1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
|
/*
$Id: flow_objects.c,v 1.1 2005-10-04 02:02:13 matju Exp $
GridFlow
Copyright (c) 2001,2002,2003,2004 by Mathieu Bouchard
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
See file ../COPYING for further informations on licensing terms.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <sys/time.h>
#include <stdlib.h>
#include <math.h>
#include "grid.h.fcs"
// BAD HACK: GCC complains: unimplemented (--debug|--debug-harder mode only)
#ifdef HAVE_DEBUG
#define SCOPY(a,b,n) COPY(a,b,n)
#else
#define SCOPY(a,b,n) SCopy<n>::f(a,b)
#endif
template <int n> class SCopy {
public: template <class T> static inline void __attribute__((always_inline)) f(Pt<T> a, Pt<T> b) {
*a=*b; SCopy<n-1>::f(a+1,b+1);}};
template <> class SCopy<0> {
public: template <class T> static inline void __attribute__((always_inline)) f(Pt<T> a, Pt<T> b) {}};
/*template <> class SCopy<4> {
public: template <class T>
static inline void __attribute__((always_inline)) f(Pt<T> a, Pt<T> b) {
*a=*b; SCopy<3>::f(a+1,b+1);}
// wouldn't gcc 2.95 complain here?
static inline void __attribute__((always_inline)) f(Pt<uint8> a, Pt<uint8> b)
{ *(int32 *)a=*(int32 *)b; }
};*/
Numop *op_add, *op_sub, *op_mul, *op_div, *op_mod, *op_shl, *op_and, *op_put;
static void expect_dim_dim_list (P<Dim> d) {
if (d->n!=1) RAISE("dimension list should be Dim[n], not %s",d->to_s());}
//static void expect_min_one_dim (P<Dim> d) {
// if (d->n<1) RAISE("minimum 1 dimension");}
static void expect_max_one_dim (P<Dim> d) {
if (d->n>1) { RAISE("expecting Dim[] or Dim[n], got %s",d->to_s()); }}
//static void expect_exactly_one_dim (P<Dim> d) {
// if (d->n!=1) { RAISE("expecting Dim[n], got %s",d->to_s()); }}
//****************************************************************
\class GridCast < GridObject
struct GridCast : GridObject {
\attr NumberTypeE nt;
\decl void initialize (NumberTypeE nt);
\grin 0
};
GRID_INLET(GridCast,0) {
out = new GridOutlet(this,0,in->dim,nt);
} GRID_FLOW {
out->send(n,data);
} GRID_END
\def void initialize (NumberTypeE nt) {
rb_call_super(argc,argv);
this->nt = nt;
}
\classinfo { IEVAL(rself,"install '#cast',1,1"); }
\end class GridCast
//****************************************************************
//{ ?,Dim[B] -> Dim[*Cs] }
// out0 nt to be specified explicitly
\class GridImport < GridObject
struct GridImport : GridObject {
\attr NumberTypeE cast;
\attr P<Dim> dim; // size of grids to send
PtrGrid dim_grid;
GridImport() { dim_grid.constrain(expect_dim_dim_list); }
~GridImport() {}
\decl void initialize(Ruby x, NumberTypeE cast=int32_e);
\decl void _0_cast(NumberTypeE cast);
\decl void _0_reset();
\decl void _0_symbol(Symbol x);
\decl void _0_list(...);
\decl void _1_per_message();
\grin 0
\grin 1 int32
template <class T> void process (int n, Pt<T> data) {
while (n) {
if (!out || !out->dim) out = new GridOutlet(this,0,dim?dim:in[0]->dim,cast);
int32 n2 = min((int32)n,out->dim->prod()-out->dex);
out->send(n2,data);
n-=n2; data+=n2;
}
}
};
GRID_INLET(GridImport,0) {} GRID_FLOW { process(n,data); } GRID_END
GRID_INPUT(GridImport,1,dim_grid) { dim = dim_grid->to_dim(); } GRID_END
\def void _0_symbol(Symbol x) {
const char *name = rb_sym_name(argv[0]);
int n = strlen(name);
if (!dim) out=new GridOutlet(this,0,new Dim(n));
process(n,Pt<uint8>((uint8 *)name,n));
}
\def void _0_cast(NumberTypeE cast) { this->cast = cast; }
\def void _0_list(...) {
if (in.size()<1 || !in[0]) _0_grid(0,0); //HACK: enable grid inlet...
