1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
/*
flext - C++ layer for Max/MSP and pd (pure data) externals
Copyright (c) 2001-2003 Thomas Grill (xovo@gmx.net)
For information on usage and redistribution, and for a DISCLAIMER OF ALL
WARRANTIES, see the file, "license.txt," in this distribution.
*/
/*! \file flout.cpp
\brief Implementation of the flext outlet functionality.
*/
#include "flext.h"
#include "flinternal.h"
#include <string.h>
#if FLEXT_SYS == FLEXT_SYS_PD || FLEXT_SYS == FLEXT_SYS_MAX
#ifndef FLEXT_THREADS
void flext_base::ToOutBang(int n) const { outlet *o = GetOut(n); if(o) { CRITON(); outlet_bang((t_outlet *)o); CRITOFF(); } }
void flext_base::ToOutFloat(int n,float f) const { outlet *o = GetOut(n); if(o) { CRITON(); outlet_float((t_outlet *)o,f); CRITOFF(); } }
void flext_base::ToOutInt(int n,int f) const { outlet *o = GetOut(n); if(o) { CRITON(); outlet_flint((t_outlet *)o,f); CRITOFF(); } }
void flext_base::ToOutSymbol(int n,const t_symbol *s) const { outlet *o = GetOut(n); if(o) { CRITON(); outlet_symbol((t_outlet *)o,const_cast<t_symbol *>(s)); CRITOFF(); } }
void flext_base::ToOutList(int n,int argc,const t_atom *argv) const { outlet *o = GetOut(n); if(o) { CRITON(); outlet_list((t_outlet *)o,const_cast<t_symbol *>(sym_list),argc,(t_atom *)argv); CRITOFF(); } }
void flext_base::ToOutAnything(int n,const t_symbol *s,int argc,const t_atom *argv) const { outlet *o = GetOut(n); if(o) { CRITON(); outlet_anything((t_outlet *)o,const_cast<t_symbol *>(s),argc,(t_atom *)argv); CRITOFF(); } }
#else
void flext_base::ToOutBang(int n) const { if(IsSystemThread()) { outlet *o = GetOut(n); if(o) { CRITON(); outlet_bang((t_outlet *)o); CRITOFF(); } } else ToQueueBang(n); }
void flext_base::ToOutFloat(int n,float f) const { if(IsSystemThread()) { outlet *o = GetOut(n); if(o) { CRITON(); outlet_float((t_outlet *)o,f); CRITOFF(); } } else ToQueueFloat(n,f); }
void flext_base::ToOutInt(int n,int f) const { if(IsSystemThread()) { outlet *o = GetOut(n); if(o) { CRITON(); outlet_flint((t_outlet *)o,f); CRITOFF(); } } else ToQueueInt(n,f); }
void flext_base::ToOutSymbol(int n,const t_symbol *s) const { if(IsSystemThread()) { outlet *o = GetOut(n); if(o) { CRITON(); outlet_symbol((t_outlet *)o,const_cast<t_symbol *>(s)); CRITOFF(); } } else ToQueueSymbol(n,s); }
void flext_base::ToOutList(int n,int argc,const t_atom *argv) const { if(IsSystemThread()) { outlet *o = GetOut(n); if(o) { CRITON(); outlet_list((t_outlet *)o,const_cast<t_symbol *>(sym_list),argc,(t_atom *)argv); CRITOFF(); } } else ToQueueList(n,argc,(t_atom *)argv); }
void flext_base::ToOutAnything(int n,const t_symbol *s,int argc,const t_atom *argv) const { if(IsSystemThread()) { outlet *o = GetOut(n); if(o) { CRITON(); outlet_anything((t_outlet *)o,const_cast<t_symbol *>(s),argc,(t_atom *)argv); CRITOFF(); } } else ToQueueAnything(n,s,argc,(t_atom *)argv); }
