/* $Id: number.c 3979 2008-07-04 20:19:22Z matju $ GridFlow Copyright (c) 2001-2008 by Mathieu Bouchard This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See file ../COPYING for further informations on licensing terms. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "../gridflow.h.fcs" #include <math.h> #include <stdlib.h> #include <stdio.h> #include <limits.h> #include <complex> #include <assert.h> //using namespace std; static inline uint64 weight(uint64 x) {uint64 k; k=0x5555555555555555ULL; x = (x&k) + ((x>> 1)&k); //(2**64-1)/(2**2**0-1) k=0x3333333333333333ULL; x = (x&k) + ((x>> 2)&k); //(2**64-1)/(2**2**1-1) k=0x0f0f0f0f0f0f0f0fULL; x = (x&k) + ((x>> 4)&k); //(2**64-1)/(2**2**2-1) k=0x00ff00ff00ff00ffULL; x = (x&k) + ((x>> 8)&k); //(2**64-1)/(2**2**3-1) k=0x0000ffff0000ffffULL; x = (x&k) + ((x>>16)&k); //(2**64-1)/(2**2**4-1) k=0x00000000ffffffffULL; x = (x&k) + ((x>>32)&k); //(2**64-1)/(2**2**5-1) return x; } #ifdef PASS1 NumberType number_type_table[] = { #define FOO(_sym_,_size_,_flags_,args...) NumberType( #_sym_, _size_, _flags_, args ), NUMBER_TYPES(FOO) #undef FOO }; const long number_type_table_n = COUNT(number_type_table); #endif // those are bogus class-templates in the sense that you don't create // objects from those, you just call static functions. The same kind // of pattern is present in STL to overcome some limitations of C++. template <class T> class Op { public: // I call abort() on those because I can't say they're purevirtual. static T f(T a, T b) {abort();} static bool is_neutral (T x, LeftRight side) {assert(!"Op::is_neutral called?"); return false;} static bool is_absorbent(T x, LeftRight side) {assert(!"Op::is_absorbent called?"); return false;} }; template <class O, class T> class OpLoops: public NumopOn<T> { public: static inline T f(T a, T b) {return O::f(a,b);} #define FOO(I) as[I]=f(as[I],b); static void _map (long n, T *as, T b) {if (!n) return; UNROLL_8(FOO,n,as)} #undef FOO #define FOO(I) as[I]=f(as[I],as[ba+I]); static void _zip (long n, T *as, T *bs) {if (!n) return; ptrdiff_t ba=bs-as; UNROLL_8(FOO,n,as)} #undef FOO #define W(i) as[i]=f(as[i],bs[i]); #define Z(i,j) as[i]=f(f(f(f(as[i],bs[i]),bs[i+j]),bs[i+j+j]),bs[i+j+j+j]); static void _fold (long an, long n, T *as, T *bs) { switch (an) { case 1:for(;(n&3)!=0;bs+=1,n--){W(0) } for (;n;bs+= 4,n-=4){Z(0,1) } break; case 2:for(;(n&3)!=0;bs+=2,n--){W(0)W(1) } for (;n;bs+= 8,n-=4){Z(0,2)Z(1,2) } break; case 3:for(;(n&3)!=0;bs+=3,n--){W(0)W(1)W(2) } for (;n;bs+=12,n-=4){Z(0,3)Z(1,3)Z(2,3) } break; case 4:for(;(n&3)!