in[0]->from_ruby_list(argc,argv,cast);
}
\def void _1_per_message() { dim=0; dim_grid=0; }
\def void initialize(Ruby x, NumberTypeE cast) {
rb_call_super(argc,argv);
this->cast = cast;
if (argv[0]!=SYM(per_message)) {
dim_grid=new Grid(argv[0]);
dim = dim_grid->to_dim();
}
}
\def void _0_reset() {
STACK_ARRAY(int32,foo,1); *foo=0;
while (out->dim) out->send(1,foo);
}
\classinfo { IEVAL(rself,"install '#import',2,1"); }
\end class GridImport
//****************************************************************
/*{ Dim[*As] -> ? }*/
/* in0: integer nt */
\class GridExport < GridObject
struct GridExport : GridObject {
\grin 0
};
template <class T>
static Ruby INTORFLOAT2NUM(T value) {return INT2NUM(value);}
static Ruby INTORFLOAT2NUM(int64 value) {return gf_ll2num(value);}
static Ruby INTORFLOAT2NUM(float32 value) {return rb_float_new(value);}
static Ruby INTORFLOAT2NUM(float64 value) {return rb_float_new(value);}
GRID_INLET(GridExport,0) {
} GRID_FLOW {
for (int i=0; i<n; i++) {
Ruby a[] = { INT2NUM(0), INTORFLOAT2NUM(data[i]) };
send_out(COUNT(a),a);
}
} GRID_END
\classinfo { IEVAL(rself,"install '#export',1,1"); }
\end class GridExport
/* **************************************************************** */
/*{ Dim[*As] -> ? }*/
/* in0: integer nt */
\class GridExportList < GridObject
struct GridExportList : GridObject {
Ruby /*Array*/ list;
int n;
\grin 0
};
GRID_INLET(GridExportList,0) {
int n = in->dim->prod();
if (n>250000) RAISE("list too big (%d elements)", n);
list = rb_ary_new2(n+2);
this->n = n;
rb_ivar_set(rself,SI(@list),list); // keep
rb_ary_store(list,0,INT2NUM(0));
rb_ary_store(list,1,bsym._list);
} GRID_FLOW {
for (int i=0; i<n; i++, data++)
rb_ary_store(list,in->dex+i+2,INTORFLOAT2NUM(*data));
} GRID_FINISH {
send_out(rb_ary_len(list),rb_ary_ptr(list));
list = 0;
rb_ivar_set(rself,SI(@list),Qnil); // unkeep
} GRID_END
\classinfo { IEVAL(rself,"install '#export_list',1,1"); }
\end class GridExportList
/* **************************************************************** */
// GridStore ("@store") is the class for storing a grid and restituting
// it on demand. The right inlet receives the grid. The left inlet receives
// either a bang (which forwards the whole image) or a grid describing what
// to send.
//{ Dim[*As,B],Dim[*Cs,*Ds] -> Dim[*As,*Ds] }
// in0: integer nt
// in1: whatever nt
// out0: same nt as in1
\class GridStore < GridObject
struct GridStore : GridObject {
PtrGrid r; // can't be \attr
PtrGrid put_at; // can't be //\attr
\attr Numop *op;
int32 wdex [Dim::MAX_DIMENSIONS]; // temporary buffer, copy of put_at
int32 fromb[Dim::MAX_DIMENSIONS];
int32 to2 [Dim::MAX_DIMENSIONS];
int lsd; // lsd = Last Same Dimension (for put_at)
int d; // goes with wdex
\decl void initialize (Grid *r=0);
\decl void _0_bang ();
\decl void _0_op (Numop *op);
\decl void _1_reassign ();
\decl void _1_put_at (Grid *index);
\grin 0 int
\grin 1
GridStore() { put_at.constrain(expect_max_one_dim); }
template <class T> void compute_indices(Pt<T> v, int nc, int nd);
};
// takes the backstore of a grid and puts it back into place. a backstore
// is a grid that is filled while the grid it would replace has not
// finished being used.
static void snap_backstore (PtrGrid &r) {
if (r.next) {r=r.next.p; r.next=0;}
}
template <class T> void GridStore::compute_indices(Pt<T> v, int nc, int nd) {
for (int i=0; i<nc; i++) {
uint32 wrap = r->dim->v[i];
bool fast = lowest_bit(wrap)==highest_bit(wrap); // is power of two?
if (i) {
if (fast) op_shl->map(nd,v,(T)highest_bit(wrap));
else op_mul->map(nd,v,(T)wrap);
}
if (fast) op_and->map(nd,v+nd*i,(T)(wrap-1));
else op_mod->map(nd,v+nd*i,(T)(wrap));
if (i) op_add->zip(nd,v,v+nd*i);
}
}
// !@#$ i should ensure that n is not exceedingly large
// !@#$ worse: the size of the foo buffer may still be too large
GRID_INLET(GridStore,0) {
// snap_backstore must be done before *anything* else
snap_backstore(r);
int na = in->dim->n;
int nb = r->dim->n;
int nc = in->dim->get(na-1);
STACK_ARRAY(int32,v,Dim::MAX_DIMENSIONS);
if (na<1) RAISE("must have at least 1 dimension.",na,1,1+nb);
int lastindexable = r->dim->prod()/r->dim->prod(nc) - 1;
int ngreatest = nt_greatest((T *)0);
if (lastindexable > ngreatest) {
RAISE("lastindexable=%d > ngreatest=%d (ask matju)",lastindexable,ngreatest);
}
if (nc > nb)
RAISE("wrong number of elements in last dimension: "
"got %d, expecting <= %d", nc, nb);
int nd = nb - nc + na - 1;
COPY(v,in->dim->v,na-1);
COPY(v+na-1,r->dim->v+nc,nb-nc);
out=new GridOutlet(this,0,new Dim(nd,v),r->nt);
if (nc>0) in->set_factor(nc);
} GRID_FLOW {
int na = in->dim->n;
int nc = in->dim->get(na-1);
int size = r->dim->prod(nc);
assert((n % nc) == 0);
int nd = n/nc;
STACK_ARRAY(T,w,n);
Pt<T> v=w;
if (sizeof(T)==1 && nc==1 && r->dim->v[0]<=256) {
// bug? shouldn't modulo be done here?
