#N canvas 0 466 571 483 12; #X obj 32 393 ftom; #X obj 8 10 mtof; #X obj 32 341 mtof; #X floatatom 32 313 0 0 0 0 - - -; #X floatatom 32 368 0 0 0 0 - - -; #X obj 64 10 ftom; #X floatatom 32 417 0 0 0 0 - - -; #X obj 120 11 dbtorms; #X obj 196 11 rmstodb; #X obj 275 11 dbtopow; #X obj 352 11 powtodb; #X floatatom 164 309 0 0 0 0 - - -; #X floatatom 164 364 0 0 0 0 - - -; #X floatatom 164 413 0 0 0 0 - - -; #X obj 164 337 dbtorms; #X obj 164 389 rmstodb; #X floatatom 278 310 0 0 0 0 - - -; #X floatatom 278 365 0 0 0 0 - - -; #X floatatom 278 414 0 0 0 0 - - -; #X obj 278 338 dbtopow; #X obj 278 390 powtodb; #X text 23 245 Finally \, dbtopow and powtodb convert decibels to and from power units \, equal to the square of the "RMS" amplitude.; #X text 304 448 updated for pd version 0.40.; #X text 21 53 The mtof object transposes a midi value into a frequency in Hertz \, so that "69" goes to "440". You can specify microtonal pitches as in "69.5" (a quarter tone higher than 69). Ftom does the reverse. A frequency of zero Hertz is given a MIDI value of -1500 (strictly speaking \, it is negative infinity.); #X text 22 149 The dbtorms and rmstodb objects convert from decibels to linear ("RMS") amplitude \, so that 100 dB corresponds to an "RMS" of 1 Zero amplitude (strictly speaking \, minus infinity dB) is clipped to zero dB \, and zero dB \, which should correspond to 1e-04 in "RMS" \, is instead rounded down to zero.; #X connect 0 0 6 0; #X connect 2 0 4 0; #X connect 3 0 2 0; #X connect 4 0 0 0; #X connect 11 0 14 0; #X connect 12 0 15 0; #X connect 14 0 12 0; #X connect 15 0 13 0; #X connect 16 0 19 0; #X connect 17 0 20 0; #X connect 19 0 17 0; #X connect 20 0 18 0;