#N canvas 263 112 637 523 12; #X obj 19 128 +~; #X obj 18 209 output~; #X text 141 3 NONLINEAR DISTORTION AND DIFFERENCE TONES; #X obj 154 171 / 100; #X floatatom 154 151 5 0 500 0 - - -; #X obj 18 181 clip~ -1 1; #X floatatom 42 81 5 0 0 0 - - -; #X obj 18 155 *~; #X obj 42 35 loadbang; #X msg 154 127 50; #X obj 154 103 loadbang; #X text 385 494 updated for Pd version 0.37; #X text 94 80 <-- frequency of second tone; #X text 209 151 <-- before clipping; #X text 234 134 amplitude of sum; #X obj 18 9 osc~ 300; #X msg 42 58 225; #X text 99 226 This patch demonstrates how nonlinear distortion (also known as "waveshaping") can create difference tones from a pair of sinusoids. The sinusoids are initially tuned to 225 and 300 Hz \, a musical fourth \, and have amplitude of 50 percent (0.5) so that the sum is always less than 1 in absolute value. At these settings the "clip~" object passes its input through unchanged.; #X text 100 344 If the amplitude rises above 50 percent \, the clip~ object starts altering the signal nonlinearly \, and the result is no longer as if the two sinusoids had been processed separately. Instead \, they "intermodulate" \, finding a common subharmonic if one exists. At 300 and 225 Hz \, the subharmonic is at 75 \, two octaves below the upper tone and a twelveth below the lower one. Change the frequency of the second tone and you will hear a variety of effects.; #X obj 42 103 osc~; #X connect 0 0 7 0; #X connect 3 0 7 1; #X connect 4 0 3 0; #X connect 5 0 1 0; #X connect 5 0 1 1; #X connect 6 0 19 0; #X connect 7 0 5 0; #X connect 8 0 16 0; #X connect 9 0 4 0; #X connect 10 0 9 0; #X connect 15 0 0 0; #X connect 16 0 6 0; #X connect 19 0 0 1;