v=data;
} else {
COPY(v,data,n);
for (int k=0,i=0; i<nc; i++) for (int j=0; j<n; j+=nc) v[k++] = data[i+j];
compute_indices(v,nc,nd);
}
#define FOO(type) { \
Pt<type> p = (Pt<type>)*r; \
if (size<=16) { \
Pt<type> foo = ARRAY_NEW(type,nd*size); \
int i=0; \
switch (size) { \
case 1: for (; i<nd&-4; i+=4, foo+=4) { \
foo[0] = p[v[i+0]]; \
foo[1] = p[v[i+1]]; \
foo[2] = p[v[i+2]]; \
foo[3] = p[v[i+3]]; \
} break; \
case 2: for (; i<nd; i++, foo+=2) SCOPY(foo,p+2*v[i],2); break; \
case 3: for (; i<nd; i++, foo+=3) SCOPY(foo,p+3*v[i],3); break; \
case 4: for (; i<nd; i++, foo+=4) SCOPY(foo,p+4*v[i],4); break; \
default:; }; \
for (; i<nd; i++, foo+=size) COPY(foo,p+size*v[i],size); \
out->give(size*nd,foo-size*nd); \
} else { \
for (int i=0; i<nd; i++) out->send(size,p+size*v[i]); \
} \
}
TYPESWITCH(r->nt,FOO,)
#undef FOO
} GRID_FINISH {
if (in->dim->prod()==0) {
int n = in->dim->prod(0,-2);
int size = r->dim->prod();
#define FOO(T) while (n--) out->send(size,(Pt<T>)*r);
TYPESWITCH(r->nt,FOO,)
#undef FOO
}
} GRID_END
GRID_INLET(GridStore,1) {
NumberTypeE nt = NumberTypeE_type_of(*data);
if (!put_at) { // reassign
if (in[0].dim)
r.next = new Grid(in->dim,nt);
else
r = new Grid(in->dim,nt);
return;
}
// put_at ( ... )
//!@#$ should check types. if (r->nt!=in->nt) RAISE("shoo");
int nn=r->dim->n, na=put_at->dim->v[0], nb=in->dim->n;
STACK_ARRAY(int32,sizeb,nn);
for (int i=0; i<nn; i++) { fromb[i]=0; sizeb[i]=1; }
COPY(Pt<int32>(wdex,nn) ,(Pt<int32>)*put_at ,put_at->dim->prod());
COPY(Pt<int32>(fromb,nn)+nn-na,(Pt<int32>)*put_at ,na);
COPY(Pt<int32>(sizeb,nn)+nn-nb,(Pt<int32>)in->dim->v,nb);
for (int i=0; i<nn; i++) to2[i] = fromb[i]+sizeb[i];
d=0;
// find out when we can skip computing indices
//!@#$ should actually also stop before blowing up packet size
lsd=nn;
while (lsd>=nn-in->dim->n) {
lsd--;
int cs = in->dim->prod(lsd-nn+in->dim->n);
if (cs>GridOutlet::MAX_PACKET_SIZE || fromb[lsd]!=0 || sizeb[lsd]!=r->dim->v[lsd]) break;
}
lsd++;
int cs = in->dim->prod(lsd-nn+in->dim->n);
in->set_factor(cs);
} GRID_FLOW {
if (!put_at) { // reassign
COPY(((Pt<T>)*(r.next ? r.next.p : &*r.p))+in->dex, data, n);
return;
}
// put_at ( ... )
int nn=r->dim->n;
int cs = in->factor(); // chunksize
STACK_ARRAY(int32,v,lsd);
Pt<int32> x = Pt<int32>(wdex,nn);
while (n) {
// here d is the dim# to reset; d=n for none
for(;d<lsd;d++) x[d]=fromb[d];
COPY(v,x,lsd);
compute_indices(v,lsd,1);
op->zip(cs,(Pt<T>)*r+v[0]*cs,data);
data+=cs;
n-=cs;
// find next set of indices; here d is the dim# to increment
for(;;) {
d--;
if (d<0) goto end;
x[d]++;
if (x[d]<to2[d]) break;
}
end:; // why here ??? or why at all?
d++;
}
//end:; // why not here ???
} GRID_END
\def void _0_op(Numop *op) { this->op=op; }
\def void _0_bang () { rb_funcall(rself,SI(_0_list),3,INT2NUM(0),SYM(#),INT2NUM(0)); }
\def void _1_reassign () { put_at=0; }
\def void _1_put_at (Grid *index) { put_at=index; }
\def void initialize (Grid *r) {
rb_call_super(argc,argv);
this->r = r?r:new Grid(new Dim(),int32_e,true);
op = op_put;
}
\classinfo { IEVAL(rself,"install '#store',2,1"); }
\end class GridStore
//****************************************************************
//{ Dim[*As]<T> -> Dim[*As]<T> } or
//{ Dim[*As]<T>,Dim[*Bs]<T> -> Dim[*As]<T> }
\class GridOp < GridObject
struct GridOp : GridObject {
\attr Numop *op;
PtrGrid r;
\decl void initialize(Numop *op, Grid *r=0);
\grin 0
\grin 1
\decl void _0_op(Numop *op);
};
GRID_INLET(GridOp,0) {
snap_backstore(r);
SAME_TYPE(in,r);
out=new GridOutlet(this,0,in->dim,in->nt);
in->set_mode(6);
} GRID_FLOW {
Pt<T> rdata = (Pt<T>)*r;
int loop = r->dim->prod();
if (sizeof(T)==8) {
fprintf(stderr,"1: data=%p rdata=%p\n",data.p,rdata.p);
WATCH(n,data);
}
if (loop>1) {
if (in->dex+n <= loop) {
op->zip(n,data,rdata+in->dex);
} else {
// !@#$ should prebuild and reuse this array when "loop" is small
STACK_ARRAY(T,data2,n);
int ii = mod(in->dex,loop);
int m = min(loop-ii,n);
COPY(data2,rdata+ii,m);
int nn = m+((n-m)/loop)*loop;
for (int i=m; i<nn; i+=loop) COPY(data2+i,rdata,loop);
