
GRAME - Computer Music Research Lab.
Technical Note - 01-11-07

Callback adaptation techniques
St�phane Letz

November 2001
Grame - Computer Music Research Laboratory

9, rue du Garet BP 1185 69202 FR - LYON Cedex 01
letz@grame.fr

Abstract

This document describes a callback adaptation technique developed for the PortAudio port on ASIO. This method
handle buffers of different sizes and guarantee lowest latency added by buffer size adaptation.

1 Introduction
The callback adaptation problem was encountered whilst doing a port of the PortAudio API on ASIO API. PortAudio
is a cross-platform library that provides streaming audio input and output, ASIO is a Macintosh and Windows API
that provides streaming audio input and output. Both API are callback based, but may use audio buffers of different
size. This document presents an algorithm developed to allow adaptation between the 2 callback systems.

2 Adapting callbacks
The system we are considering is driven by an audio native callback (the ÒhostÓ callback) usually called by the
hardware interrupt. The hosthm de6F prcallfolopee coTw
totype :z@grame.fr

3.3 Case 3 : host buffer size superior of user buffer size

N

Beginning of callback 2 : 100 new frames are received

Host input buffer = 100
User input buffer = 30 : frames kept from the previous cycle
User ouput buffer = 0
Host ouput buffer = 0

End of callback 2

Host input buffer = 0
User input buffer = 60 : remainder of (100 + 30)/70
User ouput buffer = 70
Host ouput buffer = 0

There is a problem here because a complete host ouput buffer can not be produced (because 70 <100). Thus the value
has to be choosen to guarantee that a complete host ouput buffer can be produced at each cycle. We could just
add N null frames to start the process. But adding null frames at the beginning of the first host output buffer (that is
shifting the whole ouput stream), increases the global latency.

Thus we would like to find the smallest number of null frames that must be put in the first output host buffer to
guarantee that the audio streaming process can be done. This value can be found by doing the following reasoning :

¥ At the first host callback : M frames are received, and M/N PortAudio callback can be called. The
minimum number of needed frames to complete a full M ouput buffer is M%N (where % gives the
remainder of M/N).

M

N

M

N

3.4 Case 4 : host buffer size inferior of user buffer size

adaptor->userCallback = callback;
adaptor->hostBufferSize = M;
adaptor->userBufferSize = N;
return adaptor;

}

// Computes the shift value used for the first ouput buffer : this value is used to initialize the write offset in
the user input buffer or the host ouput buffer depending of M and N

void InitCallbackAdaptor

long framesInputUserBuffer;
// number of frames needed to complete the host output buffer

// To ÒsimulateÓ the hardware interrupt : the host ouput buffer has been used, it is now empty

void WriteOutputHostBuffer (CallbackAdaptor* adaptor)
{

5 Conclusion

