1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/*
$Id: bitpacking.c,v 1.1 2005-10-04 02:02:13 matju Exp $
GridFlow
Copyright (c) 2001,2002,2003,2004 by Mathieu Bouchard
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
See file ../COPYING for further informations on licensing terms.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "grid.h.fcs"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define CONVERT1 t = \
(((in[0] << hb[0]) >> 7) & mask[0]) | \
(((in[1] << hb[1]) >> 7) & mask[1]) | \
(((in[2] << hb[2]) >> 7) & mask[2])
#define CONVERT2 \
for (t=0,i=0; i<self->size; i++) t |= (((in[i] << hb[i]) >> 7) & mask[i]);
#define CONVERT3 \
for (t=0,i=0; i<self->size; i++) { \
t |= ((in[i]>>(7-hb[i]))|(in[i]<<(hb[i]-7))) & mask[i]; \
}
#define WRITE_LE \
for (int bytes = self->bytes; bytes; bytes--, t>>=8) *out++ = t;
#define WRITE_BE { int bytes; \
bytes = self->bytes; \
while (bytes--) { out[bytes] = t; t>>=8; }\
out += self->bytes; }
/* this macro would be faster if the _increment_
was done only once every loop. or maybe gcc does it, i dunno */
#define NTIMES(_x_) \
for (; n>=4; n-=4) { _x_ _x_ _x_ _x_ } \
for (; n; n--) { _x_ }
/* this could be faster (use asm) */
void swap32 (int n, Pt<uint32> data) {
NTIMES({
uint32 x = *data;
x = (x<<16) | (x>>16);
x = ((x&0xff00ff)<<8) | ((x>>8)&0xff00ff);
*data++ = x;
})
}
/* this could be faster (use asm or do it in int32 chunks) */
void swap16 (int n, Pt<uint16> data) {
NTIMES({ uint16 x = *data; *data++ = (x<<8) | (x>>8); })
}
/* **************************************************************** */
template <class T>
static void default_pack(BitPacking *self, int n, Pt<T> in, Pt<uint8> out) {
uint32 t;
int i;
int hb[4];
uint32 mask[4];
int sameorder = self->endian==2 || self->endian==::is_le();
int size = self->size;
for (i=0; i<self->size; i++) hb[i] = highest_bit(self->mask[i]);
memcpy(mask,self->mask,size*sizeof(uint32));
if (sameorder && size==3) {
switch(self->bytes) {
case 2: NTIMES(t=CONVERT1; *((int16 *)out)=t; out+=2; in+=3;) return;
case 4: NTIMES(t=CONVERT1; *((int32 *)out)=t; out+=4; in+=3;) return;
}
}
if (self->is_le()) {
switch (size) {
case 3: for (; n--; in+=3) {CONVERT1; WRITE_LE;} break;
case 4: for (; n--; in+=4) {CONVERT3; WRITE_LE;} break;
default:for (; n--; in+=size) {CONVERT2; WRITE_LE;}}
} else {
switch (size) {
case 3: for (; n--; in+=3) {CONVERT1; WRITE_BE;} break;
case 4: for (; n--; in+=4) {CONVERT3; WRITE_BE;} break;
default:for (; n--; in+=size) {CONVERT2; WRITE_BE;}}
}
}
#define LOOP_UNPACK(_reader_) \
for (; n; n--) { \
int bytes=0; uint32 temp=0; _reader_; \
for (int i=0; i<self->size; i++, out++) { \
uint32 t=temp&self->mask[i]; \
*out = (t<<(7-hb[i]))|(t>>(hb[i]-7)); \
} \
}
// *out++ = ((temp & self->mask[i]) << 7) >> hb[i];
template <class T>
static void default_unpack(BitPacking *self, int n, Pt<uint8> in, Pt<T> out) {
int hb[4];
