1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
|
/* Copyright (c) 1997-1999 Miller Puckette.
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution. */
/* These routines build a copy of the DSP portion of a graph, which is
then sorted into a linear list of DSP operations which are added to
the DSP duty cycle called by the scheduler. Once that's been done,
we delete the copy. The DSP objects are represented by "ugenbox"
structures which are parallel to the DSP objects in the graph and
have vectors of siginlets and sigoutlets which record their
interconnections.
*/
/* hacked to run subpatches with different power-of-2 samplerates - mfg.gfd.uil IOhannes */
#define PD_PLUSPLUS_FACE
#include "desire.h"
#include <stdlib.h>
#include <stdarg.h>
/* T.Grill - include SIMD functionality */
#include "m_simd.h"
extern t_class *vinlet_class, *voutlet_class, *canvas_class;
t_sample *obj_findsignalscalar(t_object *x, int m);
static int ugen_loud;
static t_int *dsp_chain;
static int dsp_chainsize;
struct t_vinlet;
struct t_voutlet;
void vinlet_dspprolog(t_vinlet *x, t_signal **parentsigs, int myvecsize, int calcsize, int phase, int period, int frequency,
int downsample, int upsample, int reblock, int switched);
void voutlet_dspprolog(t_voutlet *x, t_signal **parentsigs, int myvecsize, int calcsize, int phase, int period, int frequency,
int downsample, int upsample, int reblock, int switched);
void voutlet_dspepilog(t_voutlet *x, t_signal **parentsigs, int myvecsize, int calcsize, int phase, int period, int frequency,
int downsample, int upsample, int reblock, int switched);
/* zero out a vector */
t_int *zero_perform(t_int *w) {
t_float *out = (t_float *)w[1];
int n = int(w[2]);
while (n--) *out++ = 0;
return w+3;
}
t_int *zero_perf8(t_int *w) {
t_float *out = (t_float *)w[1];
int n = int(w[2]);
for (; n; n -= 8, out += 8) {
out[0] = 0; out[1] = 0;
out[2] = 0; out[3] = 0;
out[4] = 0; out[5] = 0;
out[6] = 0; out[7] = 0;
}
return w+3;
}
void dsp_add_zero(t_sample *out, int n) {
if (n&7) dsp_add(zero_perform, 2, out, n);
else if(SIMD_CHECK1(n,out)) dsp_add(zero_perf_simd, 2, out, n);
else dsp_add(zero_perf8, 2, out, n);
}
/* ---------------------------- block~ ----------------------------- */
/* The "block~ object maintains the containing canvas's DSP computation,
calling it at a super- or sub-multiple of the containing canvas's
calling frequency. The block~'s creation arguments specify block size
and overlap. Block~ does no "dsp" computation in its own right, but it
adds prolog and epilog code before and after the canvas's unit generators.
A subcanvas need not have a block~ at all; if there's none, its
ugens are simply put on the list without any prolog or epilog code.
Block~ may be invoked as switch~, in which case it also acts to switch the
subcanvas on and off. The overall order of scheduling for a subcanvas
is thus,
inlet and outlet prologue code (1)
block prologue (2)
the objects in the subcanvas, including inlets and outlets
block epilogue (2)
outlet epilogue code (2)
where (1) means, "if reblocked" and (2) means, "if reblocked or switched".
If we're reblocked, the inlet prolog and outlet epilog code takes care of
overlapping and buffering to deal with vector size changes. If we're switched
but not reblocked, the inlet prolog is not needed, and the output epilog is
ONLY run when the block is switched off; in this case the epilog code simply
copies zeros to all signal outlets.
