;
#X connect 8 1 4 0;
#X connect 10 0 0 0;
#X restore 281 452 pd understanding_|_OR;
#N canvas 94 256 428 294 understanding_<<_LEFT-SHIFT 0;
#X obj 21 149 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 21 167 t b b;
#X msg 21 188 13;
#X obj 21 229 <<;
#X floatatom 21 251 5 0 0 0 - - -;
#X msg 49 188 2;
#X floatatom 87 200 5 0 0 0 - - -;
#X floatatom 135 200 5 0 0 0 - - -;
#X text 18 35 [<<] -- This is the left shift operator and it works
by shifting the digits of the binary representation of the first operand
(left inlet) to the left by the number of places specified by the second
operand (right inlet). The spaces created to the right are filled by
zeros \, and any digits falling off the left are discarded. The following
code returns 52 as the binary of 13 ("1101") is shifted two places
to the left giving "110100":;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) Left-shift;
#X connect 0 0 1 0;
#X connect 1 0 2 0;
#X connect 1 1 5 0;
#X connect 2 0 3 0;
#X connect 3 0 4 0;
#X connect 5 0 3 1;
#X connect 6 0 3 0;
#X connect 7 0 3 1;
#X restore 281 474 pd understanding_<<_LEFT-SHIFT;
#N canvas 82 206 428 348 understanding_>>_RIGHT-SHIFT 0;
#X obj 21 162 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 21 180 t b b;
#X floatatom 21 264 5 0 0 0 - - -;
#X floatatom 87 213 5 0 0 0 - - -;
#X floatatom 135 213 5 0 0 0 - - -;
#X msg 21 201 13;
#X obj 21 242 >>;
#X msg 49 201 2;
#X text 18 35 [>>] -- This is the sign-propagating right shift operator
which shifts the digits of the binary representation of the first operand
(left inlet) to the right by the number of places specified by the
second operand (right inlet) \, discarding any shifted off to the right.
The copies of the leftmost bit are added on from the left \, thereby
preserving the sign of the number. This next examples returns 3 ("11")
as the two right-most bits of 13 ("1101") are shifted off to the right
and discarded.;
#X text 13 291 Note that this object preserves negative values for
negative operands. ("sign-propagating").;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) Right-shift;
#X connect 0 0 1 0;
#X connect 1 0 5 0;
#X connect 1 1 7 0;
#X connect 3 0 6 0;
#X connect 4 0 6 1;
#X connect 5 0 6 0;
#X connect 6 0 2 0;
#X connect 7 0 6 1;
#X restore 281 496 pd understanding_>>_RIGHT-SHIFT;
#N canvas 94 222 428 418 understanding_&&_LOGICAL-AND 0;
#X msg 52 259 5;
#X obj 21 309 &&;
#X floatatom 21 329 5 0 0 0 - - -;
#X floatatom 190 267 5 0 0 0 - - -;
#X text 18 36 [&&] - This is the logical AND operator \, which returns
a Boolean true (a one) if both operands are true. Logically it follows
that if the first operand is false \, then the whole expression is
false \, and this is how the objects works: It first evaluates the
left hand operand (left inlet) and if this returns false (zero) then
\, without going any further \, it returns a false (a zero). Otherwise
it returns the value of the second operand (right inlet).;
#X floatatom 233 267 5 0 0 0 - - -;
#X text 18 354 Note that this is not a bitwise operator. It compares
floats.;
#X obj 21 217 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 21 235 t b b;
#X msg 21 259 17;
#X text 18 145 In other words \, IF the left inlet is zero \, THEN
output zero. ELSEIF the left inlet is non-zero AND the right inlet
is zero \, then output zero. ELSEIF the left inlet is non-zero AND
the right inlet is non-zero \, THEN output non-zero!;
#X obj 87 217 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 87 235 t b b;
#X msg 87 259 17;
#X msg 118 259 0;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) Logical-and;
#X connect 0 0 1 1;
#X connect 1 0 2 0;
#X connect 3 0 1 0;
#X connect 5 0 1 1;
#X connect 7 0 8 0;
#X connect 8 0 9 0;
#X connect 8 1 0 0;
#X connect 9 0 1 0;
#X connect 11 0 12 0;
#X connect 12 0 13 0;
#X connect 12 1 14 0;
#X connect 13 0 1 0;
#X connect 14 0 1 1;
#X restore 281 518 pd understanding_&&_LOGICAL-AND;
#N canvas 105 196 428 400 understanding_||_LOGICAL-OR 0;
#X msg 52 250 5;
#X floatatom 21 320 5 0 0 0 - - -;
#X floatatom 192 251 5 0 0 0 - - -;
#X floatatom 235 251 5 0 0 0 - - -;
#X text 18 345 Note that this is not a bitwise operator. It compares
floats.;
#X obj 21 208 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 21 226 t b b;
#X msg 21 250 17;
#X text 18 35 [||] -- This is the logical OR operator and it returns
a value of true (non-zero) if one or both of the operands is true.