for (int i=0; i<self->size; i++) hb[i] = highest_bit(self->mask[i]);
if (is_le()) { // smallest byte first
LOOP_UNPACK(
for(; self->bytes>bytes; bytes++, in++) temp |= *in<<(8*bytes);
)
} else { // biggest byte first
LOOP_UNPACK(
bytes=self->bytes; for (; bytes; bytes--, in++) temp=(temp<<8)|*in;
)
}
}
/* **************************************************************** */
template <class T>
static void pack2_565(BitPacking *self, int n, Pt<T> in, Pt<uint8> out) {
const int hb[3] = {15,10,4};
const uint32 mask[3] = {0x0000f800,0x000007e0,0x0000001f};
uint32 t;
NTIMES( t=CONVERT1; *((short *)out)=t; out+=2; in+=3; )
}
template <class T>
static void pack3_888(BitPacking *self, int n, Pt<T> in, Pt<uint8> out) {
Pt<int32> o32 = (Pt<int32>)out;
while (n>=4) {
o32[0] = (in[5]<<24) | (in[ 0]<<16) | (in[ 1]<<8) | in[2];
o32[1] = (in[7]<<24) | (in[ 8]<<16) | (in[ 3]<<8) | in[4];
o32[2] = (in[9]<<24) | (in[10]<<16) | (in[11]<<8) | in[6];
o32+=3; in+=12;
n-=4;
}
out = (Pt<uint8>)o32;
NTIMES( out[2]=in[0]; out[1]=in[1]; out[0]=in[2]; out+=3; in+=3; )
}
/*
template <>
static void pack3_888(BitPacking *self, int n, Pt<uint8> in, Pt<uint8> out) {
Pt<uint32> o32 = Pt<uint32>((uint32 *)out.p,n*3/4);
Pt<uint32> i32 = Pt<uint32>((uint32 *)in.p,n*3/4);
while (n>=4) {
#define Z(w,i) ((word##w>>(i*8))&255)
uint32 word0 = i32[0];
uint32 word1 = i32[1];
uint32 word2 = i32[2];
o32[0] = (Z(1,1)<<24) | (Z(0,0)<<16) | (Z(0,1)<<8) | Z(0,2);
o32[1] = (Z(1,3)<<24) | (Z(2,0)<<16) | (Z(0,3)<<8) | Z(1,0);
o32[2] = (Z(2,1)<<24) | (Z(2,2)<<16) | (Z(2,3)<<8) | Z(1,2);
o32+=3; i32+=3;
n-=4;
}
#undef Z
out = (Pt<uint8>)o32;
in = (Pt<uint8>)i32;
NTIMES( out[2]=in[0]; out[1]=in[1]; out[0]=in[2]; out+=3; in+=3; )
}
*/
template <class T>
static void pack3_888b(BitPacking *self, int n, Pt<T> in, Pt<uint8> out) {
Pt<int32> o32 = (Pt<int32>)out;
while (n>=4) {
o32[0] = (in[0]<<16) | (in[1]<<8) | in[2];
o32[1] = (in[3]<<16) | (in[4]<<8) | in[5];
o32[2] = (in[6]<<16) | (in[7]<<8) | in[8];
o32[3] = (in[9]<<16) | (in[10]<<8) | in[11];
o32+=4; in+=12;
n-=4;
}
NTIMES( o32[0] = (in[0]<<16) | (in[1]<<8) | in[2]; o32++; in+=3; )
}
/* (R,G,B,?) -> B:8,G:8,R:8,0:8 */
template <class T>
static void pack3_bgrn8888(BitPacking *self, int n, Pt<T> in, Pt<uint8> out) {
/* NTIMES( out[2]=in[0]; out[1]=in[1]; out[0]=in[2]; out+=4; in+=4; ) */
Pt<int32> i32 = (Pt<int32>)in;
Pt<int32> o32 = (Pt<int32>)out;
while (n>=4) {
o32[0] = ((i32[0]&0xff)<<16) | (i32[0]&0xff00) | ((i32[0]>>16)&0xff);
o32[1] = ((i32[1]&0xff)<<16) | (i32[1]&0xff00) | ((i32[1]>>16)&0xff);
o32[2] = ((i32[2]&0xff)<<16) | (i32[2]&0xff00) | ((i32[2]>>16)&0xff);
o32[3] = ((i32[3]&0xff)<<16) | (i32[3]&0xff00) | ((i32[3]>>16)&0xff);
o32+=4; i32+=4; n-=4;
}
NTIMES( o32[0] = ((i32[0]&0xff)<<16) | (i32[0]&0xff00) | ((i32[0]>>16)&0xff); o32++; i32++; )
}
static uint32 bp_masks[][4] = {
{0x0000f800,0x000007e0,0x0000001f,0},
{0x00ff0000,0x0000ff00,0x000000ff,0},
};
static Packer bp_packers[] = {