if (n>nn) COPY(data2+nn,rdata,n-nn);
if (sizeof(T)==8) {
fprintf(stderr,"2: data=%p data2=%p\n",data.p,data2.p);
WATCH(n,data); WATCH(n,data2);
}
op->zip(n,data,data2);
if (sizeof(T)==8) {WATCH(n,data); WATCH(n,data2);}
}
} else {
op->map(n,data,*rdata);
}
out->give(n,data);
} GRID_END
GRID_INPUT2(GridOp,1,r) {} GRID_END
\def void _0_op(Numop *op) { this->op=op; }
\def void initialize(Numop *op, Grid *r=0) {
rb_call_super(argc,argv);
this->op=op;
this->r = r?r:new Grid(new Dim(),int32_e,true);
}
\classinfo { IEVAL(rself,"install '#',2,1"); }
\end class GridOp
//****************************************************************
\class GridFold < GridObject
struct GridFold : GridObject {
\attr Numop *op;
\attr PtrGrid seed;
\decl void initialize (Numop *op);
\decl void _0_op (Numop *op);
\decl void _0_seed (Grid *seed);
\grin 0
};
GRID_INLET(GridFold,0) {
//{ Dim[*As,B,*Cs]<T>,Dim[*Cs]<T> -> Dim[*As,*Cs]<T> }
if (seed) SAME_TYPE(in,seed);
int an = in->dim->n;
int bn = seed?seed->dim->n:0;
if (an<=bn) RAISE("minimum 1 more dimension than the seed (%d vs %d)",an,bn);
STACK_ARRAY(int32,v,an-1);
int yi = an-bn-1;
COPY(v,in->dim->v,yi);
COPY(v+yi,in->dim->v+an-bn,bn);
if (seed) SAME_DIM(an-(yi+1),in->dim,(yi+1),seed->dim,0);
out=new GridOutlet(this,0,new Dim(an-1,v),in->nt);
int k = seed ? seed->dim->prod() : 1;
in->set_factor(in->dim->get(yi)*k);
} GRID_FLOW {
int an = in->dim->n;
int bn = seed?seed->dim->n:0;
int yn = in->dim->v[an-bn-1];
int zn = in->dim->prod(an-bn);
STACK_ARRAY(T,buf,n/yn);
int nn=n;
int yzn=yn*zn;
for (int i=0; n; i+=zn, data+=yzn, n-=yzn) {
if (seed) COPY(buf+i,((Pt<T>)*seed),zn);
else CLEAR(buf+i,zn);
op->fold(zn,yn,buf+i,data);
}
out->send(nn/yn,buf);
} GRID_END
\def void _0_op (Numop *op ) { this->op =op; }
\def void _0_seed (Grid *seed) { this->seed=seed; }
\def void initialize (Numop *op) { rb_call_super(argc,argv); this->op=op; }
\classinfo { IEVAL(rself,"install '#fold',1,1"); }
\end class GridFold
\class GridScan < GridObject
struct GridScan : GridObject {
\attr Numop *op;
\attr PtrGrid seed;
\decl void initialize (Numop *op);
\decl void _0_op (Numop *op);
\decl void _0_seed (Grid *seed);
\grin 0
};
GRID_INLET(GridScan,0) {
//{ Dim[*As,B,*Cs]<T>,Dim[*Cs]<T> -> Dim[*As,B,*Cs]<T> }
if (seed) SAME_TYPE(in,seed);
int an = in->dim->n;
int bn = seed?seed->dim->n:0;
if (an<=bn) RAISE("minimum 1 more dimension than the right hand");
if (seed) SAME_DIM(bn,in->dim,an-bn,seed->dim,0);
out=new GridOutlet(this,0,in->dim,in->nt);
in->set_factor(in->dim->prod(an-bn-1));
} GRID_FLOW {
int an = in->dim->n;
int bn = seed?seed->dim->n:0;
int yn = in->dim->v[an-bn-1];
int zn = in->dim->prod(an-bn);
int factor = in->factor();
STACK_ARRAY(T,buf,n);
COPY(buf,data,n);
if (seed) {
for (int i=0; i<n; i+=factor) op->scan(zn,yn,(Pt<T>)*seed,buf+i);
} else {
STACK_ARRAY(T,seed,zn);
CLEAR(seed,zn);
for (int i=0; i<n; i+=factor) op->scan(zn,yn,seed,buf+i);
}
out->send(n,buf);
} GRID_END
\def void _0_op (Numop *op ) { this->op =op; }
\def void _0_seed (Grid *seed) { this->seed=seed; }
\def void initialize (Numop *op) { rb_call_super(argc,argv); this->op = op; }
\classinfo { IEVAL(rself,"install '#scan',1,1"); }
\end class GridScan
//****************************************************************
//{ Dim[*As,C]<T>,Dim[C,*Bs]<T> -> Dim[*As,*Bs]<T> }
\class GridInner < GridObject
struct GridInner : GridObject {
\attr Numop *op_para;
\attr Numop *op_fold;
\attr PtrGrid seed;
PtrGrid r;
PtrGrid r2;
GridInner() {}
\decl void initialize (Grid *r=0);
\decl void _0_op (Numop *op);
\decl void _0_fold (Numop *op);
\decl void _0_seed (Grid *seed);
\grin 0
\grin 1
};
template <class T> void inner_child_a (Pt<T> buf, Pt<T> data, int rrows, int rcols, int chunk) {
Pt<T> bt = buf, dt = data;
for (int j=0; j<chunk; j++, bt+=rcols, dt+=rrows) op_put->map(rcols,bt,*dt);
}
template <class T, int rcols> void inner_child_b (Pt<T> buf, Pt<T> data, int rrows, int chunk) {
Pt<T> bt = buf, dt = data;
for (int j=0; j<chunk; j++, bt+=rcols, dt+=rrows) {
for (int k=0; k<rcols; k++) bt[k] = *dt;
}
}
