#N canvas 127 136 697 536 12;
#X obj 94 188 *~;
#X obj 136 188 line~;
#X obj 18 179 cos~;
#X obj 18 154 +~;
#X obj 136 165 pack 0 50;
#X floatatom 136 117 0 0 0 0 - - -;
#X obj 136 141 / 100;
#X obj 18 129 phasor~;
#X obj 18 284 output~;
#X obj 17 253 hip~;
#X text 442 513 updated for Pd version 0.37;
#N canvas 122 211 558 609 fft 1;
#X obj 19 61 inlet~;
#X obj 208 212 inlet;
#X obj 29 92 rfft~;
#X obj 29 125 *~;
#X obj 60 125 *~;
#X obj 29 155 sqrt~;
#X obj 332 109 block~ 4096 1;
#X obj 29 181 biquad~ 0 0 0 0 1;
#X text 93 93 Fourier series;
#X text 98 146 magnitude;
#X text 96 131 calculate;
#X text 21 3 This subpatch computes the spectrum of the incoming signal
with a (rectangular windowed) FFT. FFTs aren't properly introduced
until much later.;
#X text 83 61 signal to analyze;
#X text 193 164 delay two samples;
#X text 191 182 for better graphing;
#X obj 19 459 samplerate~;
#X obj 19 436 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X floatatom 19 506 5 0 0 0 - - -;
#X obj 19 482 / 256;
#X obj 19 412 loadbang;
#X obj 75 528 s fundamental;
#X text 17 359 At load time \, calculate a good choice of fundamental
frequency for showing spectra: the 16th bin in a 4096-point spectrum
\, so SR*16/4096 or SR/256.;
#X obj 231 259 metro 500;
#X obj 231 236 inlet;
#X text 284 234 toggle to graph repeatedly;
#X text 262 212 bang to graph once;
#X obj 19 295 tabwrite~ E09-signal;
#X obj 231 298 tabwrite~ E09-spectrum;
#X obj 19 528 t b f;
#X msg 19 551 \; cm 6;
#X text 25 585 set carrier multiplier after fundamental;
#X obj 29 205 /~ 4096;
#X msg 209 322 \; pd dsp 1;
#X connect 0 0 2 0;
#X connect 0 0 26 0;
#X connect 1 0 26 0;
#X connect 1 0 27 0;
#X connect 1 0 32 0;
#X connect 2 0 3 0;
#X connect 2 0 3 1;
#X connect 2 1 4 0;
#X connect 2 1 4 1;
#X connect 3 0 5 0;
#X connect 4 0 5 0;
#X connect 5 0 7 0;
#X connect 7 0 31 0;
#X connect 15 0 18 0;
#X connect 16 0 15 0;
#X connect 17 0 28 0;
#X connect 18 0 17 0;
#X connect 19 0 16 0;
#X connect 22 0 26 0;
#X connect 22 0 27 0;
#X connect 23 0 22 0;
#X connect 23 0 32 0;
#X connect 28 0 29 0;
#X connect 28 1 20 0;
#X connect 31 0 27 0;
#X restore 62 243 pd fft;
#X obj 122 222 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 122 243 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
1;
#X text 143 242 <-- repeatedly;
#X text 144 222 <-- graph once;
#N canvas 0 0 450 300 graph1 0;
#X array E09-signal 882 float 0;
#X coords 0 1.02 882 -1.02 200 80 1;
#X restore 433 28 graph;
#N canvas 0 0 450 300 graph1 0;
#X array E09-spectrum 259 float 0;
#X coords 0 0.51 258 -0.008 259 130 1;
#X restore 403 175 graph;
#X text 442 114 ---- 0.02 seconds ----;
#X text 433 306 2;
#X text 464 306 4;
#X text 403 306 0;
#X text 441 321 -- partial number --;
#X text 497 8 WAVEFORM;
#X text 497 157 SPECTRUM;
#X text 663 291 0;
#X text 664 173 0.5;
#X obj 93 117 osc~;
#X obj 93 86 r fundamental;
#X text 171 117 index (x100);
#X text 496 306 6;
#X text 529 306 8;
#X text 557 306 10;
#X text 589 306 12;
#X text 621 306 14;
#X text 43 3 SPECTRUM OF TWO-OPERATOR PHASE MODULATION;
#X floatatom 18 58 3 0 15 0 - - -;
#X obj 18 105 *;
#X obj 18 33 r cm;
#X text 52 57 carrier harmonic #;
#X text 71 367 This patch measures the spectrum of two-operator phase
modulation. The carrier frequency is initially six times the modulation
frequency \, but you can change it with the "carrier harmonic #" control.
Changing the index changes the relative strengths of the harmonics.
Past a certain index (which depends on the carrier frequency) the lower
sidebands begin to reflect about the left edge of the spectrum \, causing
complicated interference effects.;
#X connect 0 0 3 1;
#X connect 1 0 0 1;
#X connect 2 0 9 0;
#X connect 2 0 11 0;
#X connect 3 0 2 0;
#X connect 4 0 1 0;
#X connect 5 0 6 0;
#X connect 6 0 4 0;
#X connect 7 0 3 0;
#X connect 9 0 8 0;
#X connect 9 0 8 1;
#X connect 12 0 11 1;
#X connect 13 0 11 2;
#X connect 27 0 0 0;
#X connect 28 0 27 0;
#X connect 28 0 37 1;
#X connect 36 0 37 0;
#X connect 37 0 7 0;
#X connect 38 0 36 0;