#endif
#elif FLEXT_SYS == FLEXT_SYS_JMAX
#ifndef FLEXT_THREADS
void flext_base::ToOutBang(int n) const { fts_outlet_bang((fts_object *)thisHdr(),n); }
void flext_base::ToOutFloat(int n,float f) const { fts_outlet_float((fts_object *)thisHdr(),n,f); }
void flext_base::ToOutInt(int n,int f) const { fts_outlet_int((fts_object *)thisHdr(),n,f); }
void flext_base::ToOutSymbol(int n,const t_symbol *s) const { fts_outlet_symbol((fts_object *)thisHdr(),n,s); }
void flext_base::ToOutList(int n,int argc,const t_atom *argv) const { fts_outlet_send((fts_object *)thisHdr(),n,sym_list,argc,(t_atom *)argv); }
void flext_base::ToOutAnything(int n,const t_symbol *s,int argc,const t_atom *argv) const { fts_outlet_send((fts_object *)thisHdr(),n,const_cast<t_symbol *>(s),argc,(t_atom *)argv); }
#else
void flext_base::ToOutBang(int n) const { if(IsSystemThread()) fts_outlet_bang((fts_object *)thisHdr(),n); else ToQueueBang(n); }
void flext_base::ToOutFloat(int n,float f) const { if(IsSystemThread()) fts_outlet_float((fts_object *)thisHdr(),n,f); else ToQueueFloat(n,f); }
void flext_base::ToOutInt(int n,int f) const { if(IsSystemThread()) fts_outlet_int((fts_object *)thisHdr(),n,f); else ToQueueInt(n,f); }
void flext_base::ToOutSymbol(int n,const t_symbol *s) const { if(IsSystemThread()) fts_outlet_symbol((fts_object *)thisHdr(),n,s); else ToQueueSymbol(n,s); }
void flext_base::ToOutList(int n,int argc,const t_atom *argv) const { if(IsSystemThread()) fts_outlet_send((fts_object *)thisHdr(),n,sym_list,argc,(t_atom *)argv); else ToQueueList(n,argc,(t_atom *)argv); }
void flext_base::ToOutAnything(int n,const t_symbol *s,int argc,const t_atom *argv) const { if(IsSystemThread()) fts_outlet_send((fts_object *)thisHdr(),n,const_cast<t_symbol *>(s),argc,(t_atom *)argv); else ToQueueAnything(n,s,argc,(t_atom *)argv); }
#endif
#endif
bool flext_base::InitInlets()
{
bool ok = true;
// ----------------------------------
// create inlets
// ----------------------------------
incnt = insigs = 0;
if(inlist) {
xlet *xi;
incnt = 0;
for(xi = inlist; xi; xi = xi->nxt) ++incnt;
xlet::type *list = new xlet::type[incnt];
int i;
for(xi = inlist,i = 0; xi; xi = xi->nxt,++i) list[i] = xi->tp;
#if FLEXT_SYS == FLEXT_SYS_MAX
// copy inlet descriptions
indesc = new char *[incnt];
for(xi = inlist,i = 0; xi; xi = xi->nxt,++i) {
int l = xi->desc?strlen(xi->desc):0;
if(l) {
indesc[i] = new char[l+1];
memcpy(indesc[i],xi->desc,l);
indesc[i][l] = 0;
}
else
indesc[i] = NULL;
}
#endif
delete inlist; inlist = NULL;
#if FLEXT_SYS == FLEXT_SYS_PD || FLEXT_SYS == FLEXT_SYS_MAX
inlets = new px_object *[incnt];
for(i = 0; i < incnt; ++i) inlets[i] = NULL;
#endif
// type info is now in list array
#if FLEXT_SYS == FLEXT_SYS_PD
{
int cnt = 0;
if(incnt >= 1) {
switch(list[0]) {
case xlet::tp_sig:
++insigs;
break;
default:
// leftmost inlet is already there...