*/
static int dsp_phase;
static t_class *block_class;
struct t_block : t_object {
int vecsize; /* size of audio signals in this block */
int calcsize; /* number of samples actually to compute */
int overlap;
int phase; /* from 0 to period-1; when zero we run the block */
int period; /* submultiple of containing canvas */
int frequency; /* supermultiple of comtaining canvas */
int count; /* number of times parent block has called us */
int chainonset; /* beginning of code in DSP chain */
int blocklength; /* length of dspchain for this block */
int epiloglength; /* length of epilog */
char switched; /* true if we're acting as a a switch */
char switchon; /* true if we're switched on */
char reblock; /* true if inlets and outlets are reblocking */
int upsample; /* IOhannes: upsampling-factor */
int downsample; /* IOhannes: downsampling-factor */
int x_return; /* stop right after this block (for one-shots) */
};
static void block_set(t_block *x, t_floatarg fvecsize, t_floatarg foverlap, t_floatarg fupsample);
static void *block_new(t_floatarg fcalcsize, t_floatarg foverlap, t_floatarg fupsample) /* IOhannes */ {
t_block *x = (t_block *)pd_new(block_class);
x->phase = 0;
x->period = 1;
x->frequency = 1;
x->switched = 0;
x->switchon = 1;
block_set(x, fcalcsize, foverlap, fupsample);
return x;
}
static void block_set(t_block *x, t_floatarg fcalcsize, t_floatarg foverlap, t_floatarg fupsample) {
int upsample, downsample; /* IOhannes */
int calcsize = (int)fcalcsize;
int overlap = (int)foverlap;
int dspstate = canvas_suspend_dsp();
if (overlap < 1) overlap = 1;
if (calcsize < 0) calcsize = 0; /* this means we'll get it from parent later. */
/* IOhannes { */
if (fupsample <= 0) upsample = downsample = 1;
else if (fupsample >= 1) {
upsample = (int)fupsample;
downsample = 1;
} else {
downsample = int(1.0 / fupsample);
upsample = 1;
}
/* } IOhannes */
/* vecsize is smallest power of 2 large enough to hold calcsize */
int vecsize = 0;
if (calcsize) {
vecsize = (1 << ilog2(calcsize));
if (vecsize != calcsize) vecsize *= 2;
}
if (vecsize && vecsize != (1 << ilog2(vecsize))) {error("block~: vector size not a power of 2"); vecsize = 64;}
if ( overlap != (1 << ilog2(overlap))) {error("block~: overlap not a power of 2"); overlap = 1;}
/* IOhannes { */
if (downsample != (1 << ilog2(downsample))) {error("block~: downsampling not a power of 2"); downsample = 1;}
if ( upsample != (1 << ilog2( upsample))) {error("block~: upsampling not a power of 2"); upsample = 1;}
/* } IOhannes */
x->calcsize = calcsize;
x->vecsize = vecsize;
x->overlap = overlap;
/* IOhannes { */
x->upsample = upsample;
x->downsample = downsample;
/* } IOhannes */
canvas_resume_dsp(dspstate);
}
static void *switch_new(t_floatarg fvecsize, t_floatarg foverlap, t_floatarg fupsample) /* IOhannes */ {
t_block *x = (t_block *)(block_new(fvecsize, foverlap, fupsample)); /* IOhannes */
x->switched = 1;
x->switchon = 0;
return x;
}
static void block_float(t_block *x, t_floatarg f) {
if (x->switched) x->switchon = f!=0;
}
static void block_bang(t_block *x) {
if (x->switched && !x->switchon) {
x->x_return = 1;
for (t_int *ip = dsp_chain + x->chainonset; ip; ) ip = t_perfroutine(*ip)(ip);
x->x_return = 0;
} else error("bang to block~ or on-state switch~ has no effect");
}
#define PROLOGCALL 2
#define EPILOGCALL 2
static t_int *block_prolog(t_int *w) {
t_block *x = (t_block *)w[1];
int phase = x->phase;
/* if we're switched off, jump past the epilog code */
if (!x->switchon) return w+x->blocklength;
if (phase) {
phase++;
if (phase == x->period) phase = 0;
x->phase = phase;
return w+x->blocklength; /* skip block; jump past epilog */
} else {
x->count = x->frequency;
x->phase = (x->period > 1 ? 1 : 0);
return w+PROLOGCALL; /* beginning of block is next ugen */
}
}
static t_int *block_epilog(t_int *w) {
t_block *x = (t_block *)w[1];
int count = x->count - 1;
if (x->x_return) return 0;
if (!x->reblock) return w+x->epiloglength+EPILOGCALL;
if (count) {
x->count = count;
return w - (x->blocklength - (PROLOGCALL + EPILOGCALL)); /* go to ugen after prolog */
} else return w+EPILOGCALL;
}
static void block_dsp(t_block *x, t_signal **sp) {/* do nothing here */}
void block_tilde_setup() {
block_class = class_new2("block~", (t_newmethod)block_new, 0, sizeof(t_block), 0,"FFF");
class_addcreator2("switch~",(t_newmethod)switch_new,"FFF");
class_addmethod2(block_class, (t_method)block_set,"set","FFF");
class_addmethod2(block_class, (t_method)block_dsp,"dsp","");
class_addfloat(block_class, block_float);
