#N canvas 92 96 760 640 12;
#X obj 259 168 *~;
#X floatatom 259 83 0 0 0 0 - - -;
#X floatatom 169 118 0 0 0 0 - - -;
#X obj 169 188 +~;
#N canvas 0 0 450 300 graph1 0;
#X array fm-output 441 float 0;
#X coords 0 1.02 440 -1.02 200 130 1;
#X restore 527 40 graph;
#X msg 244 228 bang;
#X text 286 228 <-- click to graph;
#X obj 244 252 tabwrite~ fm-output;
#X floatatom 281 138 0 0 0 0 - - -;
#X text 166 75 carrier;
#X text 165 93 frequency;
#X text 244 59 frequency;
#X text 245 42 modulation;
#X text 33 8 FREQUENCY MODULATION ("FM") USING TWO OSCILLATORS;
#X obj 168 232 osc~;
#X text 52 214 "carrier";
#X text 34 232 oscillator -->;
#X text 47 149 add modulator;
#X text 46 167 to carrier;
#X text 44 186 frequency -->;
#X text 320 150 index;
#X text 322 131 modulation;
#X obj 259 108 osc~;
#X text 531 172 --- 0.01 seconds ----;
#X text 53 443 To get the FM sound \, set all three of carrier frequency
\, modulation frequency \, and modulation index in the hundreds. Note
that you get a timbral change as you sweep modulation index \, because
this changes the amplitudes of the components of the output sound but
not their frequencies.;
#X obj 167 270 output~;
#X text 489 613 updated for Pd version 0.37;
#X text 54 332 This patch shows the classical FM synthesis technique
developed by John Chowning. It's nothing but an oscillator with vibrato
controlled by another "modulation" oscillator. First \, to understand
the patch \, set carrier frequency to 400 or so \, modulation frequency
between 5 and 10 \, and try modulation index values between 0 and 400
\, say. You'll hear a sine wave with vibrato.;
#X text 55 526 The component frequencies are equal to the carrier frequency
\, plus or minus multiples of the modulator frequency. A more complete
discussion of FM occurs in part 5 of this series.;
#X connect 0 0 3 1;
#X connect 1 0 22 0;
#X connect 2 0 3 0;
#X connect 3 0 14 0;
#X connect 5 0 7 0;
#X connect 8 0 0 1;
#X connect 14 0 7 0;
#X connect 14 0 25 0;
#X connect 14 0 25 1;
#X connect 22 0 0 0;