/* Copyright (c) 1997-1999 Miller Puckette. * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. */ /* The sig~ and line~ routines; possibly fancier envelope generators to come later. */ #include "m_pd.h" #include "math.h" /* -------------------------- sig~ ------------------------------ */ static t_class *sig_class; typedef struct _sig { t_object x_obj; float x_f; } t_sig; static t_int *sig_perform(t_int *w) { t_float f = *(t_float *)(w[1]); t_float *out = (t_float *)(w[2]); int n = (int)(w[3]); while (n--) *out++ = f; return (w+4); } static t_int *sig_perf8(t_int *w) { t_float f = *(t_float *)(w[1]); t_float *out = (t_float *)(w[2]); int n = (int)(w[3]); for (; n; n -= 8, out += 8) { out[0] = f; out[1] = f; out[2] = f; out[3] = f; out[4] = f; out[5] = f; out[6] = f; out[7] = f; } return (w+4); } void dsp_add_scalarcopy(t_sample *in, t_sample *out, int n) { if (n&7) dsp_add(sig_perform, 3, in, out, n); else dsp_add(sig_perf8, 3, in, out, n); } static void sig_float(t_sig *x, t_float f) { x->x_f = f; } static void sig_dsp(t_sig *x, t_signal **sp) { dsp_add(sig_perform, 3, &x->x_f, sp[0]->s_vec, sp[0]->s_n); } static void *sig_new(t_floatarg f) { t_sig *x = (t_sig *)pd_new(sig_class); x->x_f = f; outlet_new(&x->x_obj, gensym("signal")); return (x); } static void sig_setup(void) { sig_class = class_new(gensym("sig~"), (t_newmethod)sig_new, 0, sizeof(t_sig), 0, A_DEFFLOAT, 0); class_addfloat(sig_class, (t_method)sig_float); class_addmethod(sig_class, (t_method)sig_dsp, gensym("dsp"), 0); } /* -------------------------- line~ ------------------------------ */ static t_class *line_class; typedef struct _line { t_object x_obj; float x_target; float x_value; float x_biginc; float x_inc; float x_1overn; float x_msectodsptick; float x_inletvalue; float x_inletwas; int x_ticksleft; int x_retarget; } t_line; static t_int *line_perform(t_int *w) { t_line *x = (t_line *)(w[1]); t_float *out = (t_float *)(w[2]); int n = (int)(w[3]); float f = x->x_value; if (PD_BADFLOAT(f)) x->x_value = f = 0; if (x->x_retarget) { int nticks = x->x_inletwas * x->x_msectodsptick; if (!nticks) nticks = 1; x->x_ticksleft = nticks; x->x_biginc = (x->x_target - x->x_value)/(float)nticks; x->x_inc = x->x_1overn * x->x_biginc; x->x_retarget = 0; } if (x->x_ticksleft) { float f = x->x_value; while (n--) *out++ = f, f += x->x_inc; x->x_value += x->x_biginc; x->x_ticksleft--; } else { x->x_value = x->x_target; while (n--) *out++ = x->x_value; } return (w+4); } static void line_float(t_line *x, t_float f) { if (x->x_inletvalue <= 0) { x->x_target = x->x_value = f; x->x_ticksleft = x->x_retarget = 0; } else { x->x_target = f; x->x_retarget = 1; x->x_inletwas = x->x_inletvalue; x->x_inletvalue = 0; } } static void line_stop(t_line *x) { x->x_target = x->x_value; x->x_ticksleft = x->x_retarget = 0; } static void line_dsp(t_line *x, t_signal **sp) { dsp_add(line_perform, 3, x, sp[0]->s_vec, sp[0]->s_n); x->x_1overn = 1./sp[0]->s_n; x->x_msectodsptick = sp[0]->s_sr / (1000 * sp[0]->s_n); } static void *line_new(void) { t_line *x = (t_line *)pd_new(line_class); outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_inletvalue); x->x_ticksleft = x->x_retarget = 0; x->x_value = x->x_target = x->x_inletvalue = x->x_inletwas = 0; return (x); } static void line_setup(void) { line_class = class_new(gensym("line~"), line_new, 0, sizeof(t_line), 0, 0); class_addfloat(line_class, (t_method)line_float); class_addmethod(line_class, (t_method)line_dsp, gensym("dsp"), 0); class_addmethod(line_class, (t_method)line_stop, gensym("stop"), 0); } /* -------------------------- snapshot~ ------------------------------ */ static t_class *snapshot_class; typedef struct _snapshot { t_object x_obj; t_sample x_value; float x_f; } t_snapshot; static void *snapshot_new(void) { t_snapshot *x = (t_snapshot *)pd_new(snapshot_class); x->x_value = 0; outlet_new(&x->x_obj, &s_float); x->x_f = 0; return (x); } static t_int *snapshot_perform(t_int *w) { t_float *in = (t_float *)(w[1]); t_float *out = (t_float *)(w[2]); *out = *in; return (w+3); } static void snapshot_dsp(t_snapshot *x, t_signal **sp) { dsp_add(snapshot_perform, 2, sp[0]->s_vec + (sp[0]->s_n-1), &x->x_value); } static void snapshot_bang(t_snapshot *x) { outlet_float(x->x_obj.ob_outlet, x->x_value); } static void snapshot_setup(void) { snapshot_class = class_new(gensym("snapshot~"), snapshot_new, 0, sizeof(t_snapshot), 0, 0); CLASS_MAINSIGNALIN(snapshot_class, t_snapshot, x_f); class_addmethod(snapshot_class, (t_method)snapshot_dsp, gensym("dsp"), 0); class_addbang(snapshot_class, snapshot_bang); } /* ---------------- env~ - simple envelope follower. ----------------- */ #define MAXOVERLAP 10 #define MAXVSTAKEN 64 typedef struct sigenv { t_object x_obj; /* header */ void *x_outlet; /* a "float" outlet */ void *x_clock; /* a "clock" object */ float *x_buf; /* a Hanning window */ int x_phase; /* number of points since last output */ int x_period; /* requested period of output */ int x_realperiod; /* period rounded up to vecsize multiple */ int x_npoints; /* analysis window size in samples */ float x_result; /* result to output */ float x_sumbuf[MAXOVERLAP]; /* summing buffer */ float x_f; } t_sigenv; t_class *sigenv_class; static void sigenv_tick(t_sigenv *x); static void *sigenv_new(t_floatarg fnpoints, t_floatarg fperiod) { int npoints = fnpoints; int period = fperiod; t_sigenv *x; float *buf; int i; if (npoints < 1) npoints = 1024; if (period < 1) period = npoints/2; if (period < npoints / MAXOVERLAP + 1) period = npoints / MAXOVERLAP + 1; if (!(buf = getbytes(sizeof(float) * (npoints + MAXVSTAKEN)))) { error("env: couldn't allocate buffer"); return (0); } x = (t_sigenv *)pd_new(sigenv_class); x->x_buf = buf; x->x_npoints = npoints; x->x_phase = 0; x->x_period = period; for (i = 0; i < MAXOVERLAP; i++) x->x_sumbuf[i] = 0; for (i = 0; i < npoints; i++) buf[i] = (1. - cos((2 * 3.14159 * i) / npoints))/npoints; for (; i < npoints+MAXVSTAKEN; i++) buf[i] = 0; x->x_clock = clock_new(x, (t_method)sigenv_tick); x->x_outlet = outlet_new(&x->x_obj, gensym("float")); x->x_f = 0; return (x); } static t_int *sigenv_perform(t_int *w) { t_sigenv *x = (t_sigenv *)(w[1]); t_float *in = (t_float *)(w[2]); int n = (int)(w[3]); int count; float *sump; in += n; for (count = x->x_phase, sump = x->x_sumbuf; count < x->x_npoints; count += x->x_realperiod, sump++) { float *hp = x->x_buf + count; float *fp = in; float sum = *sump; int i; for (i = 0; i < n; i++) { fp--; sum += *hp++ * (*fp * *fp); } *sump = sum; } sump[0] = 0; x->x_phase -= n; if (x->x_phase < 0) { x->x_result = x->x_sumbuf[0]; for (count = x->x_realperiod, sump = x->x_sumbuf; count < x->x_npoints; count += x->x_realperiod, sump++) sump[0] = sump[1]; sump[0] = 0; x->x_phase = x->x_realperiod - n; clock_delay(x->x_clock, 0L); } return (w+4); } static void sigenv_dsp(t_sigenv *x, t_signal **sp) { if (x->x_period % sp[0]->s_n) x->x_realperiod = x->x_period + sp[0]->s_n - (x->x_period % sp[0]->s_n); else x->x_realperiod = x->x_period; dsp_add(sigenv_perform, 3, x, sp[0]->s_vec, sp[0]->s_n); if (sp[0]->s_n > MAXVSTAKEN) bug("sigenv_dsp"); } static void sigenv_tick(t_sigenv *x) /* callback function for the clock */ { outlet_float(x->x_outlet, powtodb(x->x_result)); } static void sigenv_ff(t_sigenv *x) /* cleanup on free */ { clock_free(x->x_clock); freebytes(x->x_buf, (x->x_npoints + MAXVSTAKEN) * sizeof(float)); } void sigenv_setup(void ) { sigenv_class = class_new(gensym("env~"), (t_newmethod)sigenv_new, (t_method)sigenv_ff, sizeof(t_sigenv), 0, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(sigenv_class, t_sigenv, x_f); class_addmethod(sigenv_class, (t_method)sigenv_dsp, gensym("dsp"), 0); } /* --------------------- threshold~ ----------------------------- */ static