class_addbang(block_class, block_bang);
}
/* ------------------ DSP call list ----------------------- */
static t_int dsp_done(t_int *w) {return 0;}
void dsp_add(t_perfroutine f, int n, ...) {
va_list ap;
va_start(ap, n);
int newsize = dsp_chainsize + n+1;
dsp_chain = (t_int *)resizebytes(dsp_chain, dsp_chainsize * sizeof (t_int), newsize * sizeof (t_int));
dsp_chain[dsp_chainsize-1] = (t_int)f;
for (int i=0; i<n; i++) dsp_chain[dsp_chainsize + i] = va_arg(ap, t_int);
dsp_chain[newsize-1] = (t_int)dsp_done;
dsp_chainsize = newsize;
va_end(ap);
}
/* at Guenter's suggestion, here's a vectorized version */
void dsp_addv(t_perfroutine f, int n, t_int *vec) {
int newsize = dsp_chainsize + n+1;
dsp_chain = (t_int *)resizebytes(dsp_chain, dsp_chainsize * sizeof (t_int), newsize * sizeof (t_int));
dsp_chain[dsp_chainsize-1] = (t_int)f;
for (int i=0; i<n; i++) dsp_chain[dsp_chainsize + i] = vec[i];
dsp_chain[newsize-1] = (t_int)dsp_done;
dsp_chainsize = newsize;
}
void dsp_tick() {
if (dsp_chain) {
for (t_int *ip = dsp_chain; ip; ) ip = ((t_perfroutine)*ip)(ip);
dsp_phase++;
}
}
/* ---------------- signals ---------------------------- */
int ilog2(int n) {
int r = -1;
if (n <= 0) return 0;
while (n) {
r++;
n >>= 1;
}
return r;
}
/* list of signals which can be reused, sorted by buffer size */
static t_signal *signal_freelist[MAXLOGSIG+1];
/* list of reusable "borrowed" signals (which don't own sample buffers) */
static t_signal *signal_freeborrowed;
/* list of all signals allocated (not including "borrowed" ones) */
static t_signal *signal_usedlist;
/* call this when DSP is stopped to free all the signals */
void signal_cleanup() {
t_signal *sig;
while ((sig = signal_usedlist)) {
signal_usedlist = sig->nextused;
if (!sig->isborrowed) {
#ifndef VECTORALIGNMENT
free(sig->v);
#else
freealignedbytes(sig->v, sig->vecsize * sizeof (*sig->v));
#endif
}
free(sig);
}
for (int i=0; i<=MAXLOGSIG; i++) signal_freelist[i] = 0;
signal_freeborrowed = 0;
}
/* mark the signal "reusable." */
extern "C" void signal_makereusable(t_signal *sig) {
int logn = ilog2(sig->vecsize);
#if 1
for (t_signal *s5 = signal_freeborrowed; s5; s5 = s5->nextfree) {if (s5 == sig) {bug("signal_free 3"); return;}}
for (t_signal *s5 = signal_freelist[logn]; s5; s5 = s5->nextfree) {if (s5 == sig) {bug("signal_free 4"); return;}}
#endif
if (ugen_loud) post("free %lx: %d", sig, sig->isborrowed);
if (sig->isborrowed) {
/* if the signal is borrowed, decrement the borrowed-from signal's reference count, possibly marking it reusable too */
t_signal *s2 = sig->borrowedfrom;
if ((s2 == sig) || !s2) bug("signal_free");
s2->refcount--;
if (!s2->refcount) signal_makereusable(s2);
sig->nextfree = signal_freeborrowed;
signal_freeborrowed = sig;
} else {
/* if it's a real signal (not borrowed), put it on the free list so we can reuse it. */
if (signal_freelist[logn] == sig) bug("signal_free 2");
sig->nextfree = signal_freelist[logn];
signal_freelist[logn] = sig;
}
}
/* reclaim or make an audio signal. If n is zero, return a "borrowed"
signal whose buffer and size will be obtained later via signal_setborrowed(). */
t_signal *signal_new(int n, float sr) {
int vecsize = 0;
t_signal *ret, **whichlist;
int logn = ilog2(n);
if (n) {
if ((vecsize = (1<<logn)) != n) vecsize *= 2;
if (logn > MAXLOGSIG) bug("signal buffer too large");
whichlist = signal_freelist + logn;
} else whichlist = &signal_freeborrowed;
/* first try to reclaim one from the free list */
ret = *whichlist;
if (ret) *whichlist = ret->nextfree;
else {
/* LATER figure out what to do for out-of-space here! */
ret = (t_signal *)t_getbytes(sizeof *ret);
if (n) {
#ifndef VECTORALIGNMENT
ret->v = (t_sample *)getbytes(vecsize * sizeof (*ret->v));
#else
/* T.Grill - make signal vectors aligned! */
ret->v = (t_sample *)getalignedbytes(vecsize * sizeof (*ret->v));
#endif
ret->isborrowed = 0;
} else {
ret->v = 0;
ret->isborrowed = 1;
}
ret->nextused = signal_usedlist;
signal_usedlist = ret;
}
ret->n = n;
ret->vecsize = vecsize;
ret->sr = sr;
ret->refcount = 0;
ret->borrowedfrom = 0;
if (ugen_loud) post("new %lx: %d", ret, ret->isborrowed);
return ret;
}
static t_signal *signal_newlike(const t_signal *sig) {return signal_new(sig->n, sig->sr);}
extern "C" void signal_setborrowed(t_signal *sig, t_signal *sig2) {
if (!sig->isborrowed || sig->borrowedfrom) bug("signal_setborrowed");
if (sig == sig2) bug("signal_setborrowed 2");
sig->borrowedfrom = sig2;
sig->v = sig2->v;
sig->n = sig2->n;
sig->vecsize = sig2->vecsize;
}