GRID_INLET(GridInner,0) {
SAME_TYPE(in,r);
SAME_TYPE(in,seed);
P<Dim> a = in->dim;
P<Dim> b = r->dim;
if (a->n<1) RAISE("a: minimum 1 dimension");
if (b->n<1) RAISE("b: minimum 1 dimension");
if (seed->dim->n != 0) RAISE("seed must be a scalar");
int a_last = a->get(a->n-1);
int n = a->n+b->n-2;
SAME_DIM(1,a,a->n-1,b,0);
STACK_ARRAY(int32,v,n);
COPY(v,a->v,a->n-1);
COPY(v+a->n-1,b->v+1,b->n-1);
out=new GridOutlet(this,0,new Dim(n,v),in->nt);
in->set_factor(a_last);
int rrows = in->factor();
int rsize = r->dim->prod();
int rcols = rsize/rrows;
Pt<T> rdata = (Pt<T>)*r;
int chunk = GridOutlet::MAX_PACKET_SIZE/rsize;
r2=new Grid(new Dim(chunk*rsize),r->nt);
Pt<T> buf3 = (Pt<T>)*r2;
for (int i=0; i<rrows; i++)
for (int j=0; j<chunk; j++)
COPY(buf3+(j+i*chunk)*rcols,rdata+i*rcols,rcols);
} GRID_FLOW {
int rrows = in->factor();
int rsize = r->dim->prod();
int rcols = rsize/rrows;
int chunk = GridOutlet::MAX_PACKET_SIZE/rsize;
STACK_ARRAY(T,buf ,chunk*rcols);
STACK_ARRAY(T,buf2,chunk*rcols);
int off = chunk;
while (n) {
if (chunk*rrows>n) chunk=n/rrows;
op_put->map(chunk*rcols,buf2,*(T *)*seed);
for (int i=0; i<rrows; i++) {
switch (rcols) {
case 1: inner_child_b<T,1>(buf,data+i,rrows,chunk); break;
case 2: inner_child_b<T,2>(buf,data+i,rrows,chunk); break;
case 3: inner_child_b<T,3>(buf,data+i,rrows,chunk); break;
case 4: inner_child_b<T,4>(buf,data+i,rrows,chunk); break;
default: inner_child_a(buf,data+i,rrows,rcols,chunk);
}
op_para->zip(chunk*rcols,buf,(Pt<T>)*r2+i*off*rcols);
op_fold->zip(chunk*rcols,buf2,buf);
}
out->send(chunk*rcols,buf2);
n-=chunk*rrows;
data+=chunk*rrows;
}
} GRID_FINISH {
r2=0;
} GRID_END
GRID_INPUT(GridInner,1,r) {} GRID_END
\def void initialize (Grid *r) {
rb_call_super(argc,argv);
this->op_para = op_mul;
this->op_fold = op_add;
this->seed = new Grid(new Dim(),int32_e,true);
this->r = r ? r : new Grid(new Dim(),int32_e,true);
}
\def void _0_op (Numop *op ) { this->op_para=op; }
\def void _0_fold (Numop *op ) { this->op_fold=op; }
\def void _0_seed (Grid *seed) { this->seed=seed; }
\classinfo { IEVAL(rself,"install '#inner',2,1"); }
\end class GridInner
/* **************************************************************** */
/*{ Dim[*As]<T>,Dim[*Bs]<T> -> Dim[*As,*Bs]<T> }*/
\class GridOuter < GridObject
struct GridOuter : GridObject {
\attr Numop *op;
PtrGrid r;
\decl void initialize (Numop *op, Grid *r=0);
\grin 0
\grin 1
};
GRID_INLET(GridOuter,0) {
SAME_TYPE(in,r);
P<Dim> a = in->dim;
P<Dim> b = r->dim;
int n = a->n+b->n;
STACK_ARRAY(int32,v,n);
COPY(v,a->v,a->n);
COPY(v+a->n,b->v,b->n);
out=new GridOutlet(this,0,new Dim(n,v),in->nt);
} GRID_FLOW {
int b_prod = r->dim->prod();
if (b_prod > 4) {
STACK_ARRAY(T,buf,b_prod);
while (n) {
for (int j=0; j<b_prod; j++) buf[j] = *data;
op->zip(b_prod,buf,(Pt<T>)*r);
out->send(b_prod,buf);
data++; n--;
}
return;
}
n*=b_prod;
Pt<T> buf = ARRAY_NEW(T,n);
STACK_ARRAY(T,buf2,b_prod*64);
for (int i=0; i<64; i++) COPY(buf2+i*b_prod,(Pt<T>)*r,b_prod);
switch (b_prod) {
#define Z buf[k++]=data[i]
case 1: for (int i=0,k=0; k<n; i++) {Z;} break;
case 2: for (int i=0,k=0; k<n; i++) {Z;Z;} break;
case 3: for (int i=0,k=0; k<n; i++) {Z;Z;Z;} break;
case 4: for (int i=0,k=0; k<n; i++) {Z;Z;Z;Z;} break;
default:for (int i=0,k=0; k<n; i++) for (int j=0; j<b_prod; j++, k++) Z;
}
#undef Z
int ch=64*b_prod;
int nn=(n/ch)*ch;
for (int j=0; j<nn; j+=ch) op->zip(ch,buf+j,buf2);
op->zip(n-nn,buf+nn,buf2);
out->give(n,buf);
} GRID_END
GRID_INPUT(GridOuter,1,r) {} GRID_END
\def void initialize (Numop *op, Grid *r) {
rb_call_super(argc,argv);
this->op = op;
this->r = r ? r : new Grid(new Dim(),int32_e,true);
}
\classinfo { IEVAL(rself,"install '#outer',2,1"); }
\end class GridOuter
//****************************************************************
//{ Dim[]<T>,Dim[]<T>,Dim[]<T> -> Dim[A]<T> } or
//{ Dim[B]<T>,Dim[B]<T>,Dim[B]<T> -> Dim[*As,B]<T> }
\class GridFor < GridObject
struct GridFor : GridObject {
\attr PtrGrid from;
\attr PtrGrid to;
\attr PtrGrid step;
GridFor () {
from.constrain(expect_max_one_dim);
