aboutsummaryrefslogtreecommitdiff
path: root/src/sign_CLNLMS.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/sign_CLNLMS.c')
-rw-r--r--src/sign_CLNLMS.c503
1 files changed, 0 insertions, 503 deletions
diff --git a/src/sign_CLNLMS.c b/src/sign_CLNLMS.c
deleted file mode 100644
index e1c1c0a..0000000
--- a/src/sign_CLNLMS.c
+++ /dev/null
@@ -1,503 +0,0 @@
-/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
-* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
-
-n_CLNLMS multichannel-constrained leaky normalized LMS algorithm
-lib iem_adaptfilt written by Markus Noisternig & Thomas Musil
-noisternig_AT_iem.at; musil_AT_iem.at
-(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */
-
-#ifdef NT
-#pragma warning( disable : 4244 )
-#pragma warning( disable : 4305 )
-#endif
-
-
-#include "m_pd.h"
-#include "iemlib.h"
-#include <math.h>
-#include <stdio.h>
-#include <string.h>
-
-
-/* ----------------------- n_CLNLMS~ ------------------------------ */
-/* -- multiple Constraint LEAKY Normalized Least Mean Square (linear adaptive FIR-filter) -- */
-
-//* -- first input: reference signal -- */
-/* -- second input: desired signal -- */
-/* -- -- */
-
-/* for further information on adaptive filter design we refer to */
-/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */
-/* [2] Benesty, "Adaptive Signal Processing", Springer */
-
-typedef struct sign_CLNLMS_kern
-{
- t_symbol *x_w_array_sym_name;
- t_float *x_w_array_mem_beg;
- t_float *x_in_ptr_beg;// memory: sig-in vector
- t_float *x_out_ptr_beg;// memory: sig-out vector
- t_float *x_in_hist;// start point double buffer for sig-in history
-} t_sign_CLNLMS_kern;
-
-
-typedef struct sign_CLNLMS
-{
- t_object x_obj;
- t_sign_CLNLMS_kern *x_my_kern;
- t_float *x_des_in_ptr_beg;// memory: desired-in vector
- t_float *x_err_out_ptr_beg;// memory: error-out vector
- t_int x_n_io;// number of in-channels and filtered out-channels
- t_int x_rw_index;// read-write-index
- t_int x_n_order;// filter order
- t_int x_update;// rounded by 2^n, yields downsampling of learn-rate
- t_float x_beta;// learn rate [0 .. 2]
- t_float x_gamma;// normalization
- t_float x_kappa;// constreint: treshold of energy (clipping)
- t_float x_leakage;// leakage-Faktor for NLMS
- t_outlet *x_out_compressing_bang;
- t_clock *x_clock;
- t_float x_msi;
-} t_sign_CLNLMS;
-
-t_class *sign_CLNLMS_class;
-
-static void sign_CLNLMS_tick(t_sign_CLNLMS *x)
-{
- outlet_bang(x->x_out_compressing_bang);
-}
-
-static t_float *sign_CLNLMS_check_array(t_symbol *array_sym_name, t_int length)
-{
- t_int n_points;
- t_garray *a;
- t_float *vec;
-
- if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class)))
- {
- error("%s: no such array for n_CLNLMS~", array_sym_name->s_name);
- return((t_float *)0);
- }
- else if(!garray_getfloatarray(a, &n_points, &vec))
- {
- error("%s: bad template for n_CLNLMS~", array_sym_name->s_name);
- return((t_float *)0);
- }