=0;bs+=4,n--){W(0)W(1)W(2)W(3)} for (;n;bs+=16,n-=4){Z(0,4)Z(1,4)Z(2,4)Z(3,4)} break; default:while (n--) {int i=0; for (; i<(an&-4); i+=4, bs+=4) { as[i+0]=f(as[i+0],bs[0]); as[i+1]=f(as[i+1],bs[1]); as[i+2]=f(as[i+2],bs[2]); as[i+3]=f(as[i+3],bs[3]);} for (; i<an; i++, bs++) as[i] = f(as[i],*bs);}}} #undef W #undef Z static void _scan (long an, long n, T *as, T *bs) { for (; n--; as=bs-an) { for (int i=0; i<an; i++, as++, bs++) *bs=f(*as,*bs); } } }; template <class T> static void quick_mod_map (long n, T *as, T b) { if (!b) return; #define FOO(I) as[I]=mod(as[I],b); UNROLL_8(FOO,n,as) #undef FOO } template <class T> static void quick_ign_map (long n, T *as, T b) {} template <class T> static void quick_ign_zip (long n, T *as, T *bs) {} template <class T> static void quick_put_map (long n, T *as, T b) { #define FOO(I) as[I]=b; UNROLL_8(FOO,n,as) #undef FOO } #ifdef PASS1 void quick_put_map (long n, int16 *as, int16 b) { if ((n&1)!=0 && ((long)as&4)!=0) {*as++=b; n--;} quick_put_map(n>>1, (int32 *)as, (int32)(b<<16)+b); if ((n&1)!=0) *as++=b; } void quick_put_map (long n, uint8 *as, uint8 b) { while ((n&3)!=0 && ((long)as&4)!=0) {*as++=b; n--;} int32 c=(b<<8)+b; c+=c<<16; quick_put_map(n>>2, (int32 *)as, c); while ((n&3)!=0) *as++=b; } #endif template <class T> static void quick_put_zip (long n, T *as, T *bs) { gfmemcopy((uint8 *)as, (uint8 *)bs, n*sizeof(T)); } #define Plex std::complex // classic two-input operator #define DEF_OP_COMMON(op,expr,neu,isneu,isorb,T) \ inline static T f(T a, T b) { return (T)(expr); } \ inline static void neutral (T *a, LeftRight side) {*a = neu;} \ inline static bool is_neutral (T x, LeftRight side) {return isneu;} \ inline static bool is_absorbent(T x, LeftRight side) {return isorb;} #define DEF_OP(op,expr,neu,isneu,isorb) template <class T> class Y##op : Op<T> { public: \ DEF_OP_COMMON(op,expr,neu,isneu,isorb,T);}; #define DEF_OPFT(op,expr,neu,isneu,isorb,T) template <> class Y##op<T> : Op<T> { public: \ DEF_OP_COMMON(op,expr,neu,isneu,isorb,T);}; // this macro is for operators that have different code for the float version #define DEF_OPF( op,expr,expr2,neu,isneu,isorb) \ DEF_OP( op,expr, neu,isneu,isorb) \ DEF_OPFT(op, expr2,neu,isneu,isorb,float32) \ DEF_OPFT(op, expr2,neu,isneu,isorb,float64) #define OL(O,T) OpLoops<Y##O<T>,T> #define VOL(O,T) OpLoops<Y##O<Plex<T> >,Plex<T> > #define DECL_OPON(L,O,T) NumopOn<T>( \ (NumopOn<T>::Map) L(O,T)::_map, (NumopOn<T>::Zip) L(O,T)::_zip, \ (NumopOn<T>::Fold)L(O,T)::_fold, (NumopOn<T>::Scan)L(O,T)::_scan, \ &Y##O<T>::neutral, &Y##O<T>::is_neutral, &Y##O<T>::is_absorbent) #define DECL_OPON_NOFOLD(L,O,T) NumopOn<T>( \ (NumopOn<T>::Map)L(O,T)::_map, (NumopOn<T>::Zip)L(O,T)::_zip, 0,0, \ &Y##O<T>::neutral, &Y##O<T>::is_neutral, &Y##O<T>::is_absorbent) #define DECLOP( L,M,O,sym,flags,dim) Numop(sym,M(L,O,uint8),M(L,O,int16),M(L,O,int32) \ NONLITE(,M(L,O,int64)), M(L,O,float32) NONLITE(,M(L,O,float64)),flags,dim) #define DECLOP_NOFLOAT(L,M,O,sym,flags,dim) Numop(sym,M(L,O,uint8),M(L,O,int16),M(L,O,int32) \ NONLITE(,M(L,O,int64)),NumopOn<float32>() NONLITE(,NumopOn<float64>()), flags,dim) // NONLITE(,M(L,O,int64),NumopOn<float32>(),NumopOn<float64>()), flags,dim) #define DECLOP_FLOAT( L,M,O,sym,flags,dim) Numop(sym,NumopOn<uint8>(),NumopOn<int16>(),NumopOn<int32>() \ NONLITE(,NumopOn<int64>()),M(L,O,float32) NONLITE(,M(L,O,float64)),flags,dim) #define DECL_OP( O,sym,flags) DECLOP( OL,DECL_OPON ,O,sym,flags,1) #define DECL_OP_NOFLOAT( O,sym,flags) DECLOP_NOFLOAT( OL,DECL_OPON ,O,sym,flags,1) #define DECL_OP_NOFOLD( O,sym,flags) DECLOP( OL,DECL_OPON_NOFOLD,O,sym,flags,1) #define DECL_OP_NOFOLD_NOFLOAT( O,sym,flags) DECLOP_NOFLOAT( OL,DECL_OPON_NOFOLD,O,sym,flags,1) #define DECL_OP_NOFOLD_FLOAT( O,sym,flags) DECLOP_FLOAT( OL,DECL_OPON_NOFOLD,O,sym,flags,1) #define DECL_VOP( O,sym,flags,dim) DECLOP( VOL,DECL_OPON ,O,sym,flags,dim) #define DECL_VOP_NOFLOAT( O,sym,flags,dim) DECLOP_NOFLOAT(VOL,DECL_OPON ,O,sym,flags,dim) #define DECL_VOP_NOFOLD( O,sym,flags,dim) DECLOP( VOL,DECL_OPON_NOFOLD,O,sym,flags,dim) #define DECL_VOP_NOFOLD_NOFLOAT(O,sym,flags,dim) DECLOP_NOFLOAT(VOL,DECL_OPON_NOFOLD,O,sym,flags,dim) #define DECL_VOP_NOFOLD_FLOAT( O,sym,flags,dim) DECLOP_FLOAT( VOL,DECL_OPON_NOFOLD,O,sym,flags,dim) template <class T> static inline T gf_floor (T a) { return (T) floor((double)a); } template <class T> static inline T gf_trunc (T a) { return (T) floor(abs((double)a)) * (a<0?-1:1); } namespace { // trying to avoid GCC warning about uint8 too small for ==256 template <class T> static bool equal256 (T x) {return x==256;} template <> bool equal256 (uint8 x) {return false;} }; #ifdef PASS1 DEF_OP(ignore, a, 0, side==at_right, side==at_left) DEF_OP(put, b, 0, side==at_left, side==at_right) DEF_OP(add, a+b, 0, x==0, false) DEF_OP(sub, a-b, 0, side==at_right && x==0, false) DEF_OP(bus, b-a, 0, side==at_left && x==0, false) DEF_OP(mul, a*b, 1, x==1, x==0) DEF_OP(mulshr8, (a*b)>>8, 256, equal256(x), x==0) DEF_OP(div, b==0 ? (T)0 : a/b , 1, side==at_right && x==1, false) DEF_OP(div2, b==0 ? 