to .constrain(expect_max_one_dim);
step.constrain(expect_max_one_dim);
}
\decl void initialize (Grid *from, Grid *to, Grid *step);
\decl void _0_set (Grid *r=0);
\decl void _0_bang ();
\grin 0 int
\grin 1 int
\grin 2 int
template <class T> void trigger (T bogus);
};
\def void initialize (Grid *from, Grid *to, Grid *step) {
rb_call_super(argc,argv);
this->from=from;
this->to =to;
this->step=step;
}
template <class T>
void GridFor::trigger (T bogus) {
int n = from->dim->prod();
int32 nn[n+1];
STACK_ARRAY(T,x,64*n);
Pt<T> fromb = (Pt<T>)*from;
Pt<T> tob = (Pt<T>)*to ;
Pt<T> stepb = (Pt<T>)*step;
STACK_ARRAY(T,to2,n);
for (int i=step->dim->prod()-1; i>=0; i--)
if (!stepb[i]) RAISE("step must not contain zeroes");
for (int i=0; i<n; i++) {
nn[i] = (tob[i] - fromb[i] + stepb[i] - cmp(stepb[i],(T)0)) / stepb[i];
if (nn[i]<0) nn[i]=0;
to2[i] = fromb[i]+stepb[i]*nn[i];
}
P<Dim> d;
if (from->dim->n==0) { d = new Dim(*nn); }
else { nn[n]=n; d = new Dim(n+1,nn); }
int total = d->prod();
out=new GridOutlet(this,0,d,from->nt);
if (total==0) return;
int k=0;
for(int d=0;;d++) {
// here d is the dim# to reset; d=n for none
for(;d<n;d++) x[k+d]=fromb[d];
k+=n;
if (k==64*n) {out->send(k,x); k=0; COPY(x,x+63*n,n);}
else { COPY(x+k,x+k-n,n);}
d--;
// here d is the dim# to increment
for(;;d--) {
if (d<0) goto end;
x[k+d]+=stepb[d];
if (x[k+d]!=to2[d]) break;
}
}
end: if (k) out->send(k,x);
}
\def void _0_bang () {
SAME_TYPE(from,to);
SAME_TYPE(from,step);
if (!from->dim->equal(to->dim) || !to->dim->equal(step->dim))
RAISE("dimension mismatch");
#define FOO(T) trigger((T)0);
TYPESWITCH_NOFLOAT(from->nt,FOO,);
#undef FOO
}
\def void _0_set (Grid *r) { from=new Grid(argv[0]); }
GRID_INPUT(GridFor,2,step) {} GRID_END
GRID_INPUT(GridFor,1,to) {} GRID_END
GRID_INPUT(GridFor,0,from) {_0_bang(0,0);} GRID_END
\classinfo { IEVAL(rself,"install '#for',3,1"); }
\end class GridFor
//****************************************************************
\class GridFinished < GridObject
struct GridFinished : GridObject {
\grin 0
};
GRID_INLET(GridFinished,0) {
in->set_mode(0);
} GRID_FINISH {
Ruby a[] = { INT2NUM(0), bsym._bang };
send_out(COUNT(a),a);
} GRID_END
\classinfo { IEVAL(rself,"install '#finished',1,1"); }
\end class GridFinished
\class GridDim < GridObject
struct GridDim : GridObject {
\grin 0
};
GRID_INLET(GridDim,0) {
GridOutlet out(this,0,new Dim(in->dim->n));
out.send(in->dim->n,Pt<int32>(in->dim->v,in->dim->n));
in->set_mode(0);
} GRID_END
\classinfo { IEVAL(rself,"install '#dim',1,1"); }
\end class GridDim
\class GridType < GridObject
struct GridType : GridObject {
\grin 0
};
GRID_INLET(GridType,0) {
Ruby a[] = { INT2NUM(0), SYM(symbol), number_type_table[in->nt].sym };
send_out(COUNT(a),a);
in->set_mode(0);
} GRID_END
\classinfo { IEVAL(rself,"install '#type',1,1"); }
\end class GridType
//****************************************************************
//{ Dim[*As]<T>,Dim[B] -> Dim[*Cs]<T> }
\class GridRedim < GridObject
struct GridRedim : GridObject {
\attr P<Dim> dim;
PtrGrid dim_grid;
PtrGrid temp; // temp->dim is not of the same shape as dim
GridRedim() { dim_grid.constrain(expect_dim_dim_list); }
~GridRedim() {}
\decl void initialize (Grid *d);
\grin 0
\grin 1 int32
};
GRID_INLET(GridRedim,0) {
int a = in->dim->prod(), b = dim->prod();
if (a<b) temp=new Grid(new Dim(a),in->nt);
out=new GridOutlet(this,0,dim,in->nt);
} GRID_FLOW {
int i = in->dex;
if (!temp) {
int b = dim->prod();
int n2 = min(n,b-i);
if (n2>0) out->send(n2,data);
// discard other values if any
} else {
int a = in->dim->prod();
int n2 = min(n,a-i);
COPY((Pt<T>)*temp+i,data,n2);
if (n2>0) out->send(n2,data);
}
} GRID_FINISH {
if (!!temp) {
int a = in->dim->prod(), b = dim->prod();
if (a) {
for (int i=a; i<b; i+=a) out->send(min(a,b-i),(Pt<T>)*temp);
} else {
STACK_ARRAY(T,foo,1);
foo[0]=0;
for (int i=0; i<b; i++) out->send(1,foo);
}
}
temp=0;
} GRID_END
GRID_INPUT(GridRedim,1,dim_grid) { dim = dim_grid->to_dim(); } GRID_END
\def void initialize (Grid *d) {
rb_call_super(argc,argv);
dim_grid=d;
dim = dim_grid->to_dim();
