#N canvas 25 22 868 421 12;
#N canvas 0 0 450 300 graph2 0;
#X array \$0-tab1 100 float 1;
#A 0 1.39998 1.39868 1.3942 1.39349 1.38496 1.3772 1.36745 1.35633
1.34208 1.32931 1.31817 1.30372 1.28879 1.27458 1.25944 1.24351 1.22874
1.21386 1.19924 1.18487 1.17063 1.15653 1.14284 1.13144 1.11914 1.10722
1.09603 1.08515 1.07479 1.06474 1.05519 1.04606 1.03715 1.02899 1.02092
1.0128 1.00624 0.999291 0.992705 0.986255 0.980081 0.974014 0.969307
0.964106 0.959111 0.954207 0.949901 0.945593 0.941227 0.937556 0.933778
0.930231 0.926681 0.923353 0.920059 0.917466 0.914627 0.911849 0.9092
0.906745 0.904264 0.901469 0.900065 0.898006 0.896023 0.893895 0.892373
0.890666 0.889038 0.887483 0.885924 0.884597 0.883215 0.881537 0.880075
0.879619 0.878522 0.877414 0.876234 0.87571 0.874819 0.873886 0.873124
0.87241 0.871807 0.870763 0.870512 0.869952 0.869465 0.868958 0.868403
0.86826 0.867939 0.866731 0.867094 0.867762 0.867796 0.864339 0.872811
0.920535;
#X coords 0 5 99 0 200 300 1;
#X restore 621 28 graph;
#X obj 29 245 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X floatatom 37 289 3 0 0 0 - - -;
#X text 676 334 frequency;
#N canvas 876 177 375 255 startup 0;
#X obj 22 24 loadbang;
#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 22 67 f \$0;
#X text 35 195 This subpatch loads initial;
#X text 31 219 values in number boxes.;
#X msg 22 91 \; \$1-pole 60 \; \$1-zero 20;
#X connect 0 0 1 0;
#X connect 1 0 2 0;
#X connect 2 0 5 0;
#X restore 289 390 pd startup;
#X floatatom 281 265 3 -99 99 0 - #0-pole -;
#X text 559 316 gain=0;
#X text 108 34 SHELVING FILTER;
#X obj 29 378 filter-graph2 \$0-tab1;
#X obj 29 266 filter-graph1 100 22050;
#X text 796 330 22050;
#X obj 232 314 rpole~;
#X obj 281 288 / 100;
#X floatatom 335 264 4 -100 100 0 - #0-zero -;
#X obj 335 287 / 100;
#X obj 231 346 rzero~;
#X text 608 21 5;
#X text 616 327 0;
#X text 604 258 1;
#X text 16 58 This patch demonstrates using the raw filters \, rpole~
and rzero~ (raw \, real-valued one-pole and one-zero filters) \, to
make a shelving filter.;
#X text 14 109 If the pole is at p and the zero is at q \, the gain
at DC is (1-q)/(1-p) and the gain at Nyquist is (1+q)/(1+p). If the
pole location is close to plus or minus one \, this can give large
gains unless q is in the same vicinity. (try \, for example \, p=90%
\, q=70%).;
#X text 11 191 The crossover region varies from DC to Nyquist as p
and q decrease from 100% to -100%.;
#X text 278 241 pole;
#X text 334 241 zero;
#X text 383 263 (in hundredths);
#X text 610 387 updated for Pd version 0.39;
#X connect 1 0 9 0;
#X connect 5 0 12 0;
#X connect 9 0 2 0;
#X connect 9 0 8 0;
#X connect 9 1 8 1;
#X connect 9 1 11 0;
#X connect 9 2 8 2;
#X connect 11 0 15 0;
#X connect 12 0 11 1;
#X connect 13 0 14 0;
#X connect 14 0 15 1;
#X connect 15 0 8 3;