- else if(n_points < length)
- {
- error("%s: bad array-size for n_CLNLMS~: %d", array_sym_name->s_name, n_points);
- return((t_float *)0);
- }
- else
- {
- return(vec);
- }
-}
-
-static void sign_CLNLMS_beta(t_sign_CLNLMS *x, t_floatarg f) // learn rate
-{
- if(f < 0.0f)
- f = 0.0f;
- if(f > 2.0f)
- f = 2.0f;
-
- x->x_beta = f;
-}
-
-static void sign_CLNLMS_gamma(t_sign_CLNLMS *x, t_floatarg f) // regularization (dither)
-{
- if(f < 0.0f)
- f = 0.0f;
- if(f > 1.0f)
- f = 1.0f;
-
- x->x_gamma = f;
-}
-
-static void sign_CLNLMS_kappa(t_sign_CLNLMS *x, t_floatarg f) // threshold for w_coeff
-{
- if(f < 0.0001f)
- f = 0.0001f;
- if(f > 10000.0f)
- f = 10000.0f;
-
- x->x_kappa = f;
-}
-
-static void sign_CLNLMS_leakage(t_sign_CLNLMS *x, t_floatarg f) // leakage of NLMS
-{
- if(f < 0.0001f)
- f = 0.0001f;
- if(f > 1.0f)
- f = 1.0f;
-
- x->x_leakage = f;
-}
-
-static void sign_CLNLMS_update(t_sign_CLNLMS *x, t_floatarg f) // downsample learn rate
-{
- t_int i=1, u = (t_int)f;
-
- if(u < 0)
- u = 0;
- else
- {
- while(i <= u) // convert u for 2^N
- i *= 2; // round down
- i /= 2;
- u = i;
- }
- x->x_update = u;
-}
-
-/* ============== DSP ======================= */
-
-static t_int *sign_CLNLMS_perform_zero(t_int *w)
-{
- t_sign_CLNLMS *x = (t_sign_CLNLMS *)(w[1]);
- t_int n = (t_int)(w[2]);
-
- t_int n_io = x->x_n_io;
- t_float *out;
- t_int i, j;
-
- out = x->x_err_out_ptr_beg;
- for(i=0; i<n; i++)
- *out++ = 0.0f;
- for(j=0; j<n_io; j++)
- {
- out = x->x_my_kern[j].x_out_ptr_beg;
- for(i=0; i<n; i++)
- *out++ = 0.0f;
- }
- return (w+3);
-}
-
-static t_int *sign_CLNLMS_perform(t_int *w)
-{
- t_sign_CLNLMS *x = (t_sign_CLNLMS *)(w[1]);
- t_int n = (t_int)(w[2]);
- t_int n_order = x->x_n_order; /* number of filter-order */
- t_int rw_index2, rw_index = x->x_rw_index;
- t_int n_io = x->x_n_io;
- t_float *in;// first sig in
- t_float din;// second sig in
- t_float *filt_out;// first sig out
- t_float *err_out, err_sum;// second sig out
- t_float *read_in_hist;
- t_float *w_filt_coeff;
- t_float my, my_err, sum;
- t_float beta = x->x_beta;
- t_float hgamma, gamma = x->x_gamma;
- t_float hkappa, kappa = x->x_kappa;
- t_float hleakage, leakage = x->x_leakage;
- t_int i, j, k, update_counter;
- t_int update = x->x_update;
- t_int ord8=n_order&0xfffffff8;
- t_int ord_residual=n_order&0x7;
- t_int compressed = 0;
-
- for(k=0; k<n_io; k++)
- {
- if(!x->x_my_kern[k].x_w_array_mem_beg)
- goto sign_CLNLMSperfzero;// this is Musil/Miller style
- }
-
- hgamma = gamma * gamma * (float)n_order;
- //hkappa = kappa * kappa * (float)n_order;
- hkappa = kappa; // kappa regards to energy value, else use line above
-
- for(i=0, update_counter=0; i<n; i++)// history and (block-)convolution
- {
- rw_index2 = rw_index + n_order;
-
- for(k=0; k<n_io; k++)// times n_io
- {
- x->x_my_kern[k].x_in_hist[rw_index] = x->x_my_kern[k].x_in_ptr_beg[i]; // save inputs into variabel & history