{default_pack, default_pack, default_pack},
{pack2_565, pack2_565, pack2_565},
{pack3_888, pack3_888, pack3_888},
{pack3_888b, default_pack, default_pack},
{pack3_bgrn8888, default_pack, default_pack},
};
static Unpacker bp_unpackers[] = {
{default_unpack, default_unpack, default_unpack},
};
static BitPacking builtin_bitpackers[] = {
BitPacking(2, 2, 3, bp_masks[0], &bp_packers[1], &bp_unpackers[0]),
BitPacking(1, 3, 3, bp_masks[1], &bp_packers[2], &bp_unpackers[0]),
BitPacking(1, 4, 3, bp_masks[1], &bp_packers[3], &bp_unpackers[0]),
BitPacking(1, 4, 4, bp_masks[1], &bp_packers[4], &bp_unpackers[0]),
};
/* **************************************************************** */
bool BitPacking::eq(BitPacking *o) {
if (!(bytes == o->bytes)) return false;
if (!(size == o->size)) return false;
for (int i=0; i<size; i++) {
if (!(mask[i] == o->mask[i])) return false;
}
if (endian==o->endian) return true;
/* same==little on a little-endian; same==big on a big-endian */
return (endian ^ o->endian ^ ::is_le()) == 2;
}
BitPacking::BitPacking(int endian, int bytes, int size, uint32 *mask,
Packer *packer, Unpacker *unpacker) {
this->endian = endian;
this->bytes = bytes;
this->size = size;
for (int i=0; i<size; i++) this->mask[i] = mask[i];
if (packer) {
this->packer = packer;
this->unpacker = unpacker;
return;
}
int packeri=-1;
this->packer = &bp_packers[0];
this->unpacker = &bp_unpackers[0];
for (int i=0; i<(int)(sizeof(builtin_bitpackers)/sizeof(BitPacking)); i++) {
BitPacking *bp = &builtin_bitpackers[i];
if (this->eq(bp)) {
this->packer = bp->packer;
this->unpacker = bp->unpacker;
packeri=i;
goto end;
}
}
end:;
/*
::gfpost("Bitpacking: endian=%d bytes=%d size=%d packeri=%d",
endian, bytes, size, packeri);
::gfpost(" packer=0x%08x unpacker=0x%08x",this->packer,this->unpacker);
::gfpost(" mask=[0x%08x,0x%08x,0x%08x,0x%08x]",mask[0],mask[1],mask[2],mask[3]);
*/
}
bool BitPacking::is_le() {
return endian==1 || (endian ^ ::is_le())==3;
}
template <class T>
void BitPacking::pack(int n, Pt<T> in, Pt<uint8> out) {
switch (NumberTypeE_type_of(*in)) {
case uint8_e: packer->as_uint8(this,n,(Pt<uint8>)in,out); break;
case int16_e: packer->as_int16(this,n,(Pt<int16>)in,out); break;
case int32_e: packer->as_int32(this,n,(Pt<int32>)in,out); break;
default: RAISE("argh");
}
}
template <class T>
void BitPacking::unpack(int n, Pt<uint8> in, Pt<T> out) {
switch (NumberTypeE_type_of(*out)) {
case uint8_e: unpacker->as_uint8(this,n,in,(Pt<uint8>)out); break;
case int16_e: unpacker->as_int16(this,n,in,(Pt<int16>)out); break;
case int32_e: unpacker->as_int32(this,n,in,(Pt<int32>)out); break;
default: RAISE("argh");
}
}
// i'm sorry... see the end of grid.c for an explanation...
//static
void make_hocus_pocus () {
// exit(1);
#define FOO(S) \
((BitPacking*)0)->pack(0,Pt<S>(),Pt<uint8>()); \
((BitPacking*)0)->unpack(0,Pt<uint8>(),Pt<S>());
EACH_NUMBER_TYPE(FOO)
#undef FOO
}
|