0 : div2(a,b), 1, side==at_right && x==1, false) DEF_OP(vid, a==0 ? (T)0 : b/a , 1, side==at_left && x==1, false) DEF_OP(vid2, a==0 ? 0 : div2(b,a), 1, side==at_left && x==1, false) DEF_OPF(mod, b==0 ? 0 : mod(a,b), b==0 ? 0 : a-b*gf_floor(a/b), 0, false, (side==at_left && x==0) || (side==at_right && x==1)) DEF_OPF(dom, a==0 ? 0 : mod(b,a), a==0 ? 0 : b-a*gf_floor(b/a), 0, false, (side==at_left && x==0) || (side==at_right && x==1)) //DEF_OPF(rem, b==0 ? 0 : a%b, b==0 ? 0 : a-b*gf_trunc(a/b)) //DEF_OPF(mer, a==0 ? 0 : b%a, a==0 ? 0 : b-a*gf_trunc(b/a)) DEF_OP(rem, b==0?(T)0:a%b, 0, false, (side==at_left&&x==0) || (side==at_right&&x==1)) DEF_OP(mer, a==0?(T)0:b%a, 0, false, (side==at_left&&x==0) || (side==at_right&&x==1)) #endif #ifdef PASS2 DEF_OP(gcd, gcd(a,b), 0, x==0, x==1) DEF_OP(gcd2, gcd2(a,b), 0, x==0, x==1) // should test those and pick one of the two DEF_OP(lcm, a==0 || b==0 ? (T)0 : lcm(a,b), 1, x==1, x==0) DEF_OPF(or , a|b, (float32)((int32)a | (int32)b), 0, x==0, x==nt_all_ones(&x)) DEF_OPF(xor, a^b, (float32)((int32)a ^ (int32)b), 0, x==0, false) DEF_OPF(and, a&b, (float32)((int32)a & (int32)b), -1 /*nt_all_ones((T*)0)*/, x==nt_all_ones(&x), x==0) DEF_OPF(shl, a<<b, a*pow(2.0,+b), 0, side==at_right && x==0, false) DEF_OPF(shr, a>>b, a*pow(2.0,-b), 0, side==at_right && x==0, false) DEF_OP(sc_and, a ? b : a, 1, side==at_left && x!=0, side==at_left && x==0) DEF_OP(sc_or, a ? a : b, 0, side==at_left && x==0, side==at_left && x!=0) DEF_OP(min, min(a,b), nt_greatest((T*)0), x==nt_greatest(&x), x==nt_smallest(&x)) DEF_OP(max, max(a,b), nt_smallest((T*)0), x==nt_smallest(&x), x==nt_greatest(&x)) DEF_OP(cmp, cmp(a,b), 0, false, false) DEF_OP(eq, a == b, 0, false, false) DEF_OP(ne, a != b, 0, false, false) DEF_OP(gt, a > b, 0, false, (side==at_left && x==nt_smallest(&x)) || (side==at_right && x==nt_greatest(&x))) DEF_OP(le, a <= b, 0, false, (side==at_left && x==nt_smallest(&x)) || (side==at_right && x==nt_greatest(&x))) DEF_OP(lt, a < b, 0, false, (side==at_left && x==nt_greatest(&x)) || (side==at_right && x==nt_smallest(&x))) DEF_OP(ge, a >= b, 0, false, (side==at_left && x==nt_greatest(&x)) || (side==at_right && x==nt_smallest(&x))) #endif #ifdef PASS3 DEF_OP(sinmul, (float64)b * sin((float64)a * (M_PI / 18000)), 0, false, false) // "LN=9000+36000n RA=0 LA=..." DEF_OP(cosmul, (float64)b * cos((float64)a * (M_PI / 18000)), 0, false, false) // "LN=36000n RA=0 LA=..." DEF_OP(atan, atan2(a,b) * (18000 / M_PI), 0, false, false) // "LA=0" DEF_OP(tanhmul, (float64)b * tanh((float64)a * (M_PI / 18000)), 0, false, x==0) DEF_OP(gamma, b<=0 ? (T)0 : (T)(0+floor(pow((float64)a/256.0,256.0/(float64)b)*256.0)), 0, false, false) // "RN=256" DEF_OPF(pow, ipow(a,b), pow(a,b), 0, false, false) // "RN=1" DEF_OP(logmul, a==0 ? (T)0 : (T)((float64)b * log((float64)gf_abs(a))), 0, false, false) // "RA=0" // 0.8 DEF_OPF(clipadd, clipadd(a,b), a+b, 0, x==0, false) DEF_OPF(clipsub, clipsub(a,b), a-b, 0, side==at_right && x==0, false) DEF_OP(abssub, gf_abs(a-b), 0, false, false) DEF_OP(sqsub, (a-b)*(a-b), 0, false, false) DEF_OP(avg, (a+b)/2, 0, false, false) DEF_OPF(hypot, floor(sqrt(a*a+b*b)), sqrt(a*a+b*b), 0, false, false) DEF_OPF(sqrt, floor(sqrt(a)), sqrt(a), 0, false, false) DEF_OP(rand, a==0 ? (T)0 : (T)(random()%(int32)a), 0, false, false) //DEF_OP(erf,"erf*", 0) DEF_OP(weight,weight((uint64)(a^b) & (0xFFFFFFFFFFFFFFFFULL>>(64-sizeof(T)*8))),0,false,false) #define BITS(T) (sizeof(T)*8) DEF_OP(rol,((uint64)a<<b)|((uint64)a>>(T)((-b)&(BITS(T)-1))),0,false,false) DEF_OP(ror,((uint64)a>>b)|((uint64)a<<(T)((-b)&(BITS(T)-1))),0,false,false) DEF_OP(sin, sin(a-b), 0, false, false) DEF_OP(cos, cos(a-b), 0, false, false) DEF_OP(atan2,atan2(a,b), 0, false, false) DEF_OP(tanh, tanh(a-b), 0, false, false) DEF_OP(exp, exp(a-b), 0, false, false) DEF_OP(log, log(a-b), 0, false, false) #endif #ifdef PASS4 template <class T> inline T gf_sqrt(T a) {return (T)floor(sqrt( a));} inline float32 gf_sqrt(float32 a) {return sqrtf(a) ;} inline float64 gf_sqrt(float64 a) {return sqrt( a) ;} template <class T> inline Plex<T> cx_sqsub(Plex<T>& a, Plex<T>& b) { Plex<T> v=a-b; return v*v; } template <class T> inline Plex<T> cx_abssub(Plex<T>& a, Plex<T>& b) { Plex<T> v=a-b; return norm(v); } /* template <class T> inline Plex<T> cx_atan2 (Plex<T>& a, Plex<T>& b) { if (b==0) return 0; Plex<T> v=a/b; return (log(1+iz)-log(log(1-iz))/2i; // but this is not taking care of sign stuff... // and then what's the use of atan2 on complexes? (use C.log ...) } */ //!@#$ neutral,is_neutral,is_absorbent are WRONG here DEF_OP(cx_mul, a*b, 1, x==1, x==0) DEF_OP(cx_mulconj, a*conj(b), 1, x==1, x==0) DEF_OP(cx_div, a/b, 1, x==1, x==0) DEF_OP(cx_divconj, a/conj(b), 1, x==1, x==0) DEF_OP(cx_sqsub, cx_sqsub(a,b), 0, false, false) DEF_OP(cx_abssub, cx_abssub(a,b), 0, false, false) DEF_OP(cx_sin, sin(a-b), 0, false, false) DEF_OP(cx_cos, cos(a-b), 0, false, false) //DEF_OP(cx_atan2,atan2(a,b), 0, false, false) DEF_OP(cx_tanh, tanh(a-b), 0, false, false) DEF_OP(cx_exp, exp(a-b), 0, false, false) DEF_OP(cx_log, log(a-b), 0, false, false) #endif extern Numop op_table1[], op_table2[], op_table3[], op_table4[]; extern