/* FFTease - A set of Live Spectral Processors Originally written by Eric Lyon and Christopher Penrose for the Max/MSP platform Copyright (c)Thomas Grill (xovo@gmx.net) For information on usage and redistribution, and for a DISCLAIMER OF ALL WARRANTIES, see the file, "license.txt," in this distribution. */ #include "main.h" class burrow: public flext_dsp { FLEXT_HEADER_S(burrow,flext_dsp,setup) public: burrow(I argc,const t_atom *argv); ~burrow(); protected: virtual V m_dsp(I n,S *const *in,S *const *out); virtual V m_signal(I n,S *const *in,S *const *out); I blsz; BL _invert; F _threshold,_multiplier; F _thresh_dB,_mult_dB; F *_input1,*_input2; F *_buffer1,*_buffer2; F *_channel1,*_channel2; F *_output; F *_trigland; I *_bitshuffle; F *_Wanal,*_Wsyn,*_Hwin; I _inCount; private: enum { _MULT_ = 4 }; V Clear(); V Delete(); V ms_thresh(F v) { _threshold = (float) (pow( 10., ((_thresh_dB = v) * .05))); } V ms_mult(F v) { _multiplier = (float) (pow( 10., ((_mult_dB = v) * .05))); } static V setup(t_classid c); FLEXT_ATTRGET_F(_thresh_dB) FLEXT_CALLSET_F(ms_thresh) FLEXT_ATTRGET_F(_mult_dB) FLEXT_CALLSET_F(ms_mult) FLEXT_ATTRVAR_B(_invert) }; FLEXT_LIB_DSP_V("fftease, burrow~",burrow) V burrow::setup(t_classid c) { FLEXT_CADDATTR_VAR(c,"thresh",_thresh_dB,ms_thresh); FLEXT_CADDATTR_VAR(c,"mult",_mult_dB,ms_mult); FLEXT_CADDATTR_VAR1(c,"invert",_invert); } burrow::burrow(I argc,const t_atom *argv): _thresh_dB(-30),_mult_dB(-18), _invert(false), blsz(0) { /* parse and set object's options given */ if(argc >= 1) { if(CanbeFloat(argv[0])) _thresh_dB = GetAFloat(argv[0]); else post("%s - Threshold must be a float value - set to %0f",thisName(),_thresh_dB); } if(argc >= 2) { if(CanbeFloat(argv[1])) _mult_dB = GetAFloat(argv[1]); else post("%s - Multiplier must be a float value - set to %0f",thisName(),_mult_dB); } if(argc >= 3) { if(CanbeBool(argv[2])) _invert = GetABool(argv[2]); else post("%s - Invert flag must be a boolean value - set to %i",thisName(),_invert?1:0); } ms_thresh(_thresh_dB); ms_mult(_mult_dB); Clear(); AddInSignal("Messages and input signal"); AddInSignal("Reference signal"); AddOutSignal("Transformed signal"); } burrow::~burrow() { Delete(); } V burrow::Clear() { _bitshuffle = NULL; _trigland = NULL; _input1 = _input2 = NULL; _Hwin = NULL; _Wanal = _Wsyn = NULL; _buffer1 = _buffer2 = NULL; _channel1 = _channel2 = NULL; _output = NULL; } V burrow::Delete() { if(_bitshuffle) delete[] _bitshuffle; if(_trigland) delete[] _trigland; if(_input1) delete[] _input1; if(_input2) delete[] _input2; if(_Hwin) delete[] _Hwin; if(_Wanal) delete[] _Wanal; if(_Wsyn) delete[] _Wsyn; if(_buffer1) delete[] _buffer1; if(_buffer2) delete[] _buffer2; if(_channel1) delete[] _channel1; if(_channel2) delete[] _channel2; if(_output) delete[] _output; } V burrow::m_dsp(I n,S *const *,S *const *) { const I _D = n; if(_D != blsz) { blsz = _D; Delete(); /* preset the objects data */ const I _N = _D*_MULT_,_Nw = _N,_N2 = _N/2,_Nw2 = _Nw/2; _inCount = -_Nw; /* assign memory to the buffers */ _input1 = new F[_Nw]; _input2 = new F[_Nw]; _buffer1 = new F[_N]; _buffer2 = new F[_N]; _channel1 = new F[_N+2]; _channel2 = new F[_N+2]; _output = new F[_Nw]; _bitshuffle = new I[_N*2]; _trigland = new F[_N*2]; _Hwin = new F[_Nw]; _Wanal = new F[_Nw]; _Wsyn = new F[_Nw]; /* initialize pv-lib functions */ init_rdft( _N, _bitshuffle, _trigland); makewindows( _Hwin, _Wanal, _Wsyn, _Nw, _N, _D, 0); } } V burrow::m_signal(I n,S *const *in,S *const *out) { /* declare working variables */ I i, j; const I _D = n,_N = _D*_MULT_,_Nw = _N,_N2 = _N/2,_Nw2 = _Nw/2; /* fill our retaining buffers */ _inCount += _D; for(i = 0; i < _N-_D ; i++ ) { _input1[i] = _input1[i+_D]; _input2[i] = _input2[i+_D]; } for(j = 0; i < _N; i++,j++) { _input1[i] = in[0][j]; _input2[i] = in[1][j]; } /* apply hamming window and fold our window buffer into the fft buffer */ fold( _input1, _Wanal, _Nw, _buffer1, _N, _inCount ); fold( _input2, _Wanal, _Nw, _buffer2, _N, _inCount ); /* do an fft */ rdft( _N, 1, _buffer1, _bitshuffle, _trigland ); rdft( _N, 1, _buffer2, _bitshuffle, _trigland ); // ---- BEGIN -------------------------------- for ( i = 0; i <= _N2; i++ ) { const I even = i<<1,odd = even+1; /* convert to polar coordinates from complex values */ register F a,b; a = ( i == _N2 ? _buffer1[1] : _buffer1[even] ); b = ( i == 0 || i == _N2 ? 0. : _buffer1[odd] ); _channel1[even] = hypot( a, b ); _channel1[odd] = -atan2( b, a ); a = ( i == _N2 ? _buffer2[1] : _buffer2[even] ); b = ( i == 0 || i == _N2 ? 0. : _buffer2[odd] ); _channel2[even] = hypot( a, b ); /* use simple threshold from second signal to trigger filtering */ if (_invert?(_channel2[even] < _threshold):(_channel2[even] > _threshold) ) _channel1[even] *= _multiplier; /* convert back to complex form, read for the inverse fft */ _buffer1[even] = _channel1[even] * cos( _channel1[odd] ); if ( i != _N2 ) _buffer1[odd] = -_channel1[even] * sin( _channel1[odd] ); } // ---- END -------------------------------- /* do an inverse fft */ rdft( _N, -1, _buffer1, _bitshuffle, _trigland ); /* dewindow our result */ overlapadd( _buffer1, _N, _Wsyn, _output, _Nw, _inCount); /* set our output and adjust our retaining output buffer */ const F mult = 1./_N; for ( j = 0; j < _D; j++ ) out[0][j] = _output[j] * mult; for ( j = 0; j < _N-_D; j++ ) _output[j] = _output[j+_D]; for (; j < _N; j++ ) _output[j] = 0.; }