/* $Id: opencv.c 3977 2008-07-04 20:15:08Z matju $ GridFlow Copyright (c) 2001-2008 by Mathieu Bouchard This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See file ../COPYING for further informations on licensing terms. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "../gridflow.h.fcs" #include <opencv/cv.h> #include <errno.h> int ipl_eltype(NumberTypeE e) { switch (e) { case uint8_e: return IPL_DEPTH_8U; // IPL_DEPTH_8S not supported // IPL_DEPTH_16U not supported case int16_e: return IPL_DEPTH_16S; case int32_e: return IPL_DEPTH_32S; case float32_e: return IPL_DEPTH_32F; case float64_e: return IPL_DEPTH_64F; default: RAISE("unsupported type %s",number_type_table[e].name); } } NumberTypeE gf_ipltype(int e) { switch (e) { case IPL_DEPTH_8U: return uint8_e; // IPL_DEPTH_8S not supported // IPL_DEPTH_16U not supported case IPL_DEPTH_16S: return int16_e; case IPL_DEPTH_32S: return int32_e; case IPL_DEPTH_32F: return float32_e; case IPL_DEPTH_64F: return float64_e; default: RAISE("unsupported IPL type %d",e); } } int cv_eltype(NumberTypeE e) { switch (e) { case uint8_e: return CV_8U; // CV_8S not supported // CV_16U not supported case int16_e: return CV_16S; case int32_e: return CV_32S; case float32_e: return CV_32F; case float64_e: return CV_64F; default: RAISE("unsupported type %s",number_type_table[e].name); } } NumberTypeE gf_cveltype(int e) { switch (e) { case CV_8U: return uint8_e; // CV_8S not supported // CV_16U not supported case CV_16S: return int16_e; case CV_32S: return int32_e; case CV_32F: return float32_e; case CV_64F: return float64_e; default: RAISE("unsupported CV type %d",e); } } enum CvMode { cv_mode_auto, cv_mode_channels, cv_mode_nochannels, }; CvMode convert (const t_atom2 &x, CvMode *foo) { if (x==gensym("auto")) return cv_mode_auto; if (x==gensym("channels")) return cv_mode_channels; if (x==gensym("nochannels")) return cv_mode_nochannels; RAISE("invalid CvMode"); } CvArr *cvGrid(PtrGrid g, CvMode mode, int reqdims=-1) { P<Dim> d = g->dim; int channels=1; int dims=g->dim->n; //post("mode=%d",(int)mode); if (mode==cv_mode_channels && g->dim->n==0) RAISE("CV: channels dimension required for 'mode channels'"); if ((mode==cv_mode_auto && g->dim->n>=3) || mode==cv_mode_channels) channels=g->dim->v[--dims]; if (channels>64) RAISE("CV: too many channels. max 64, got %d",channels); //post("channels=%d dims=%d nt=%d",channels,dims,g->nt); //post("bits=%d",number_type_table[g->nt].size); //if (dims==2) return cvMat(g->dim->v[0],g->dim->v[1],cv_eltype(g->nt),g->data); if (reqdims>=0 && reqdims!=dims) RAISE("CV: wrong number of dimensions. expected %d, got %d", reqdims, dims); if (dims==2) { CvMat *a = cvCreateMatHeader(g->dim->v[0],g->dim->v[1],CV_MAKETYPE(cv_eltype(g->nt),channels)); cvSetData(a,g->data,g->dim->prod(1)*(number_type_table[g->nt].size/8)); return a; } RAISE("unsupported number of dimensions (got %d)",g->dim->n); //return 0; } IplImage *cvImageGrid(PtrGrid g /*, CvMode mode */) { P<Dim> d = g->dim; if (d->n!