blob: 0f68332ae3bb8b862ab49c50d111651dc93265c1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
#N canvas 0 0 555 619 10;
#X obj 0 595 cnv 15 552 21 empty \$0-pddp.cnv.footer empty 20 12 0
14 -228856 -66577 0;
#X obj 0 0 cnv 15 552 40 empty \$0-pddp.cnv.header cos 3 12 0 18 -204280
-1 0;
#X obj 0 437 cnv 3 550 3 empty \$0-pddp.cnv.inlets inlets 8 12 0 13
-228856 -1 0;
#N canvas 39 244 494 344 META 0;
#X text 12 105 LIBRARY internal;
#X text 12 145 WEBSITE http://crca.ucsd.edu/~msp/;
#X text 12 25 LICENSE SIBSD;
#X text 12 125 AUTHOR Miller Puckette;
#X text 12 185 HELP_PATCH_AUTHORS This document was updated for Pd
version 0.35 test 28 by Dave Sabine as part of a project called pddp
proposed by Krzysztof Czaja to build comprehensive documentation for
Pd. Jonathan Wilkes revised the patch to conform to the PDDP template
for Pd version 0.42.;
#X text 12 5 KEYWORDS control trigonometry;
#X text 12 45 DESCRIPTION cosine function;
#X text 12 65 INLET_0 float;
#X text 12 85 OUTLET_0 float;
#X text 12 165 RELEASE_DATE 1997;
#X restore 500 597 pd META;
#X obj 0 502 cnv 3 550 3 empty \$0-pddp.cnv.outlets outlets 8 12 0
13 -228856 -1 0;
#X obj 0 539 cnv 3 550 3 empty \$0-pddp.cnv.argument arguments 8 12
0 13 -228856 -1 0;
#X obj 0 567 cnv 3 550 3 empty \$0-pddp.cnv.more_info more_info 8 12
0 13 -228856 -1 0;
#X text 98 543 (none);
#N canvas 46 479 428 109 Related_objects 0;
#X obj 1 1 cnv 15 425 20 empty \$0-pddp.cnv.subheading empty 3 12 0
14 -204280 -1 0;
#X obj 48 42 tan;
#X obj 75 42 atan;
#X obj 108 42 atan2;
#X obj 148 42 exp;
#X obj 176 42 log;
#X obj 203 42 abs;
#X obj 231 42 sqrt;
#X obj 266 42 pow;
#X obj 56 75 cos~;
#X obj 88 75 osc~;
#X obj 22 75 expr;
#X obj 22 42 sin;
#X text 7 1 [cos] Related Objects;
#X restore 102 598 pd Related_objects;
#X obj 78 446 cnv 17 3 45 empty \$0-pddp.cnv.let.0 0 5 9 0 16 -228856
-162280 0;
#X text 98 445 float;
#X text 98 465 list;
#X text 98 510 float;
#X obj 78 511 cnv 17 3 17 empty \$0-pddp.cnv.let.0 0 5 9 0 16 -228856
-162280 0;
#X floatatom 396 190 0 0 0 0 - - -;
#X floatatom 303 191 0 0 0 0 - - -;
#X obj 210 156 sin;
#X floatatom 87 111 0 0 0 0 - - -;
#X floatatom 210 190 0 0 0 0 - - -;
#X obj 87 151 * 6.28319;
#X obj 87 131 / 360;
#X obj 303 157 cos;
#X obj 396 156 tan;
#X text 150 151 2 x Pi;
#X floatatom 87 171 0 0 0 0 - - -;
#X text 150 171 Radian;
#X obj 87 191 s radians;
#X obj 210 130 r radians;
#X text 84 228 Trigonometry functions take input in Radians. To find
a radian \, simply divide a number by 360 (to make it a fraction of
a circle) and multiply it by 2(Pi) where Pi is equal to approximately
3.14159265.;
#X text 83 333 [tan] will produce a number which represents the tangent
of an angle.;
#X text 83 289 [sin] and [cos] will return numbers between -1 and 1:
the sine and cosine of a number repectively.;
#X obj 465 20 pddp/pddplink http://wiki.puredata.info/en/cos -text
pdpedia: cos;
#X obj 492 3 cos;
#X text 11 23 cosine function;
#X text 168 467 - a list will be truncated \, and the first element
will be used as input.;
#X obj 4 597 pddp/pddplink all_about_help_patches.pd -text Usage Guide;
#X connect 16 0 18 0;
#X connect 17 0 20 0;
#X connect 19 0 24 0;
#X connect 20 0 19 0;
#X connect 21 0 15 0;
#X connect 22 0 14 0;
#X connect 24 0 26 0;
#X connect 27 0 16 0;
#X connect 27 0 21 0;
#X connect 27 0 22 0;
|