t_class *threshold_tilde_class; typedef struct _threshold_tilde { t_object x_obj; t_outlet *x_outlet1; /* bang out for high thresh */ t_outlet *x_outlet2; /* bang out for low thresh */ t_clock *x_clock; /* wakeup for message output */ float x_f; /* scalar inlet */ int x_state; /* 1 = high, 0 = low */ float x_hithresh; /* value of high threshold */ float x_lothresh; /* value of low threshold */ float x_deadwait; /* msec remaining in dead period */ float x_msecpertick; /* msec per DSP tick */ float x_hideadtime; /* hi dead time in msec */ float x_lodeadtime; /* lo dead time in msec */ } t_threshold_tilde; static void threshold_tilde_tick(t_threshold_tilde *x); static void threshold_tilde_set(t_threshold_tilde *x, t_floatarg hithresh, t_floatarg hideadtime, t_floatarg lothresh, t_floatarg lodeadtime); static t_threshold_tilde *threshold_tilde_new(t_floatarg hithresh, t_floatarg hideadtime, t_floatarg lothresh, t_floatarg lodeadtime) { t_threshold_tilde *x = (t_threshold_tilde *) pd_new(threshold_tilde_class); x->x_state = 0; /* low state */ x->x_deadwait = 0; /* no dead time */ x->x_clock = clock_new(x, (t_method)threshold_tilde_tick); x->x_outlet1 = outlet_new(&x->x_obj, &s_bang); x->x_outlet2 = outlet_new(&x->x_obj, &s_bang); inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1")); x->x_msecpertick = 0.; x->x_f = 0; threshold_tilde_set(x, hithresh, hideadtime, lothresh, lodeadtime); return (x); } /* "set" message to specify thresholds and dead times */ static void threshold_tilde_set(t_threshold_tilde *x, t_floatarg hithresh, t_floatarg hideadtime, t_floatarg lothresh, t_floatarg lodeadtime) { if (lothresh > hithresh) lothresh = hithresh; x->x_hithresh = hithresh; x->x_hideadtime = hideadtime; x->x_lothresh = lothresh; x->x_lodeadtime = lodeadtime; } /* number in inlet sets state -- note incompatible with JMAX which used "int" message for this, impossible here because of auto signal conversion */ static void threshold_tilde_ft1(t_threshold_tilde *x, t_floatarg f) { x->x_state = (f != 0); x->x_deadwait = 0; } static void threshold_tilde_tick(t_threshold_tilde *x) { if (x->x_state) outlet_bang(x->x_outlet1); else outlet_bang(x->x_outlet2); } static t_int *threshold_tilde_perform(t_int *w) { float *in1 = (float *)(w[1]); t_threshold_tilde *x = (t_threshold_tilde *)(w[2]); int n = (t_int)(w[3]); if (x->x_deadwait > 0) x->x_deadwait -= x->x_msecpertick; else if (x->x_state) { /* we're high; look for low sample */ for (; n--; in1++) { if (*in1 < x->x_lothresh) { clock_delay(x->x_clock, 0L); x->x_state = 0; x->x_deadwait = x->x_lodeadtime; goto done; } } } else { /* we're low; look for high sample */ for (; n--; in1++) { if (*in1 >= x->x_hithresh) { clock_delay(x->x_clock, 0L); x->x_state = 1; x->x_deadwait = x->x_hideadtime; goto done; } } } done: return (w+4); } void threshold_tilde_dsp(t_threshold_tilde *x, t_signal **sp) { x->x_msecpertick = 1000. * sp[0]->s_n / sp[0]->s_sr; dsp_add(threshold_tilde_perform, 3, sp[0]->s_vec, x, sp[0]->s_n); } static void threshold_tilde_ff(t_threshold_tilde *x) { clock_free(x->x_clock); } static void threshold_tilde_setup( void) { threshold_tilde_class = class_new(gensym("threshold~"), (t_newmethod)threshold_tilde_new, (t_method)threshold_tilde_ff, sizeof(t_threshold_tilde), 0, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(threshold_tilde_class, t_threshold_tilde, x_f); class_addmethod(threshold_tilde_class, (t_method)threshold_tilde_set, gensym("set"), A_FLOAT, A_FLOAT, A_FLOAT, A_FLOAT, 0); class_addmethod(threshold_tilde_class, (t_method)threshold_tilde_ft1, gensym("ft1"), A_FLOAT, 0); class_addmethod(threshold_tilde_class, (t_method)threshold_tilde_dsp, gensym("dsp"), 0); } /* ------------------------ global setup routine ------------------------- */ void d_ctl_setup(void) { sig_setup(); line_setup(); snapshot_setup(); sigenv_setup(); threshold_tilde_setup(); }