It works by first evaluating the left-hand operand (left inlet) and
\, if this is true \, diregarding the right-hand operand (right inlet)
and returning a non-zero. If \, however \, the left-hand operand (left
inlet) is false \, then it returns the value of the right-hand operand
(right inlet).;
#X text 18 146 In other words \, IF the left inlet is non-zero \, THEN
output non-zero. ELSEIF the left inlet is zero AND the right inlet
is zero \, then output zero. ELSEIF the left inlet is zero AND the
right inlet is non-zero \, THEN output non-zero!;
#X obj 21 300 ||;
#X obj 92 207 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 92 225 t b b;
#X msg 92 249 0;
#X msg 123 249 0;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X text 7 1 (binops2-3) Logical-or;
#X connect 0 0 10 1;
#X connect 2 0 10 0;
#X connect 3 0 10 1;
#X connect 5 0 6 0;
#X connect 6 0 7 0;
#X connect 6 1 0 0;
#X connect 7 0 10 0;
#X connect 10 0 1 0;
#X connect 11 0 12 0;
#X connect 12 0 13 0;
#X connect 12 1 14 0;
#X connect 13 0 10 0;
#X connect 14 0 10 1;
#X restore 281 540 pd understanding_||_LOGICAL-OR;
#X text 98 385 Relational Operators;
#X text 278 385 Logical Operators;
#X obj 4 597 pddp/pddplink all_about_help_patches.pd -text Usage Guide
;
#N canvas 76 63 428 577 Relational_Operators 0;
#X obj 0 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X floatatom 227 354 0 0 0 0 - - -;
#X floatatom 277 433 0 0 0 0 - - -;
#X obj 227 333 >;
#X obj 277 412 ==;
#X obj 64 130 == 42;
#X floatatom 64 109 5 0 0 0 - - -;
#X floatatom 38 156 2 0 0 0 - - -;
#X obj 63 155 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X msg 34 105 42;
#X text 19 87 For example: IF 42 is equal to x \, then "1" (True);
#X text 83 147 Note that the object outputs 1 or 0 with every incoming
message.;
#X text 20 179 All of these objects operate the same way. The right
inlet or creation argument sets the "condition" to which the incoming
messages are compared. The left inlet accepts numbers or a "bang" --
a number will reset the value and output a true or false (1 or 0) depending
on whether or not the incoming value meets the necessary condition.
A "bang" will force the object to output a true or false (1 or 0) based
on the value that is already stored in the left inlet.;
#X floatatom 35 280 5 0 0 0 - - -;
#X floatatom 73 280 5 0 0 0 - - -;
#X text 20 278 a;
#X text 113 279 b;
#X text 98 355 Is a greater than b?;
#X floatatom 252 394 0 0 0 0 - - -;
#X text 52 394 Is a greater than or equal to b?;
#X obj 252 373 >=;
#X text 171 433 Is a equal to b?;
#X obj 305 450 !=;
#X floatatom 305 470 0 0 0 0 - - -;
#X obj 335 283 r a_b;
#X obj 335 302 unpack f f;
#X obj 35 334 pack f f;
#X obj 35 354 s a_b;
#X text 177 471 Is a NOT equal to b?;
#X floatatom 331 508 0 0 0 0 - - -;
#X text 220 508 Is a less than b?;
#X obj 331 488 <;
#X floatatom 356 547 0 0 0 0 - - -;
#X obj 356 527 <;
#X text 173 547 Is a less than or equal to b?;
#X text 18 36 Most relational operators output a boolean value: true
or false (1 or 0) depending on the relation between the input (left
inlet) and the condition (right inlet or creation argument).;
#X obj 73 306 t b a;
#X text 7 1 (binops2-3) Relational Operators;
#X connect 3 0 1 0;
#X connect 4 0 2 0;
#X connect 5 0 7 0;
#X connect 5 0 8 0;
#X connect 6 0 5 0;
#X connect 9 0 5 0;
#X connect 13 0 26 0;
#X connect 14 0 36 0;
#X connect 20 0 18 0;
#X connect 22 0 23 0;
#X connect 24 0 25 0;
#X connect 25 0 3 0;
#X connect 25 0 20 0;
#X connect 25 0 4 0;
#X connect 25 0 22 0;
#X connect 25 0 31 0;
#X connect 25 0 33 0;
#X connect 25 1 3 1;
#X connect 25 1 20 1;
#X connect 25 1 4 1;
#X connect 25 1 22 1;
#X connect 25 1 31 1;
#X connect 25 1 33 1;
#X connect 26 0 27 0;
#X connect 31 0 29 0;
#X connect 33 0 32 0;
#X connect 36 0 26 0;
#X connect 36 1 26 1;
#X restore 101 408 pd Relational_Operators;
#N canvas 79 189 428 247 Logical_Operators 0;
#X obj -1 0 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12
0 14 -204280 -1 0;
#X text 7 1 (binops2-3) Logical Operators-- a.k.a. "Bit Twiddling"
;
#X text 24 26 These objects are adopted from the mother of all object
oriented languages: C. They are "bitwise" operators which perform logical
and shift operations on 32-bit numbers.;
#X text 17 194 Hence \, performing "bitwise" relational tests means
that Pd can compare "1101" to "1001" instead of operating with the
integers that are represented by those binary codes.;
#X text 17 116 Well \, these objects perform "relational" tests on
the binary forms of 32-bit numbers. For example \, the number 13 is
represented in your computer's operating system in binary code by "1101"
and the number 9 is "1001". Each of those binary digits is an 8-bit
word: 8 bits * 4 digits = 32-bits!;
#X obj -1 80 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12
0 14 -204280 -1 0;
#X text 7 81 What does "bitwise" mean?;
#X restore 281 408 pd Logical_Operators;
#X connect 31 0 33 0;
#X connect 32 0 33 1;
#X connect 33 0 34 0;
#X connect 35 0 33 0;
#X connect 47 0 33 0;