const long op_table1_n, op_table2_n, op_table3_n, op_table4_n; #ifdef PASS1 Numop op_table1[] = { DECL_OP(ignore, "ignore", OP_ASSOC), DECL_OP(put, "put", OP_ASSOC), DECL_OP(add, "+", OP_ASSOC|OP_COMM), // "LINV=sub" DECL_OP(sub, "-", 0), DECL_OP(bus, "inv+", 0), DECL_OP(mul, "*", OP_ASSOC|OP_COMM), DECL_OP_NOFLOAT(mulshr8, "*>>8", OP_ASSOC|OP_COMM), DECL_OP(div, "/", 0), DECL_OP_NOFLOAT(div2, "div", 0), DECL_OP(vid, "inv*", 0), DECL_OP_NOFLOAT(vid2,"swapdiv", 0), DECL_OP_NOFLOAT(mod, "%", 0), DECL_OP_NOFLOAT(dom, "swap%", 0), DECL_OP_NOFLOAT(rem, "rem", 0), DECL_OP_NOFLOAT(mer, "swaprem", 0), }; const long op_table1_n = COUNT(op_table1); #endif #ifdef PASS2 Numop op_table2[] = { DECL_OP_NOFLOAT(gcd, "gcd", OP_ASSOC|OP_COMM), DECL_OP_NOFLOAT(gcd2, "gcd2", OP_ASSOC|OP_COMM), DECL_OP_NOFLOAT(lcm, "lcm", OP_ASSOC|OP_COMM), DECL_OP(or , "|", OP_ASSOC|OP_COMM), DECL_OP(xor, "^", OP_ASSOC|OP_COMM), DECL_OP(and, "&", OP_ASSOC|OP_COMM), DECL_OP_NOFOLD(shl, "<<", 0), DECL_OP_NOFOLD(shr, ">>", 0), DECL_OP_NOFOLD(sc_and,"&&", 0), DECL_OP_NOFOLD(sc_or, "||", 0), DECL_OP(min, "min", OP_ASSOC|OP_COMM), DECL_OP(max, "max", OP_ASSOC|OP_COMM), DECL_OP_NOFOLD(eq, "==", OP_COMM), DECL_OP_NOFOLD(ne, "!=", OP_COMM), DECL_OP_NOFOLD(gt, ">", 0), DECL_OP_NOFOLD(le, "<=", 0), DECL_OP_NOFOLD(lt, "<", 0), DECL_OP_NOFOLD(ge, ">=", 0), DECL_OP_NOFOLD(cmp, "cmp",0), }; const long op_table2_n = COUNT(op_table2); #endif #ifdef PASS3 uint8 clipadd(uint8 a, uint8 b) { int32 c=a+b; return c<0?0:c>255?255:c; } int16 clipadd(int16 a, int16 b) { int32 c=a+b; return c<-0x8000?-0x8000:c>0x7fff?0x7fff:c; } int32 clipadd(int32 a, int32 b) { int64 c=a+b; return c<-0x80000000?-0x80000000:c>0x7fffffff?0x7fffffff:c; } int64 clipadd(int64 a, int64 b) { int64 c=(a>>1)+(b>>1)+(a&b&1), p=nt_smallest((int64 *)0), q=nt_greatest((int64 *)0); return c<p/2?p:c>q/2?q:a+b; } uint8 clipsub(uint8 a, uint8 b) { int32 c=a-b; return c<0?0:c>255?255:c; } int16 clipsub(int16 a, int16 b) { int32 c=a-b; return c<-0x8000?-0x8000:c>0x7fff?0x7fff:c; } int32 clipsub(int32 a, int32 b) { int64 c=a-b; return c<-0x80000000?-0x80000000:c>0x7fffffff?0x7fffffff:c; } int64 clipsub(int64 a, int64 b) { int64 c=(a>>1)-(b>>1); //??? int64 p=nt_smallest((int64 *)0), q=nt_greatest((int64 *)0); return c<p/2?p:c>q/2?q:a-b; } Numop op_table3[] = { DECL_OP_NOFOLD(sinmul, "sin*", 0), DECL_OP_NOFOLD(cosmul, "cos*", 0), DECL_OP_NOFOLD(atan, "atan", 0), DECL_OP_NOFOLD(tanhmul,"tanh*", 0), DECL_OP_NOFOLD(gamma, "gamma", 0), DECL_OP_NOFOLD(pow, "**", 0), DECL_OP_NOFOLD(logmul, "log*", 