- x->x_my_kern[k].x_in_hist[rw_index+n_order] = x->x_my_kern[k].x_in_ptr_beg[i];
- }
- din = x->x_des_in_ptr_beg[i];
-
-// begin convolution
- err_sum = din;
- for(k=0; k<n_io; k++)// times n_io
- {
- sum = 0.0f;
- w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg; // Musil's special convolution buffer struct
- read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
- for(j=0; j<ord8; j+=8) // loop unroll 8 taps
- {
- sum += w_filt_coeff[0] * read_in_hist[0];
- sum += w_filt_coeff[1] * read_in_hist[-1];
- sum += w_filt_coeff[2] * read_in_hist[-2];
- sum += w_filt_coeff[3] * read_in_hist[-3];
- sum += w_filt_coeff[4] * read_in_hist[-4];
- sum += w_filt_coeff[5] * read_in_hist[-5];
- sum += w_filt_coeff[6] * read_in_hist[-6];
- sum += w_filt_coeff[7] * read_in_hist[-7];
- w_filt_coeff += 8;
- read_in_hist -= 8;
- }
- for(j=0; j<ord_residual; j++) // for filter order < 2^N
- sum += w_filt_coeff[j] * read_in_hist[-j];
-
- x->x_my_kern[k].x_out_ptr_beg[i] = sum;
- err_sum -= sum;
- }
- x->x_err_out_ptr_beg[i] = err_sum;
-// end convolution
-
- if(update) // downsampling of learn rate
- {
- update_counter++;
- if(update_counter >= update)
- {
- update_counter = 0;
-
- for(k=0; k<n_io; k++)// times n_io
- {
- sum = 0.0f;// calculate energy for last n-order samples in filter
- read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
- for(j=0; j<ord8; j+=8) // unrolling quadrature calc
- {
- sum += read_in_hist[0] * read_in_hist[0];
- sum += read_in_hist[-1] * read_in_hist[-1];
- sum += read_in_hist[-2] * read_in_hist[-2];
- sum += read_in_hist[-3] * read_in_hist[-3];
- sum += read_in_hist[-4] * read_in_hist[-4];
- sum += read_in_hist[-5] * read_in_hist[-5];
- sum += read_in_hist[-6] * read_in_hist[-6];
- sum += read_in_hist[-7] * read_in_hist[-7];
- read_in_hist -= 8;
- }
- for(j=0; j<ord_residual; j++) // residual
- sum += read_in_hist[-j] * read_in_hist[-j]; // [-j] only valid for Musil's double buffer structure
- sum += hgamma; // convert gamma corresponding to filter order
- my = beta / sum;// calculate mue
-
- my_err = my * err_sum;
- w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
- read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
- sum = 0.0f;
- for(j=0; j<ord8; j+=8) // unrolling quadrature calc
- {
- w_filt_coeff[0] = leakage * w_filt_coeff[0] + read_in_hist[0] * my_err;
- sum += w_filt_coeff[0] * w_filt_coeff[0];
- w_filt_coeff[1] = leakage * w_filt_coeff[1] + read_in_hist[-1] * my_err;
- sum += w_filt_coeff[1] * w_filt_coeff[1];
- w_filt_coeff[2] = leakage * w_filt_coeff[2] + read_in_hist[-2] * my_err;
- sum += w_filt_coeff[2] * w_filt_coeff[2];
- w_filt_coeff[3] = leakage * w_filt_coeff[3] + read_in_hist[-3] * my_err;
- sum += w_filt_coeff[3] * w_filt_coeff[3];
- w_filt_coeff[4] = leakage * w_filt_coeff[4] + read_in_hist[-4] * my_err;
- sum += w_filt_coeff[4] * w_filt_coeff[4];
- w_filt_coeff[5] = leakage * w_filt_coeff[5] + read_in_hist[-5] * my_err;