int signal_compatible(t_signal *s1, t_signal *s2) {return s1->n == s2->n && s1->sr == s2->sr;}
/* ------------------ ugen ("unit generator") sorting ----------------- */
struct t_ugenbox {
struct t_siginlet *in; int nin;
struct t_sigoutlet *out; int nout;
int u_phase;
t_ugenbox *next;
t_object *obj;
int done;
};
struct t_siginlet {
int nconnect;
int ngot;
t_signal *signal;
};
struct t_sigoutconnect {
t_ugenbox *who;
int inno;
t_sigoutconnect *next;
};
struct t_sigoutlet {
int nconnect;
int nsent;
t_signal *signal;
t_sigoutconnect *connections;
};
struct t_dspcontext {
t_ugenbox *ugenlist;
t_dspcontext *parentcontext;
int ninlets;
int noutlets;
t_signal **iosigs;
float srate;
int vecsize; /* vector size, power of two */
int calcsize; /* number of elements to calculate */
char toplevel; /* true if "iosigs" is invalid. */
char reblock; /* true if we have to reblock inlets/outlets */
char switched; /* true if we're switched */
};
static int ugen_sortno = 0;
static t_dspcontext *ugen_currentcontext;
void ugen_stop() {
if (dsp_chain) {
free(dsp_chain);
dsp_chain = 0;
}
signal_cleanup();
}
void ugen_start() {
ugen_stop();
ugen_sortno++;
dsp_chain = (t_int *)getbytes(sizeof(*dsp_chain));
dsp_chain[0] = (t_int)dsp_done;
dsp_chainsize = 1;
if (ugen_currentcontext) bug("ugen_start");
}
int ugen_getsortno() {return ugen_sortno;}
#if 0
void glob_foo(void *dummy, t_symbol *s, int argc, t_atom *argv) {
int i, count;
t_signal *sig;
for (count = 0, sig = signal_usedlist; sig; count++, sig = sig->nextused) {}
post("used signals %d", count);
for (i = 0; i < MAXLOGSIG; i++) {
for (count = 0, sig = signal_freelist[i]; sig; count++, sig = sig->nextfree) {}
if (count) post("size %d: free %d", (1 << i), count);
}
for (count = 0, sig = signal_freeborrowed; sig; count++, sig = sig->nextfree) {}
post("free borrowed %d", count);
ugen_loud = argc;
}
#endif
/* start building the graph for a canvas */
extern "C" t_dspcontext *ugen_start_graph(int toplevel, t_signal **sp, int ninlets, int noutlets) {
t_dspcontext *dc = (t_dspcontext *)getbytes(sizeof(*dc));
if (ugen_loud) post("ugen_start_graph...");
dc->ugenlist = 0;
dc->toplevel = toplevel;
dc->iosigs = sp;
dc->ninlets = ninlets;
dc->noutlets = noutlets;
dc->parentcontext = ugen_currentcontext;
ugen_currentcontext = dc;
return dc;
}
/* first the canvas calls this to create all the boxes... */
extern "C" void ugen_add(t_dspcontext *dc, t_object *obj) {
t_ugenbox *x = (t_ugenbox *)getbytes(sizeof *x);
int i;
t_sigoutlet *uout;
t_siginlet *uin;
x->next = dc->ugenlist;
dc->ugenlist = x;
x->obj = obj;
x->nin = obj_nsiginlets(obj);
x->in = (t_siginlet *)getbytes(x->nin * sizeof (*x->in));
for (uin = x->in, i = x->nin; i--; uin++) uin->nconnect = 0;
x->nout = obj_nsigoutlets(obj);
x->out = (t_sigoutlet *)getbytes(x->nout * sizeof (*x->out));
for (uout = x->out, i = x->nout; i--; uout++) uout->connections = 0, uout->nconnect = 0;
}
/* and then this to make all the connections. */
extern "C" void ugen_connect(t_dspcontext *dc, t_object *x1, int outno, t_object *x2, int inno) {
t_ugenbox *u1, *u2;
int sigoutno = obj_sigoutletindex(x1, outno);
int siginno = obj_siginletindex(x2, inno);
if (ugen_loud) post("%s -> %s: %d->%d", class_getname(x1->ob_pd), class_getname(x2->ob_pd), outno, inno);
for (u1 = dc->ugenlist; u1 && u1->obj != x1; u1 = u1->next) {}
for (u2 = dc->ugenlist; u2 && u2->obj != x2; u2 = u2->next) {}
if (!u1 || !u2 || siginno < 0) {
pd_error(u1->obj, "signal outlet connect to nonsignal inlet (ignored)");
return;
}
if (sigoutno < 0 || sigoutno >= u1->nout || siginno >= u2->nin) {
bug("ugen_connect %s %s %d %d (%d %d)",
class_getname(x1->ob_pd), class_getname(x2->ob_pd), sigoutno, siginno, u1->nout, u2->nin);
}
t_sigoutlet *uout = u1->out + sigoutno;
t_siginlet * uin = u2->in + siginno;
/* add a new connection to the outlet's list */
t_sigoutconnect *oc = (t_sigoutconnect *)getbytes(sizeof *oc);
oc->next = uout->connections;
uout->connections = oc;
oc->who = u2;
oc->inno = siginno;
/* update inlet and outlet counts */
uout->nconnect++;
uin->nconnect++;
}
/* get the index of a ugenbox or -1 if it's not on the list */
static int ugen_index(t_dspcontext *dc, t_ugenbox *x) {
int ret=0;
for (t_ugenbox *u = dc->ugenlist; u; u = u->next, ret++) if (u == x) return ret;
return -1;
}
/* put a ugenbox on the chain, recursively putting any others on that this one might uncover. */
static void ugen_doit(t_dspcontext *dc, t_ugenbox *u) {
t_sigoutlet *uout;
t_siginlet *uin;
t_sigoutconnect *oc;
t_class *klass = pd_class(u->obj);
int i, n;