=3) RAISE("expected 3 dimensions, got %s",d->to_s()); int channels=g->dim->v[2]; if (channels>64) RAISE("too many channels. max 64, got %d",channels); CvSize size = {d->v[1],d->v[0]}; IplImage *a = cvCreateImageHeader(size,ipl_eltype(g->nt),channels); cvSetData(a,g->data,g->dim->prod(1)*(number_type_table[g->nt].size/8)); return a; } \class CvOp1 : FObject { \attr CvMode mode; \constructor () {mode = cv_mode_auto;} /* has no default \grin 0 handler so far. */ }; \end class {} \class CvOp2 : CvOp1 { PtrGrid r; \constructor (Grid *r=0) {this->r = r?r:new Grid(new Dim(),int32_e,true);} virtual void func(CvArr *l, CvArr *r, CvArr *o) {/* rien */} \grin 0 \grin 1 }; GRID_INLET(CvOp2,0) { SAME_TYPE(in,r); if (!in->dim->equal(r->dim)) RAISE("dimension mismatch: left:%s right:%s",in->dim->to_s(),r->dim->to_s()); in->set_chunk(0); } GRID_FLOW { PtrGrid l = new Grid(in->dim,(T *)data); PtrGrid o = new Grid(in->dim,in->nt); CvArr *a = cvGrid(l,mode); CvArr *b = cvGrid(r,mode); CvArr *c = cvGrid(o,mode); func(a,b,c); cvReleaseMat((CvMat **)&a); cvReleaseMat((CvMat **)&b); cvReleaseMat((CvMat **)&c); out = new GridOutlet(this,0,in->dim,in->nt); out->send(o->dim->prod(),(T *)o->data); } GRID_END GRID_INPUT2(CvOp2,1,r) {} GRID_END \end class {} #define FUNC(CLASS) CLASS(BFObject *bself, MESSAGE):CvOp2(bself,MESSAGE2) {} virtual void func(CvArr *l, CvArr *r, CvArr *o) \class CvAdd : CvOp2 {FUNC(CvAdd) {cvAdd(l,r,o,0);}}; \end class {install("cv.Add",2,1);} \class CvSub : CvOp2 {FUNC(CvSub) {cvSub(l,r,o,0);}}; \end class {install("cv.Sub",2,1);} \class CvMul : CvOp2 {FUNC(CvMul) {cvMul(l,r,o,1);}}; \end class {install("cv.Mul",2,1);} \class CvDiv : CvOp2 {FUNC(CvDiv) {cvDiv(l,r,o,1);}}; \end class {install("cv.Div",2,1);} \class CvAnd : CvOp2 {FUNC(CvAnd) {cvAnd(l,r,o,0);}}; \end class {install("cv.And",2,1);} \class CvOr : CvOp2 {FUNC(CvOr ) {cvOr( l,r,o,0);}}; \end class {install("cv.Or" ,2,1);} \class CvXor : CvOp2 {FUNC(CvXor) {cvXor(l,r,o,0);}}; \end class {install("cv.Xor",2,1);} \class CvInvert : CvOp1 { \constructor () {} \grin 0 }; GRID_INLET(CvInvert,0) { if (in->dim->n!=2) RAISE("should have 2 dimensions"); if (in->dim->v[0] != in->dim->v[1]) RAISE("matrix should be square"); in->set_chunk(0); } GRID_FLOW { //post("l=%p, r=%p", &*l, &*r); PtrGrid l = new Grid(in->dim,(T *)data); PtrGrid o = new Grid(in->dim,in->nt); CvArr *a = cvGrid(l,mode); CvArr *c = cvGrid(o,mode); //post("a=%p, b=%p", a, b); cvInvert(a,c); cvReleaseMat((CvMat **)&a); cvReleaseMat((CvMat **)&c); out = new GridOutlet(this,0,in->dim,in->nt); out->send(o->dim->prod(),(T *)o->data); } GRID_END \end class {install("cv.Invert",1,1);} \class CvSVD : CvOp1 { \grin 0 \constructor () {} }; GRID_INLET(CvSVD,0) { if (in->dim->n!