- sum += w_filt_coeff[5] * w_filt_coeff[5];
- w_filt_coeff[6] = leakage * w_filt_coeff[6] + read_in_hist[-6] * my_err;
- sum += w_filt_coeff[6] * w_filt_coeff[6];
- w_filt_coeff[7] = leakage * w_filt_coeff[7] + read_in_hist[-7] * my_err;
- sum += w_filt_coeff[7] * w_filt_coeff[7];
- w_filt_coeff += 8;
- read_in_hist -= 8;
- }
- for(j=0; j<ord_residual; j++) // residual
- {
- w_filt_coeff[j] = leakage * w_filt_coeff[j] + read_in_hist[-j] * my_err;
- sum += w_filt_coeff[j] * w_filt_coeff[j];
- }
- if(sum > hkappa)
- {
- compressed = 1;
- my = sqrt(hkappa/sum);
- w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
- for(j=0; j<ord8; j+=8) // unrolling quadrature calc
- {
- w_filt_coeff[0] *= my;
- w_filt_coeff[1] *= my;
- w_filt_coeff[2] *= my;
- w_filt_coeff[3] *= my;
- w_filt_coeff[4] *= my;
- w_filt_coeff[5] *= my;
- w_filt_coeff[6] *= my;
- w_filt_coeff[7] *= my;
- w_filt_coeff += 8;
- }
- for(j=0; j<ord_residual; j++) // residual
- w_filt_coeff[j] *= my;
- }
- }
- }
- }
- rw_index++;
- if(rw_index >= n_order)
- rw_index -= n_order;
- }
-
-
- x->x_rw_index = rw_index; // wieder in die garage stellen
-
- if(compressed)
- clock_delay(x->x_clock, 0);
-
- return(w+3);
-
-sign_CLNLMSperfzero:
-
- err_out = x->x_err_out_ptr_beg;
- for(i=0; i<n; i++)
- *err_out++ = 0.0f;
- for(j=0; j<n_io; j++)
- {
- filt_out = x->x_my_kern[j].x_out_ptr_beg;
- for(i=0; i<n; i++)
- *filt_out++ = 0.0f;
- }
-
- return(w+3);
-}
-
-static void sign_CLNLMS_dsp(t_sign_CLNLMS *x, t_signal **sp)
-{
- t_int i, n = sp[0]->s_n;
- t_int ok_w = 1;
- t_int m = x->x_n_io;
-
- for(i=0; i<m; i++)
- x->x_my_kern[i].x_in_ptr_beg = sp[i]->s_vec;
- x->x_des_in_ptr_beg = sp[m]->s_vec;
- for(i=0; i<m; i++)
- x->x_my_kern[i].x_out_ptr_beg = sp[i+m+1]->s_vec;
- x->x_err_out_ptr_beg = sp[2*m+1]->s_vec;
-
- for(i=0; i<m; i++)
- {
- x->x_my_kern[i].x_w_array_mem_beg = sign_CLNLMS_check_array(x->x_my_kern[i].x_w_array_sym_name, x->x_n_order);
- if(!x->x_my_kern[i].x_w_array_mem_beg)
- ok_w = 0;
- }
-
- if(!ok_w)
- dsp_add(sign_CLNLMS_perform_zero, 2, x, n);
- else
- dsp_add(sign_CLNLMS_perform, 2, x, n);
-}
-
-
-/* setup/setdown things */
-
-static void sign_CLNLMS_free(t_sign_CLNLMS *x)
-{
- t_int i, n_io=x->x_n_io, n_order=x->x_n_order;
-
- for(i=0; i<n_io; i++)
- freebytes(x->x_my_kern[i].x_in_hist, 2*x->x_n_order*sizeof(t_float));
- freebytes(x->x_my_kern, n_io*sizeof(t_sign_CLNLMS_kern));
-
- clock_free(x->x_clock);
-}
-
-static void *sign_CLNLMS_new(t_symbol *s, t_int argc, t_atom *argv)
-{
- t_sign_CLNLMS *x = (t_sign_CLNLMS *)pd_new(sign_CLNLMS_class);
- char buffer[400];
- t_int i, n_order=39, n_io=1;
- t_symbol *w_name;
- t_float beta=0.1f;
- t_float gamma=0.00001f;
- t_float kappa = 1.0f;
- t_float leakage = 0.99f;
-
- if((argc >= 7) &&
- IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h
- IS_A_FLOAT(argv,1) &&
- IS_A_FLOAT(argv,2) &&
- IS_A_FLOAT(argv,3) &&
- IS_A_FLOAT(argv,4) &&
- IS_A_FLOAT(argv,5) &&