0), // 0.8 DECL_OP(clipadd,"clip+", OP_ASSOC|OP_COMM), DECL_OP(clipsub,"clip-", 0), DECL_OP_NOFOLD(abssub,"abs-", OP_COMM), DECL_OP_NOFOLD(sqsub, "sq-", OP_COMM), DECL_OP_NOFOLD(avg, "avg", OP_COMM), DECL_OP_NOFOLD(hypot, "hypot",OP_COMM), // huh, almost OP_ASSOC DECL_OP_NOFOLD(sqrt, "sqrt", 0), DECL_OP_NOFOLD(rand, "rand", 0), //DECL_OP_NOFOLD(erf,"erf*", 0), DECL_OP_NOFOLD_NOFLOAT(weight,"weight",OP_COMM), DECL_OP_NOFOLD_NOFLOAT(rol,"rol",0), DECL_OP_NOFOLD_NOFLOAT(ror,"ror",0), DECL_OP_NOFOLD_FLOAT(sin, "sin", 0), DECL_OP_NOFOLD_FLOAT(cos, "cos", 0), DECL_OP_NOFOLD_FLOAT(atan2,"atan2", 0), DECL_OP_NOFOLD_FLOAT(tanh, "tanh", 0), DECL_OP_NOFOLD_FLOAT(exp, "exp", 0), DECL_OP_NOFOLD_FLOAT(log, "log", 0), }; const long op_table3_n = COUNT(op_table3); #endif #ifdef PASS4 Numop op_table4[] = { DECL_VOP(cx_mul, "C.*", OP_ASSOC|OP_COMM,2), DECL_VOP(cx_mulconj, "C.*conj", OP_ASSOC|OP_COMM,2), DECL_VOP(cx_div, "C./", 0,2), DECL_VOP(cx_divconj, "C./conj", 0,2), DECL_VOP(cx_sqsub, "C.sq-", OP_COMM,2), DECL_VOP(cx_abssub, "C.abs-", OP_COMM,2), DECL_VOP_NOFOLD_FLOAT(cx_sin, "C.sin", 0,2), DECL_VOP_NOFOLD_FLOAT(cx_cos, "C.cos", 0,2), // DECL_VOP_NOFOLD_FLOAT(cx_atan2,"C.atan2",0,2), DECL_VOP_NOFOLD_FLOAT(cx_tanh, "C.tanh", 0,2), DECL_VOP_NOFOLD_FLOAT(cx_exp, "C.exp", 0,2), DECL_VOP_NOFOLD_FLOAT(cx_log, "C.log", 0,2), }; const long op_table4_n = COUNT(op_table4); #endif // D=dictionary, A=table, A##_n=table count. #define INIT_TABLE(D,A) for(int i=0; i<A##_n; i++) D[string(A[i].name)]=&A[i]; #ifdef PASS1 std::map<string,NumberType *> number_type_dict; std::map<string,Numop *> op_dict; std::map<string,Numop *> vop_dict; void startup_number () { INIT_TABLE( op_dict,op_table1) INIT_TABLE( op_dict,op_table2) INIT_TABLE( op_dict,op_table3) INIT_TABLE(vop_dict,op_table4) INIT_TABLE(number_type_dict,number_type_table) for (int i=0; i<COUNT(number_type_table); i++) { number_type_table[i].index = (NumberTypeE) i; char a[64]; strcpy(a,number_type_table[i].aliases); char *b = strchr(a,','); if (b) { *b=0; number_type_dict[string(b+1)]=&number_type_table[i]; } number_type_dict[string(a)]=&number_type_table[i]; } // S:name; M:mode; F:replacement function; #define OVERRIDE_INT(S,M,F) { \ Numop *foo = op_dict[string(#S)]; \ foo->on_uint8.M=F; \ foo->on_int16.M=F; \ foo->on_int32.M=F; } OVERRIDE_INT(ignore,map,quick_ign_map); OVERRIDE_INT(ignore,zip,quick_ign_zip); //OVERRIDE_INT(put,map,quick_put_map); //OVERRIDE_INT(put,zip,quick_put_zip); //OVERRIDE_INT(%,map,quick_mod_map); // !@#$ does that make an improvement at all? } #endif