/* suppress creating new signals for the outputs of signal-inlets and subpatches, except in the case we're an inlet
and "blocking" is set. We don't yet know if a subcanvas will be "blocking" so there we delay new signal creation,
which will be handled by calling signal_setborrowed in the ugen_done_graph routine below. When we encounter a
subcanvas or a signal outlet, suppress freeing the input signals as they may be "borrowed" for the parent or subpatch;
same exception as above, but also if we're "switched" we have to do a copy rather than a borrow. */
int nonewsigs = klass==canvas_class || (klass==vinlet_class && ! dc->reblock );
int nofreesigs = klass==canvas_class || (klass==voutlet_class && !(dc->reblock || dc->switched));
t_signal **insig, **outsig, **sig, *s1, *s2, *s3;
t_ugenbox *u2;
if (ugen_loud) post("doit %s %d %d", class_getname(klass), nofreesigs, nonewsigs);
for (i = 0, uin = u->in; i < u->nin; i++, uin++) {
if (!uin->nconnect) {
t_sample *scalar;
s3 = signal_new(dc->vecsize, dc->srate);
/* post("%s: unconnected signal inlet set to zero", class_getname(u->obj->ob_pd)); */
if ((scalar = obj_findsignalscalar(u->obj, i))) dsp_add_scalarcopy(scalar, s3->v, s3->n);
else dsp_add_zero(s3->v, s3->n);
uin->signal = s3;
s3->refcount = 1;
}
}
insig = (t_signal **)getbytes((u->nin + u->nout) * sizeof(t_signal *));
outsig = insig + u->nin;
for (sig = insig, uin = u->in, i = u->nin; i--; sig++, uin++) {
int newrefcount;
*sig = uin->signal;
newrefcount = --(*sig)->refcount;
/* if the reference count went to zero, we free the signal now,
unless it's a subcanvas or outlet; these might keep the
signal around to send to objects connected to them. In this
case we increment the reference count; the corresponding decrement
is in sig_makereusable(). */
if (nofreesigs) (*sig)->refcount++;
else if (!newrefcount) signal_makereusable(*sig);
}
for (sig = outsig, uout = u->out, i = u->nout; i--; sig++, uout++) {
/* similarly, for outlets of subcanvases we delay creating
them; instead we create "borrowed" ones so that the refcount
is known. The subcanvas replaces the fake signal with one showing
where the output data actually is, to avoid having to copy it.
For any other object, we just allocate a new output vector;
since we've already freed the inputs the objects might get called "in place." */
*sig = uout->signal = nonewsigs ?
signal_new(0, dc->srate) :
signal_new(dc->vecsize, dc->srate);
(*sig)->refcount = uout->nconnect;
}
/* now call the DSP scheduling routine for the ugen. This routine must fill in "borrowed"
signal outputs in case it's either a subcanvas or a signal inlet. */
mess1(u->obj, gensym("dsp"), insig);
/* if any output signals aren't connected to anyone, free them now; otherwise they'll either
get freed when the reference count goes back to zero, or even later as explained above. */
for (sig = outsig, uout = u->out, i = u->nout; i--; sig++, uout++) {
if (!(*sig)->refcount) signal_makereusable(*sig);
}
if (ugen_loud) {
if (u->nin+u->nout==0) post("put %s %d", class_getname(u->obj->ob_pd), ugen_index(dc,u));
else if (u->nin+u->nout==1) post("put %s %d (%lx)", class_getname(u->obj->ob_pd), ugen_index(dc,u),sig[0]);
else if (u->nin+u->nout==2) post("put %s %d (%lx %lx)", class_getname(u->obj->ob_pd), ugen_index(dc,u),sig[0],sig[1]);
else post("put %s %d (%lx %lx %lx ...)", class_getname(u->obj->ob_pd), ugen_index(dc,u),sig[0],sig[1],sig[2]);
}
/* pass it on and trip anyone whose last inlet was filled */
for (uout = u->out, i = u->nout; i--; uout++) {
s1 = uout->signal;
for (oc = uout->connections; oc; oc = oc->next) {
u2 = oc->who;
uin = &u2->in[oc->inno];
/* if there's already someone here, sum the two */
s2 = uin->signal;
if (s2) {
s1->refcount--;
s2->refcount--;
if (!signal_compatible(s1, s2)) {pd_error(u->obj, "%s: incompatible signal inputs", class_getname(u->obj->ob_pd)); return;}
s3 = signal_newlike(s1);
dsp_add_plus(s1->v, s2->v, s3->v, s1->n);
uin->signal = s3;
s3->refcount = 1;
if (!s1->refcount) signal_makereusable(s1);
if (!s2->refcount) signal_makereusable(s2);
} else uin->signal = s1;
uin->ngot++;
if (uin->ngot < uin->nconnect) goto notyet;
if (u2->nin > 1) for (uin = u2->in, n = u2->nin; n--; uin++) if (uin->ngot < uin->nconnect) goto notyet;
ugen_doit(dc, u2);
notyet: ;
}
}
free(insig);
u->done = 1;
}
/* once the DSP graph is built, we call this routine to sort it. This routine also deletes the graph; later we might
want to leave the graph around, in case the user is editing the DSP network, to save having to recreate it all the