- IS_A_SYMBOL(argv,6))
- {
- n_io = (t_int)atom_getintarg(0, argc, argv);
- n_order = (t_int)atom_getintarg(1, argc, argv);
- beta = (t_float)atom_getfloatarg(2, argc, argv);
- gamma = (t_float)atom_getfloatarg(3, argc, argv);
- kappa = (t_float)atom_getfloatarg(4, argc, argv);
- leakage = (t_float)atom_getfloatarg(5, argc, argv);
- w_name = (t_symbol *)atom_getsymbolarg(6, argc, argv);
-
- if(beta < 0.0f)
- beta = 0.0f;
- if(beta > 2.0f)
- beta = 2.0f;
-
- if(gamma < 0.0f)
- gamma = 0.0f;
- if(gamma > 1.0f)
- gamma = 1.0f;
-
- if(kappa < 0.0001f)
- kappa = 0.0001f;
- if(kappa > 10000.0f)
- kappa = 10000.0f;
-
- if(leakage < 0.0001f)
- leakage = 0.0001f;
- if(leakage > 1.0f)
- leakage = 1.0f;
-
- if(n_order < 2)
- n_order = 2;
- if(n_order > 11111)
- n_order = 11111;
-
- if(n_io < 1)
- n_io = 1;
- if(n_io > 60)
- n_io = 60;
-
- for(i=0; i<n_io; i++)
- inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
- for(i=0; i<=n_io; i++)
- outlet_new(&x->x_obj, &s_signal);
-
- x->x_out_compressing_bang = outlet_new(&x->x_obj, &s_bang);
-
- x->x_msi = 0;
- x->x_n_io = n_io;
- x->x_n_order = n_order;
- x->x_update = 0;
- x->x_beta = beta;
- x->x_gamma = gamma;
- x->x_kappa = kappa;
- x->x_leakage = leakage;
- x->x_my_kern = (t_sign_CLNLMS_kern *)getbytes(x->x_n_io*sizeof(t_sign_CLNLMS_kern));
- for(i=0; i<n_io; i++)
- {
- sprintf(buffer, "%d_%s", i+1, w_name->s_name);
- x->x_my_kern[i].x_w_array_sym_name = gensym(buffer);
- x->x_my_kern[i].x_w_array_mem_beg = (t_float *)0;
- x->x_my_kern[i].x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float));
- }
- x->x_clock = clock_new(x, (t_method)sign_CLNLMS_tick);
-
- return(x);
- }
- else
- {
- post("n_CLNLMSC~-ERROR: need 6 float- + 1 symbol-arguments:");
- post(" number_of_filters + order_of_filters + learnrate_beta + security_value_gamma + threshold_kappa + leakage_factor_lambda + array_name_taps");
- return(0);
- }
-}
-
-void sign_CLNLMS_setup(void)
-{
- sign_CLNLMS_class = class_new(gensym("n_CLNLMS~"), (t_newmethod)sign_CLNLMS_new, (t_method)sign_CLNLMS_free,
- sizeof(t_sign_CLNLMS), 0, A_GIMME, 0);
- CLASS_MAINSIGNALIN(sign_CLNLMS_class, t_sign_CLNLMS, x_msi);
- class_addmethod(sign_CLNLMS_class, (t_method)sign_CLNLMS_dsp, gensym("dsp"), 0);
- class_addmethod(sign_CLNLMS_class, (t_method)sign_CLNLMS_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N)
- class_addmethod(sign_CLNLMS_class, (t_method)sign_CLNLMS_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate
- class_addmethod(sign_CLNLMS_class, (t_method)sign_CLNLMS_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal
- class_addmethod(sign_CLNLMS_class, (t_method)sign_CLNLMS_kappa, gensym("kappa"), A_FLOAT, 0); // method: threshold for compressing w_coeff
- class_addmethod(sign_CLNLMS_class, (t_method)sign_CLNLMS_leakage, gensym("leakage"), A_FLOAT, 0); // method: leakage factor [0 1] for w update
- class_sethelpsymbol(sign_CLNLMS_class, gensym("iemhelp2/n_CLNLMS~"));
-}