}
\classinfo { IEVAL(rself,"install '#redim',2,1"); }
\end class GridRedim
//****************************************************************
\class GridJoin < GridObject
struct GridJoin : GridObject {
\attr int which_dim;
PtrGrid r;
\grin 0
\grin 1
\decl void initialize (int which_dim=-1, Grid *r=0);
};
GRID_INLET(GridJoin,0) {
NOTEMPTY(r);
SAME_TYPE(in,r);
P<Dim> d = in->dim;
if (d->n != r->dim->n) RAISE("wrong number of dimensions");
int w = which_dim;
if (w<0) w+=d->n;
if (w<0 || w>=d->n)
RAISE("can't join on dim number %d on %d-dimensional grids",
which_dim,d->n);
STACK_ARRAY(int32,v,d->n);
for (int i=0; i<d->n; i++) {
v[i] = d->get(i);
if (i==w) {
v[i]+=r->dim->v[i];
} else {
if (v[i]!=r->dim->v[i]) RAISE("dimensions mismatch: dim #%i, left is %d, right is %d",i,v[i],r->dim->v[i]);
}
}
out=new GridOutlet(this,0,new Dim(d->n,v),in->nt);
if (d->prod(w)) in->set_factor(d->prod(w));
} GRID_FLOW {
int w = which_dim;
if (w<0) w+=in->dim->n;
int a = in->factor();
int b = r->dim->prod(w);
Pt<T> data2 = (Pt<T>)*r + in->dex*b/a;
if (a==3 && b==1) {
int m = n+n*b/a;
STACK_ARRAY(T,data3,m);
Pt<T> data4 = data3;
while (n) {
SCOPY(data4,data,3); SCOPY(data4+3,data2,1);
n-=3; data+=3; data2+=1; data4+=4;
}
out->send(m,data3);
} else if (a+b<=16) {
int m = n+n*b/a;
STACK_ARRAY(T,data3,m);
int i=0;
while (n) {
COPY(data3+i,data,a); data+=a; i+=a; n-=a;
COPY(data3+i,data2,b); data2+=b; i+=b;
}
out->send(m,data3);
} else {
while (n) {
out->send(a,data);
out->send(b,data2);
data+=a; data2+=b; n-=a;
}
}
} GRID_FINISH {
if (in->dim->prod()==0) out->send(r->dim->prod(),(Pt<T>)*r);
} GRID_END
GRID_INPUT(GridJoin,1,r) {} GRID_END
\def void initialize (int which_dim, Grid *r) {
rb_call_super(argc,argv);
this->which_dim = which_dim;
if (r) this->r=r;
}
\classinfo { IEVAL(rself,"install '@join',2,1"); }
\end class GridJoin
//****************************************************************
\class GridGrade < GridObject
struct GridGrade : GridObject {
\grin 0
};
template <class T> struct GradeFunction {
static int comparator (const void *a, const void *b) {
return **(T**)a - **(T**)b;}};
#define FOO(S) \
template <> struct GradeFunction<S> { \
static int comparator (const void *a, const void *b) { \
S x = **(S**)a - **(S**)b; \
return x<0 ? -1 : x>0;}};
FOO(int64)
FOO(float32)
FOO(float64)
#undef FOO
GRID_INLET(GridGrade,0) {
out=new GridOutlet(this,0,in->dim,in->nt);
in->set_factor(in->dim->get(in->dim->n-1));
} GRID_FLOW {
int m = in->factor();
STACK_ARRAY(T*,foo,m);
STACK_ARRAY(T,bar,m);
for (; n; n-=m,data+=m) {
for (int i=0; i<m; i++) foo[i] = &data[i];
qsort(foo,m,sizeof(T),GradeFunction<T>::comparator);
for (int i=0; i<m; i++) bar[i] = foo[i]-(T *)data;
out->send(m,bar);
}
} GRID_END
\classinfo { IEVAL(rself,"install '#grade',1,1"); }
\end class GridGrade
//****************************************************************
//\class GridMedian < GridObject
//****************************************************************
\class GridTranspose < GridObject
struct GridTranspose : GridObject {
\attr int dim1;
\attr int dim2;
int d1,d2,na,nb,nc,nd; // temporaries
\decl void initialize (int dim1=0, int dim2=1);
\decl void _1_float (int dim1);
\decl void _2_float (int dim2);
\grin 0
};
\def void _1_float (int dim1) { this->dim1=dim1; }
\def void _2_float (int dim2) { this->dim2=dim2; }
GRID_INLET(GridTranspose,0) {
STACK_ARRAY(int32,v,in->dim->n);
COPY(v,in->dim->v,in->dim->n);
d1=dim1; d2=dim2;
if (d1<0) d1+=in->dim->n;
if (d2<0) d2+=in->dim->n;
if (d1>=in->dim->n || d2>=in->dim->n || d1<0 || d2<0)
RAISE("would swap dimensions %d and %d but this grid has only %d dimensions",
dim1,dim2,in->dim->n);
memswap(v+d1,v+d2,1);
if (d1==d2) {
out=new GridOutlet(this,0,new Dim(in->dim->n,v), in->nt);
} else {
nd = in->dim->prod(1+max(d1,d2));
nc = in->dim->v[max(d1,d2)];
nb = in->dim->prod(1+min(d1,d2))/nc/nd;
na = in->dim->v[min(d1,d2)];
out=new GridOutlet(this,0,new Dim(in->dim->n,v), in->nt);
in->set_factor(na*nb*nc*nd);
}
// Turns a Grid[*,na,*nb,nc,*nd] into a Grid[*,nc,*nb,na,*nd].