time. But not today. */
extern "C" void ugen_done_graph(t_dspcontext *dc) {
t_sigoutlet *uout;
t_siginlet *uin;
int i, n;
t_block *blk;
int period, frequency, phase, vecsize, calcsize;
float srate;
int reblock = 0, switched;
int downsample = 1, upsample = 1; /* IOhannes */
/* debugging printout */
if (ugen_loud) {
post("ugen_done_graph...");
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) {
post("ugen: %s", class_getname(u->obj->ob_pd));
for (uout = u->out, i = 0; i < u->nout; uout++, i++)
for (t_sigoutconnect *oc = uout->connections; oc; oc = oc->next) {
post("... out %d to %s, index %d, inlet %d", i, class_getname(oc->who->obj->ob_pd), ugen_index(dc, oc->who), oc->inno);
}
}
}
/* search for an object of class "block~" */
blk = 0;
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) {
t_pd *zz = u->obj;
if (pd_class(zz) == block_class) {
if (blk) pd_error(blk, "conflicting block~ objects in same page");
else blk = (t_block *)zz;
}
}
t_dspcontext *parent_context = dc->parentcontext;
float parent_srate = parent_context ? parent_context->srate : sys_getsr();
int parent_vecsize = parent_context ? parent_context->vecsize : sys_getblksize();
if (blk) {
int realoverlap;
vecsize = blk->vecsize; if (!vecsize) vecsize = parent_vecsize;
calcsize = blk->calcsize;if (!calcsize) calcsize = vecsize;
realoverlap = blk->overlap; if (realoverlap > vecsize) realoverlap = vecsize;
/* IOhannes { */
downsample = blk->downsample;
upsample = blk->upsample;
if (downsample > parent_vecsize) downsample=parent_vecsize;
period = (vecsize * downsample) / (parent_vecsize * realoverlap * upsample);
frequency = (parent_vecsize * realoverlap * upsample) / (vecsize * downsample);
/* } IOhannes*/
phase = blk->phase;
srate = parent_srate * realoverlap * upsample / downsample;
/* IOhannes */
if (period < 1) period = 1;
if (frequency < 1) frequency = 1;
blk->frequency = frequency;
blk->period = period;
blk->phase = dsp_phase & (period - 1);
if (!parent_context || realoverlap!=1 || vecsize!=parent_vecsize || downsample!=1 || upsample!=1) /* IOhannes */
reblock = 1;
switched = blk->switched;
} else {
srate = parent_srate;
vecsize = parent_vecsize;
calcsize = parent_context ? parent_context->calcsize : vecsize;
downsample = upsample = 1;/* IOhannes */
period = frequency = 1;
phase = 0;
if (!parent_context) reblock = 1;
switched = 0;
}
dc->reblock = reblock;
dc->switched = switched;
dc->srate = srate;
dc->vecsize = vecsize;
dc->calcsize = calcsize;
/* if we're reblocking or switched, we now have to create output signals to fill in for the "borrowed" ones we
have now. This is also possibly true even if we're not blocked/switched, in the case that there was a
signal loop. But we don't know this yet. */
if (dc->iosigs && (switched || reblock)) {
t_signal **sigp;
for (i = 0, sigp = dc->iosigs + dc->ninlets; i < dc->noutlets; i++, sigp++) {
if ((*sigp)->isborrowed && !(*sigp)->borrowedfrom) {
signal_setborrowed(*sigp, signal_new(parent_vecsize, parent_srate));
(*sigp)->refcount++;
if (ugen_loud) post("set %lx->%lx", *sigp, (*sigp)->borrowedfrom);
}
}
}
if (ugen_loud) post("reblock %d, switched %d", reblock, switched);
/* schedule prologs for inlets and outlets. If the "reblock" flag is set, an inlet will put code on the DSP chain
to copy its input into an internal buffer here, before any unit generators' DSP code gets scheduled. If we don't
"reblock", inlets will need to get pointers to their corresponding inlets/outlets on the box we're inside,
if any. Outlets will also need pointers, unless we're switched, in which case outlet epilog code will kick in. */
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) {
t_pd *zz = u->obj;
t_signal **outsigs = dc->iosigs;
if (outsigs) outsigs += dc->ninlets;
if (pd_class(zz) == vinlet_class)
vinlet_dspprolog((t_vinlet *)zz, dc->iosigs, vecsize, calcsize, dsp_phase, period, frequency,
downsample, upsample, reblock, switched);
else if (pd_class(zz) == voutlet_class)
voutlet_dspprolog((t_voutlet *)zz, outsigs, vecsize, calcsize, dsp_phase, period, frequency,
downsample, upsample, reblock, switched);
}
int chainblockbegin = dsp_chainsize; /* DSP chain onset before block prolog code */
if (blk && (reblock || switched)) { /* add the block DSP prolog */
dsp_add(block_prolog, 1, blk);
blk->chainonset = dsp_chainsize - 1;
}
/* Initialize for sorting */
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) {
u->done = 0;
for (uout = u->out, i = u->nout; i--; uout++) uout->nsent = 0;
for (uin = u->in, i = u->nin; i--; uin++) uin->ngot = 0, uin->signal = 0;