=2) RAISE("should have 2 dimensions"); if (in->dim->v[0] != in->dim->v[1]) RAISE("matrix should be square"); in->set_chunk(0); } GRID_FLOW { PtrGrid l = new Grid(in->dim,(T *)data); PtrGrid o0 = new Grid(in->dim,in->nt); PtrGrid o1 = new Grid(in->dim,in->nt); PtrGrid o2 = new Grid(in->dim,in->nt); CvArr *a = cvGrid(l,mode); CvArr *c0 = cvGrid(o0,mode); CvArr *c1 = cvGrid(o1,mode); CvArr *c2 = cvGrid(o2,mode); cvSVD(a,c0,c1,c2); cvReleaseMat((CvMat **)&a); cvReleaseMat((CvMat **)&c0); cvReleaseMat((CvMat **)&c1); cvReleaseMat((CvMat **)&c2); out = new GridOutlet(this,2,in->dim,in->nt); out->send(o2->dim->prod(),(T *)o2->data); out = new GridOutlet(this,1,in->dim,in->nt); out->send(o1->dim->prod(),(T *)o1->data); out = new GridOutlet(this,0,in->dim,in->nt); out->send(o0->dim->prod(),(T *)o0->data); } GRID_END \end class {install("cv.SVD",1,3);} \class CvSplit : CvOp1 { int channels; \constructor (int channels) { if (channels<0 || channels>64) RAISE("channels=%d is not in 1..64",channels); this->channels = channels; bself->noutlets_set(channels); } }; \end class {} \class CvHaarDetectObjects : FObject { \attr double scale_factor; /*=1.1*/ \attr int min_neighbors; /*=3*/ \attr int flags; /*=0*/ \constructor () { scale_factor=1.1; min_neighbors=3; flags=0; //cascade = cvLoadHaarClassifierCascade("<default_face_cascade>",cvSize(24,24)); const char *filename = OPENCV_SHARE_PATH "/haarcascades/haarcascade_frontalface_alt2.xml"; FILE *f = fopen(filename,"r"); if (!f) RAISE("error opening %s: %s",filename,strerror(errno)); fclose(f); cascade = (CvHaarClassifierCascade *)cvLoad(filename,0,0,0); int s = cvGetErrStatus(); post("cascade=%p, cvGetErrStatus=%d cvErrorStr=%s",cascade,s,cvErrorStr(s)); //cascade = cvLoadHaarClassifierCascade(OPENCV_SHARE_PATH "/data/haarcascades/haarcascade_frontalface_alt2.xml",cvSize(24,24)); storage = cvCreateMemStorage(0); } CvHaarClassifierCascade *cascade; CvMemStorage *storage; \grin 0 }; GRID_INLET(CvHaarDetectObjects,0) { in->set_chunk(0); } GRID_FLOW { PtrGrid l = new Grid(in->dim,(T *)data); IplImage *img = cvImageGrid(l); CvSeq *ret = cvHaarDetectObjects(img,cascade,storage,scale_factor,min_neighbors,flags); int n = ret ? ret->total : 0; out = new GridOutlet(this,0,new Dim(n,2,2)); for (int i=0; i<n; i++) { CvRect *r = (CvRect *)cvGetSeqElem(ret,i); int32 duh[] = {r->y,r->x,r->y+r->height,r->x+r->width}; out->send(4,duh); } } GRID_END \end class {install("cv.HaarDetectObjects",2,1);} \class CvKalmanWrapper : CvOp1 { CvKalman *kal; \constructor (int dynam_params, int measure_params, int control_params=0) { kal = cvCreateKalman(dynam_params,measure_params,control_params); } ~CvKalmanWrapper () {if (kal) cvReleaseKalman(&kal);} \decl void _0_bang (); \grin 0 \grin 1 }; void cvMatSend(const CvMat *self, FObject *obj, int outno) { int m = self->rows; int n = self->cols; int e = CV_MAT_TYPE(cvGetElemType(self)); int c = CV_MAT_CN( cvGetElemType(self)); GridOutlet *out = new GridOutlet(obj,0,new Dim(m,n)); for (int i=0; i<m; i++) { uchar *meuh = cvPtr2D(self,i,0,0); switch (e) { case CV_8U: out->send(c*n, (uint8 *)meuh); break; case CV_16S: out->send(c*n, (int16 *)meuh); break; case CV_32S: out->send(c*n, (int32 *)meuh); break; case CV_32F: out->send(c*n,(float32 *)meuh); break; case CV_64F: out->send(c*n,(float64 *)meuh); break; } } } \def void _0_bang () { const CvMat *r = cvKalmanPredict(kal,0); cvMatSend(r,this,0); } GRID_INLET(CvKalmanWrapper,0) { in->set_chunk(0); } GRID_FLOW { PtrGrid l = new Grid(in->dim,(T *)data); CvMat *a = (CvMat *)cvGrid(l,mode,2); const CvMat *r = cvKalmanPredict(kal,a); cvMatSend(r,this,0); } GRID_END GRID_INLET(CvKalmanWrapper,1) { in->set_chunk(0); } GRID_FLOW { PtrGrid l = new Grid(in->dim,(T *)data); CvMat *a = (CvMat *)cvGrid(l,mode,2); const CvMat* r = cvKalmanCorrect(kal,a); cvMatSend(r,this,0); } GRID_END \end class {install("cv.Kalman",2,1);} //\class CvEllipse : FObject { // \grin 0 //}; //GRID_INLET(CvEllipse,0) { // in->set_chunk(0); //} GRID_FLOW { //} GRID_END //\end class {install("cv.Ellipse",1,1);} /* void cvEllipse( CvArr* img, CvPoint center, CvSize axes, double angle, double start_angle, double end_angle, CvScalar color, int thickness=1, int line_type=8, int shift=0 ); CvSeq* cvApproxPoly( const void* src_seq, int header_size, CvMemStorage* storage, int method, double parameter, int parameter2=0 ); void cvCalcOpticalFlowHS( const CvArr* prev, const CvArr* curr, int use_previous, CvArr* velx, CvArr* vely, double lambda, CvTermCriteria criteria ); void cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr, CvSize win_size, CvArr* velx, CvArr* vely ); void cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr, CvSize block_size, CvSize shift_size, CvSize max_range, int use_previous, CvArr* velx, CvArr* vely ); void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr, const CvPoint2D32f* prev_features, CvPoint2D32f* curr_features, int count, CvSize win_size, int level, char* status, float* track_error, CvTermCriteria criteria, int flags ); void cvCalcBackProject( IplImage** image, CvArr* back_project, const CvHistogram* hist ); void cvCalcHist( IplImage** image, CvHistogram* hist, int accumulate=0, const CvArr* mask=NULL ); CvHistogram* cvCreateHist( int dims, int* sizes, int type, float** ranges=NULL, int uniform=1 ); void cvSnakeImage( const IplImage* image, CvPoint* points, int length, float* alpha, float* beta, float* gamma, int coeff_usage, CvSize win, CvTermCriteria criteria, int calc_gradient=1 ); int cvMeanShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnectedComp* comp ); int cvCamShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnectedComp* comp, CvBox2D* box=NULL ); */ /* **************************************************************** */ static int erreur_handleur (int status, const char* func_name, const char* err_msg, const char* file_name, int line, void *userdata) { cvSetErrStatus(CV_StsOk); // we might be looking for trouble because we don't know whether OpenCV is throw-proof. RAISE("OpenCV error: status='%s' func_name=%s err_msg=\"%s\" file_name=%s line=%d",cvErrorStr(status),func_name,err_msg,file_name,line); // if this breaks OpenCV, then we will have to use post() or a custom hybrid of post() and RAISE() that does not cause a // longjmp when any OpenCV functions are on the stack. return 0; } void startup_opencv() { /* CvErrorCallback z = */ cvRedirectError(erreur_handleur); \startall }