} GRID_FLOW {
STACK_ARRAY(T,res,na*nb*nc*nd);
if (dim1==dim2) { out->send(n,data); return; }
for (; n; n-=na*nb*nc*nd, data+=na*nb*nc*nd) {
for (int a=0; a<na; a++)
for (int b=0; b<nb; b++)
for (int c=0; c<nc; c++)
COPY(res +((c*nb+b)*na+a)*nd,
data+((a*nb+b)*nc+c)*nd,nd);
out->send(na*nb*nc*nd,res);
}
} GRID_END
\def void initialize (int dim1=0, int dim2=1) {
rb_call_super(argc,argv);
this->dim1 = dim1;
this->dim2 = dim2;
}
\classinfo { IEVAL(rself,"install '#transpose',3,1"); }
\end class GridTranspose
//****************************************************************
\class GridReverse < GridObject
struct GridReverse : GridObject {
\attr int dim1; // dimension to act upon
int d; // temporaries
\decl void initialize (int dim1=0);
\decl void _1_float (int dim1);
\grin 0
};
\def void _1_float (int dim1) { this->dim1=dim1; }
GRID_INLET(GridReverse,0) {
d=dim1;
if (d<0) d+=in->dim->n;
if (d>=in->dim->n || d<0)
RAISE("would reverse dimension %d but this grid has only %d dimensions",
dim1,in->dim->n);
out=new GridOutlet(this,0,new Dim(in->dim->n,in->dim->v), in->nt);
in->set_factor(in->dim->prod(d));
} GRID_FLOW {
int f1=in->factor(), f2=in->dim->prod(d+1);
while (n) {
int hf1=f1/2;
Pt<T> data2 = data+f1-f2;
for (int i=0; i<hf1; i+=f2) memswap(data+i,data2-i,f2);
out->send(f1,data);
data+=f1; n-=f1;
}
} GRID_END
\def void initialize (int dim1=0) {
rb_call_super(argc,argv);
this->dim1 = dim1;
}
\classinfo { IEVAL(rself,"install '#reverse',2,1"); }
\end class GridReverse
//****************************************************************
\class GridCentroid2 < GridObject
struct GridCentroid2 : GridObject {
\decl void initialize ();
\grin 0 int
int sumx,sumy,sum,y; // temporaries
};
GRID_INLET(GridCentroid2,0) {
if (in->dim->n != 3) RAISE("expecting 3 dims");
if (in->dim->v[2] != 1) RAISE("expecting 1 channel");
in->set_factor(in->dim->prod(1));
out=new GridOutlet(this,0,new Dim(2), in->nt);
sumx=0; sumy=0; sum=0; y=0;
} GRID_FLOW {
int sx = in->dim->v[1];
while (n) {
for (int x=0; x<sx; x++) {
sumx+=x*data[x];
sumy+=y*data[x];
sum += data[x];
}
n-=sx;
data+=sx;
y++;
}
} GRID_FINISH {
STACK_ARRAY(int32,blah,2);
blah[0] = sum ? sumy/sum : 0;
blah[1] = sum ? sumx/sum : 0;
out->send(2,blah);
} GRID_END
\def void initialize () {
rb_call_super(argc,argv);
}
\classinfo { IEVAL(rself,"install '#centroid2',1,1"); }
\end class GridCentroid2
//****************************************************************
\class GridPerspective < GridObject
struct GridPerspective : GridObject {
\attr int32 z;
\grin 0
\decl void initialize (int32 z=256);
};
GRID_INLET(GridPerspective,0) {
int n = in->dim->n;
STACK_ARRAY(int32,v,n);
COPY(v,in->dim->v,n);
v[n-1]--;
in->set_factor(in->dim->get(in->dim->n-1));
out=new GridOutlet(this,0,new Dim(n,v),in->nt);
} GRID_FLOW {
int m = in->factor();
for (; n; n-=m,data+=m) {
op_mul->map(m-1,data,(T)z);
op_div->map(m-1,data,data[m-1]);
out->send(m-1,data);
}
} GRID_END
\def void initialize (int32 z) {rb_call_super(argc,argv); this->z=z; }
\classinfo { IEVAL(rself,"install '#perspective',1,1"); }
\end class GridPerspective
static Numop *OP(Ruby x) { return FIX2PTR(Numop,rb_hash_aref(op_dict,x)); }
void startup_flow_objects () {
op_add = OP(SYM(+));
op_sub = OP(SYM(-));
op_mul = OP(SYM(*));
op_shl = OP(SYM(<<));
op_mod = OP(SYM(%));
op_and = OP(SYM(&));
op_div = OP(SYM(/));
op_put = OP(SYM(put));
\startall
}
|