}
/* Do the sort */
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) {
/* check that we have no connected signal inlets */
if (u->done) continue;
for (uin = u->in, i = u->nin; i--; uin++)
if (uin->nconnect) goto next;
ugen_doit(dc, u);
next: ;
}
/* check for a DSP loop, which is evidenced here by the presence of ugens not yet scheduled. */
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) if (!u->done) {
t_signal **sigp;
pd_error(u->obj, "DSP loop detected (some tilde objects not scheduled)");
/* this might imply that we have unfilled "borrowed" outputs which we'd better fill in now. */
for (i = 0, sigp = dc->iosigs + dc->ninlets; i < dc->noutlets; i++, sigp++) {
if ((*sigp)->isborrowed && !(*sigp)->borrowedfrom) {
t_signal *s3 = signal_new(parent_vecsize, parent_srate);
signal_setborrowed(*sigp, s3);
(*sigp)->refcount++;
dsp_add_zero(s3->v, s3->n);
if (ugen_loud) post("oops, belatedly set %lx->%lx", *sigp, (*sigp)->borrowedfrom);
}
}
break; /* don't need to keep looking. */
}
/* add block DSP epilog */
if (blk && (reblock || switched)) dsp_add(block_epilog, 1, blk);
int chainblockend = dsp_chainsize; /* and after block epilog code */
/* add epilogs for outlets. */
for (t_ugenbox *u = dc->ugenlist; u; u = u->next) {
t_pd *zz = u->obj;
if (pd_class(zz) == voutlet_class) {
t_signal **iosigs = dc->iosigs;
if (iosigs) iosigs += dc->ninlets;
voutlet_dspepilog((t_voutlet *)zz, iosigs, vecsize, calcsize, dsp_phase, period, frequency,
downsample, upsample, reblock, switched);
}
}
int chainafterall = dsp_chainsize; /* and after signal outlet epilog */
if (blk) {
blk->blocklength = chainblockend - chainblockbegin;
blk->epiloglength = chainafterall - chainblockend;
blk->reblock = reblock;
}
if (ugen_loud) {
t_int *ip;
if (!dc->parentcontext) for (i=dsp_chainsize, ip=dsp_chain; i--; ip++) post("chain %lx", *ip);
post("... ugen_done_graph done.");
}
/* now delete everything. */
while (dc->ugenlist) {
for (uout = dc->ugenlist->out, n = dc->ugenlist->nout; n--; uout++) {
t_sigoutconnect *oc = uout->connections, *oc2;
while (oc) {
oc2 = oc->next;
free(oc);
oc = oc2;
}
}
free(dc->ugenlist->out);
free(dc->ugenlist->in);
t_ugenbox *u = dc->ugenlist;
dc->ugenlist = u->next;
free(u);
}
if (ugen_currentcontext == dc) ugen_currentcontext = dc->parentcontext; else bug("ugen_currentcontext");
free(dc);
}
t_signal *ugen_getiosig(int index, int inout) {
if (!ugen_currentcontext) bug("ugen_getiosig");
if (ugen_currentcontext->toplevel) return 0;
if (inout) index += ugen_currentcontext->ninlets;
return ugen_currentcontext->iosigs[index];
}
/* resampling code originally by Johannes Zmölnig in 2001 */
/* also "block-resampling" added by Johannes in 2004.09 */
/* --------------------- up/down-sampling --------------------- */
/* LATER: add some downsampling-filters for HOLD and LINEAR */
/* up: upsampling factor */
/* down: downsampling factor */
/* parent: original vectorsize */
t_int *downsampling_perform_0(t_int *w) {
PERFORM4ARGS(t_float *,in, t_float *,out, int,down, int,parent);
int n=parent/down;
while(n--) {*out++=*in; in+=down;}
return w+5;
}
/* the downsampled vector is exactly the first part of the parent vector; the rest of the parent is just skipped
* cool for FFT-data, where you only want to process the significant (1st) part of the vector */
t_int *downsampling_perform_block(t_int *w) {
PERFORM4ARGS(t_float *,in, t_float *,out, int,down, int,parent);
int n=parent/down;
while(n--) *out++=*in++;
return w+5;
}
t_int *upsampling_perform_0(t_int *w) {
PERFORM4ARGS(t_float *,in, t_float *,out, int,up, int,parent);
int n=parent*up;
t_float *dummy = out;
while(n--) *out++=0;
n = parent;
out = dummy;
while(n--) {*out=*in++; out+=up;}
return w+5;
}
t_int *upsampling_perform_hold(t_int *w) {
PERFORM4ARGS(t_float *,in, t_float *,out, int,up, int,parent);
int i=up;
t_float *dum_out = out;
t_float *dum_in = in;
while (i--) {
int n = parent;
out = dum_out+i;
in = dum_in;
while(n--) {*out=*in++; out+=up;}
}
return w+5;
}
t_int *upsampling_perform_linear(t_int *w) {
PERFORM5ARGS(t_resample *,x, t_float *,in, t_float *,out, int,up, int,parent);
const int length = parent*up;
t_float a=*x->buffer, b=*in;
const t_float up_inv = (t_float)1.0/up;
t_float findex = 0.f;
for (int n=0; n<length; n++) {
const int index = int(findex+=up_inv);
t_float frac=findex-index;
if(frac==0.)frac=1.;
*out++ = frac * b + (1.-frac) * a;
t_float *fp=in+index;
b=*fp;
// do we still need the last sample of the previous pointer for interpolation ?
