#N canvas 269 43 755 746 12;
#N canvas 0 0 450 300 graph1 0;
#X array E02-signal 882 float 0;
#X coords 0 5 882 -5 200 130 1;
#X restore 501 66 graph;
#X obj 15 370 hip~ 5;
#N canvas 0 0 450 300 graph1 0;
#X array E02-spectrum 128 float 0;
#X coords 0 4300 127 -40 257 130 1;
#X restore 455 251 graph;
#N canvas 45 83 558 569 fft 0;
#X obj 19 61 inlet~;
#X obj 95 214 inlet;
#X obj 29 92 rfft~;
#X obj 29 125 *~;
#X obj 60 125 *~;
#X obj 29 155 sqrt~;
#X obj 332 109 block~ 4096 1;
#X obj 29 181 biquad~ 0 0 0 0 1;
#X text 93 93 Fourier series;
#X text 98 146 magnitude;
#X text 96 131 calculate;
#X text 21 3 This subpatch computes the spectrum of the incoming signal
with a (rectangular windowed) FFT. FFTs aren't properly introduced
until much later.;
#X text 83 61 signal to analyze;
#X text 192 166 delay two samples;
#X text 191 182 for better graphing;
#X obj 16 425 samplerate~;
#X obj 16 402 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X floatatom 16 472 5 0 0 0 - - -;
#X obj 16 448 / 256;
#X obj 16 378 loadbang;
#X floatatom 16 541 5 0 0 0 - - -;
#X obj 24 494 s fundamental;
#X obj 16 517 ftom;
#X text 14 319 At load time \, calculate a good choice of fundamental
frequency for showing spectra: the 16th bin in a 4096-point spectrum
\, so SR*16/4096 or SR/256.;
#X text 145 216 "bang" into this inlet to graph it;
#X floatatom 191 480 5 0 0 0 - - -;
#X obj 191 456 / 4096;
#X text 187 425 One bin is SR/4096:;
#X text 72 540 <-just out of curiosity \, here's the fundamental pitch
;
#X obj 191 502 s freq-step;
#X obj 95 248 tabwrite~ E02-spectrum;
#X obj 20 281 tabwrite~ E02-signal;
#X connect 0 0 2 0;
#X connect 0 0 31 0;
#X connect 1 0 30 0;
#X connect 1 0 31 0;
#X connect 2 0 3 0;
#X connect 2 0 3 1;
#X connect 2 1 4 0;
#X connect 2 1 4 1;
#X connect 3 0 5 0;
#X connect 4 0 5 0;
#X connect 5 0 7 0;
#X connect 7 0 30 0;
#X connect 15 0 18 0;
#X connect 15 0 26 0;
#X connect 16 0 15 0;
#X connect 17 0 21 0;
#X connect 17 0 22 0;
#X connect 18 0 17 0;
#X connect 19 0 16 0;
#X connect 22 0 20 0;
#X connect 25 0 29 0;
#X connect 26 0 25 0;
#X restore 23 343 pd fft;
#X text 501 198 ---- 0.02 seconds ----;
#X obj 84 344 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 15 398 output~;
#X text 501 720 updated for Pd version 0.37;
#X text 486 384 1;
#X text 520 384 2;
#X text 552 384 3;
#X text 584 384 4;
#X text 617 384 5;
#X text 647 384 6;
#X text 678 384 7;
#X text 454 384 0;
#X text 490 403 -- partial number --;
#X text 703 120 0;
#X obj 18 32 r fundamental;
#X obj 18 94 osc~;
#X obj 39 119 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1
;
#X obj 17 144 *~;
#X obj 61 94 osc~;
#X obj 82 119 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1
;
#X obj 60 144 *~;
#X obj 104 94 osc~;
#X obj 125 119 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1
1;
#X obj 103 144 *~;
#X obj 104 71 * 2;
#X obj 147 94 osc~;
#X obj 168 119 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X obj 146 144 *~;
#X obj 190 94 osc~;
#X obj 211 119 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X obj 189 144 *~;
#X obj 233 94 osc~;
#X obj 254 119 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X obj 232 144 *~;
#X obj 18 71 * 0;
#X obj 61 71 * 1;
#X obj 147 71 * 3;
#X obj 190 71 * 4;
#X obj 233 71 * 5;
#X text 282 118 <-- On/Off;
#X text 565 46 WAVEFORM;
#X text 548 229 SPECTRUM;
#X text 715 367 0;
#X text 713 246 1;
#X text 714 305 0.5;
#X text 703 60 5;
#X text 704 180 -5;
#X obj 16 239 *~;
#X text 300 102 partials;
#X obj 154 270 osc~;
#X floatatom 154 210 3 0 200 0 - - -;
#X obj 154 239 *;
#X obj 187 239 r freq-step;
#X text 226 177 modulation;
#X text 222 192 frequency in;
#X text 185 209 <-- "steps" of f/16;
#X text 97 -1 RING MODULATION: multiplying a complex tone by a sinusoid
;
#X obj 84 299 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 1
;
#X text 107 343 <-- graph once;
#X obj 84 321 metro 500;
#X text 107 298 <-- graph repeatedly;
#X text 35 463 Now we ring modulate the signal by multiplying it by
another sinusoid. The modulation frequency is controlled in steps of
f/16 where "f" is the fundamental frequency \, giving roughly 11 Hz.
per step. Note that if the modulation frequency is set to zero we can't
predict the overall amplitude because it depends on what phase the
modulation oscillator happened to have at that moment.;
#X text 32 579 If you choose a multiple of the fundamental as a modulation
frequency (16 \, 32 \, 48 \, 64 \, ... "steps") the result is again
periodic at the original frequency. If you select a half-integer times
the fundamental (8 \, 24 \, 40 \, ... steps) the pitch drops by an
octave and you get only odd partials. For most other settings you'll
get an inharmonic complex of tones. These are sometimes heard as separate
pitches and other times they seem to fuse into a single timbre with
indeterminate pitch.;
#X connect 1 0 6 0;
#X connect 1 0 6 1;
#X connect 5 0 3 1;
#X connect 18 0 38 0;
#X connect 18 0 39 0;
#X connect 18 0 28 0;
#X connect 18 0 40 0;
#X connect 18 0 41 0;
#X connect 18 0 42 0;
#X connect 19 0 21 0;
#X connect 20 0 21 1;
#X connect 21 0 51 0;
#X connect 22 0 24 0;
#X connect 23 0 24 1;
#X connect 24 0 51 0;
#X connect 25 0 27 0;
#X connect 26 0 27 1;
#X connect 27 0 51 0;
#X connect 28 0 25 0;
#X connect 29 0 31 0;
#X connect 30 0 31 1;
#X connect 31 0 51 0;
#X connect 32 0 34 0;
#X connect 33 0 34 1;
#X connect 34 0 51 0;
#X connect 35 0 37 0;
#X connect 36 0 37 1;
#X connect 37 0 51 0;
#X connect 38 0 19 0;
#X connect 39 0 22 0;
#X connect 40 0 29 0;
#X connect 41 0 32 0;
#X connect 42 0 35 0;
#X connect 51 0 3 0;
#X connect 51 0 1 0;
#X connect 53 0 51 1;
#X connect 54 0 55 0;
#X connect 55 0 53 0;
#X connect 56 0 55 1;
#X connect 61 0 63 0;
#X connect 63 0 5 0;