break;
}
++cnt;
}
for(int ix = 1; ix < incnt; ++ix,++cnt) {
switch(list[ix]) {
case xlet::tp_float:
case xlet::tp_int: {
char sym[] = "ft??";
if(ix >= 10) {
if(compatibility) {
// Max allows max. 9 inlets
post("%s: Only 9 float/int inlets allowed in compatibility mode",thisName());
ok = false;
}
else {
if(ix > 99)
post("%s: Inlet index > 99 not allowed for float/int inlets",thisName());
sym[2] = '0'+ix/10,sym[3] = '0'+ix%10;
}
}
else
sym[2] = '0'+ix,sym[3] = 0;
if(ok) inlet_new(&x_obj->obj, &x_obj->obj.ob_pd, &s_float, gensym(sym));
break;
}
case xlet::tp_sym:
(inlets[ix] = (px_object *)pd_new(px_class))->init(this,ix); // proxy for 2nd inlet messages
inlet_new(&x_obj->obj,&inlets[ix]->obj.ob_pd, &s_symbol, &s_symbol);
break;
case xlet::tp_list:
(inlets[ix] = (px_object *)pd_new(px_class))->init(this,ix); // proxy for 2nd inlet messages
inlet_new(&x_obj->obj,&inlets[ix]->obj.ob_pd, &s_list, &s_list);
break;
case xlet::tp_any:
(inlets[ix] = (px_object *)pd_new(px_class))->init(this,ix); // proxy for 2nd inlet messages
inlet_new(&x_obj->obj,&inlets[ix]->obj.ob_pd, 0, 0);
break;
case xlet::tp_sig:
if(compatibility && list[ix-1] != xlet::tp_sig) {
post("%s: All signal inlets must be left-aligned in compatibility mode",thisName());
ok = false;
}
else {
// pd doesn't seem to be able to handle signals and messages into the same inlet...
inlet_new(&x_obj->obj, &x_obj->obj.ob_pd, &s_signal, &s_signal);
++insigs;
}
break;
default:
error("%s: Wrong type for inlet #%i: %i",thisName(),ix,(int)list[ix]);
ok = false;
}
}
incnt = cnt;
}
#elif FLEXT_SYS == FLEXT_SYS_MAX
{
int ix,cnt;
// count leftmost signal inlets
while(insigs < incnt && list[insigs] == xlet::tp_sig) ++insigs;
for(cnt = 0,ix = incnt-1; ix >= insigs; --ix,++cnt) {
if(ix == 0) {
if(list[ix] != xlet::tp_any) {
error("%s: Leftmost inlet must be of type signal or default",thisName());
ok = false;
}
}
else {
switch(list[ix]) {
case xlet::tp_sig:
error("%s: All signal inlets must be at the left side",thisName());
ok = false;
break;
case xlet::tp_float:
if(ix >= 10) {
post("%s: Only 9 float inlets possible",thisName());
ok = false;
}
else
floatin(x_obj,ix);
break;
case xlet::tp_int:
if(ix >= 10) {
post("%s: Only 9 int inlets possible",thisName());
ok = false;
}
else
intin(x_obj,ix);
break;
case xlet::tp_any: // non-leftmost
case xlet::tp_sym:
case xlet::tp_list:
inlets[ix] = (px_object *)proxy_new(x_obj,ix,&((flext_hdr *)x_obj)->curinlet);
break;
default:
error("%s: Wrong type for inlet #%i: %i",thisName(),ix,(int)list[ix]);
ok = false;
}
}
}
// incnt = cnt;
if(insigs)
// dsp_setup(thisHdr(),insigs); // signal inlets
dsp_setupbox(thisHdr(),insigs); // signal inlets
}
#elif FLEXT_SYS == FLEXT_SYS_JMAX
{
t_class *cl = thisClass();
int cnt = 0;
for(int ix = 0; ix < incnt; ++ix,++cnt) {
switch(list[ix]) {
case xlet::tp_float:
case xlet::tp_int:
// fts_class_inlet_number(cl, ix, jmax_proxy);
break;
case xlet::tp_sym:
// fts_class_inlet_symbol(cl, ix, jmax_proxy);
break;
case xlet::tp_sig:
if(compatibility && list[ix-1] != xlet::tp_sig) {
post("%s: All signal inlets must be left-aligned in compatibility mode",thisName());