a=(index)?*(fp-1):a;
}
*x->buffer = a;
return w+6;
}
/* 1st part of the upsampled signal-vector will be the original one; 2nd part of the upsampled signal-vector is just 0
* cool for FFT-data, where you only want to process the significant (1st) part of the vector */
t_int *upsampling_perform_block(t_int *w) {
PERFORM4ARGS(t_float *,in, t_float *,out, int,up, int,parent);
int i=parent;
int n=parent*(up-1);
while (i--) *out++=*in++;
while (n--) *out++=0.f;
return w+5;
}
/* ----------------------- public -------------------------------- */
/* utils */
void resample_init(t_resample *x) {
x->method=0;
x->downsample=x->upsample=1;
x->n = x->coefsize = x->bufsize = 0;
x->v = x->coeffs = x->buffer = 0;
}
void resample_free(t_resample *x) {
if (x->n) free(x->v);
if (x->coefsize) free(x->coeffs);
if (x->bufsize) free(x->buffer);
x->n = x->coefsize = x->bufsize = 0;
x->v = x->coeffs = x->buffer = 0;
}
void resample_dsp(t_resample *x, t_sample* in, int insize, t_sample* out, int outsize, int method) {
if (insize == outsize) {bug("nothing to be done"); return;}
if (insize > outsize) { /* downsampling */
if (insize % outsize) {error("bad downsampling factor"); return;}
switch (method) {
case RESAMPLE_BLOCK: dsp_add(downsampling_perform_block, 4, in, out, insize/outsize, insize); break;
default: dsp_add(downsampling_perform_0, 4, in, out, insize/outsize, insize);
}
} else { /* upsampling */
if (outsize % insize) {error("bad upsampling factor"); return;}
switch (method) {
case RESAMPLE_HOLD: dsp_add(upsampling_perform_hold, 4, in, out, outsize/insize, insize); break;
case RESAMPLE_LINEAR:
if (x->bufsize != 1) {
free(x->buffer);
x->bufsize = 1;
x->buffer = (t_float *)t_getbytes(x->bufsize*sizeof(*x->buffer));
}
dsp_add(upsampling_perform_linear, 5, x, in, out, outsize/insize, insize);
break;
case RESAMPLE_BLOCK: dsp_add(upsampling_perform_block, 4, in, out, outsize/insize, insize); break;
default: dsp_add(upsampling_perform_0, 4, in, out, outsize/insize, insize);
}
}
}
void resamplefrom_dsp(t_resample *x, t_sample *in, int insize, int outsize, int method) {
if (insize==outsize) { free(x->v); x->n = 0; x->v = in; return;}
if (x->n != outsize) { free(x->v); x->v = (t_float *)t_getbytes(outsize * sizeof(*x->v)); x->n = outsize;}
resample_dsp(x, in, insize, x->v, x->n, method);
}
void resampleto_dsp(t_resample *x, t_sample *out, int insize, int outsize, int method) {
if (insize==outsize) {if (x->n) free(x->v); x->n = 0; x->v = out; return;}
if (x->n != insize) { free(x->v); x->v = (t_float *)t_getbytes(insize * sizeof(*x->v)); x->n = insize;}
resample_dsp(x, x->v, x->n, out, outsize, method);
}
/* ------------------------ samplerate~ -------------------------- */
static t_class *samplerate_tilde_class;
struct t_samplerate : t_object {
t_canvas *canvas;
};
extern "C" void *canvas_getblock(t_class *blockclass, t_canvas **canvasp);
static void samplerate_tilde_bang(t_samplerate *x) {
float srate = sys_getsr();
t_canvas *canvas = x->canvas;
while (canvas) {
t_block *b = (t_block *)canvas_getblock(block_class, &canvas);
if (b) srate *= float(b->upsample) / float(b->downsample);
}
outlet_float(x->ob_outlet, srate);
}
static void *samplerate_tilde_new(t_symbol *s) {
t_samplerate *x = (t_samplerate *)pd_new(samplerate_tilde_class);
outlet_new(x,&s_float);
x->canvas = canvas_getcurrent();
return x;
}
static void samplerate_tilde_setup() {
samplerate_tilde_class = class_new2("samplerate~",samplerate_tilde_new,0,sizeof(t_samplerate),0,"");
class_addbang(samplerate_tilde_class, samplerate_tilde_bang);
}
/* -------------------- setup routine -------------------------- */
void d_ugen_setup () {
block_tilde_setup();
samplerate_tilde_setup();
}
|