ok = false;
}
else {
if(!insigs) fts_dsp_declare_inlet(cl,0);
++insigs;
}
// no break -> let a signal inlet also accept any messages
case xlet::tp_list:
case xlet::tp_any:
// fts_class_inlet_varargs(cl,ix, jmax_proxy);
break;
default:
error("%s: Wrong type for inlet #%i: %i",thisName(),ix,(int)list[ix]);
ok = false;
}
}
incnt = cnt;
fts_object_set_inlets_number((fts_object_t *)thisHdr(), incnt);
}
#else
#error
#endif
delete[] list;
}
return ok;
}
bool flext_base::InitOutlets()
{
bool ok = true;
// ----------------------------------
// create outlets
// ----------------------------------
outcnt = outsigs = 0;
#if FLEXT_SYS == FLEXT_SYS_MAX
// for Max/MSP the rightmost outlet has to be created first
outlet *attrtmp = NULL;
if(procattr)
attrtmp = (outlet *)newout_anything(thisHdr());
#endif
if(outlist) {
xlet *xi;
// count outlets
outcnt = 0;
for(xi = outlist; xi; xi = xi->nxt) ++outcnt;
xlet::type *list = new xlet::type[outcnt];
int i;
for(xi = outlist,i = 0; xi; xi = xi->nxt,++i) list[i] = xi->tp;
#if FLEXT_SYS == FLEXT_SYS_MAX
// copy outlet descriptions
outdesc = new char *[outcnt];
for(xi = outlist,i = 0; xi; xi = xi->nxt,++i) {
int l = xi->desc?strlen(xi->desc):0;
if(l) {
outdesc[i] = new char[l+1];
memcpy(outdesc[i],xi->desc,l);
outdesc[i][l] = 0;
}
else
outdesc[i] = NULL;
}
#endif
delete outlist; outlist = NULL;
#if FLEXT_SYS == FLEXT_SYS_PD || FLEXT_SYS == FLEXT_SYS_MAX
outlets = new outlet *[outcnt+(procattr?1:0)];
// type info is now in list array
#if FLEXT_SYS == FLEXT_SYS_PD
for(int ix = 0; ix < outcnt; ++ix)
#elif FLEXT_SYS == FLEXT_SYS_MAX
for(int ix = outcnt-1; ix >= 0; --ix)
#else
#error
#endif
{
switch(list[ix]) {
case xlet::tp_float:
outlets[ix] = (outlet *)newout_float(&x_obj->obj);
break;
case xlet::tp_int:
outlets[ix] = (outlet *)newout_flint(&x_obj->obj);
break;
case xlet::tp_sig:
outlets[ix] = (outlet *)newout_signal(&x_obj->obj);
++outsigs;
break;
case xlet::tp_sym:
outlets[ix] = (outlet *)newout_symbol(&x_obj->obj);
break;
case xlet::tp_list:
outlets[ix] = (outlet *)newout_list(&x_obj->obj);
break;
case xlet::tp_any:
outlets[ix] = (outlet *)newout_anything(&x_obj->obj);
break;
#ifdef FLEXT_DEBUG
default:
ERRINTERNAL();
ok = false;
#endif
}
}
#elif FLEXT_SYS == FLEXT_SYS_JMAX
t_class *cl = thisClass();
for(int ix = 0; ix < outcnt; ++ix) {
switch(list[ix]) {
case xlet::tp_float:
case xlet::tp_int:
// fts_class_outlet_number(cl, ix);
break;
case xlet::tp_sym:
// fts_class_outlet_symbol(cl, ix);
break;
case xlet::tp_list:
case xlet::tp_any:
// fts_class_outlet_anything(cl, ix);
break;
case xlet::tp_sig:
if(!outsigs) fts_dsp_declare_outlet(cl,0);
++outsigs;
break;
#ifdef FLEXT_DEBUG
default:
ERRINTERNAL();
ok = false;
#endif
}
}
fts_object_set_outlets_number((fts_object_t *)thisHdr(), outcnt+(procattr?1:0));
#endif
delete[] list;
}
#if FLEXT_SYS == FLEXT_SYS_PD || FLEXT_SYS == FLEXT_SYS_MAX
if(procattr) {
// attribute dump outlet is the last one
outlets[outcnt] =
#if FLEXT_SYS == FLEXT_SYS_PD
// attribute dump outlet is the last one
(outlet *)newout_anything(&x_obj->obj);
#elif FLEXT_SYS == FLEXT_SYS_MAX
attrtmp;
#endif
}
#endif
return ok;
}
|