1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
n_CNLMS multichannel-constrained (non leaky) normalized LMS algorithm
lib iem_adaptfilt written by Markus Noisternig & Thomas Musil
noisternig_AT_iem.at; musil_AT_iem.at
(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
/* ----------------------- n_CNLMS~ ------------------------------ */
/* -- multi-channel Constraint Normalized Least Mean Square (linear adaptive FIR-filter) -- */
/* -- first input: reference signal -- */
/* -- second input: desired signal -- */
/* -- -- */
/* for further information on adaptive filter design we refer to */
/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */
/* [2] Benesty, "Adaptive Signal Processing", Springer */
typedef struct n_CNLMS_tilde_kern
{
t_symbol *x_w_array_sym_name;
t_float *x_w_array_mem_beg;
t_float *x_in_ptr_beg;// memory: sig-in vector
t_float *x_out_ptr_beg;// memory: sig-out vector
t_float *x_in_hist;// start point double buffer for sig-in history
} t_n_CNLMS_tilde_kern;
typedef struct n_CNLMS_tilde
{
t_object x_obj;
t_n_CNLMS_tilde_kern *x_my_kern;
t_float *x_des_in_ptr_beg;// memory: desired-in vector
t_float *x_err_out_ptr_beg;// memory: error-out vector
t_int x_n_io;// number of in-channels and filtered out-channels
t_int x_rw_index;// read-write-index
t_int x_n_order;// filter order
t_int x_update;// rounded by 2^n, yields downsampling of update rate
t_float x_beta;// learn rate [0 .. 2]
t_float x_gamma;// normalization
t_float x_kappa;// constraint: threshold of energy (clipping)
t_outlet *x_out_compressing_bang;
t_clock *x_clock;
t_float x_msi;
} t_n_CNLMS_tilde;
t_class *n_CNLMS_tilde_class;
static void n_CNLMS_tilde_tick(t_n_CNLMS_tilde *x)
{
outlet_bang(x->x_out_compressing_bang);
}
static t_float *n_CNLMS_tilde_check_array(t_symbol *array_sym_name, t_int length)
{
int n_points;
t_garray *a;
t_float *vec;
if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class)))
{
error("%s: no such array for n_CNLMS~", array_sym_name->s_name);
return((t_float *)0);
}
else if(!garray_getfloatarray(a, &n_points, &vec))
{
error("%s: bad template for n_CNLMS~", array_sym_name->s_name);
return((t_float *)0);
}
else if(n_points < length)
{
error("%s: bad array-size for n_CNLMS~: %d", array_sym_name->s_name, n_points);
return((t_float *)0);
}
else
{
return(vec);
}
}
static void n_CNLMS_tilde_beta(t_n_CNLMS_tilde *x, t_floatarg f) // learn rate
{
if(f < 0.0f)
f = 0.0f;
if(f > 2.0f)
f = 2.0f;
x->x_beta = f;
}
static void n_CNLMS_tilde_gamma(t_n_CNLMS_tilde *x, t_floatarg f) // regularization (dither)
{
if(f < 0.0f)
f = 0.0f;
if(f > 1.0f)
f = 1.0f;
x->x_gamma = f;
}
static void n_CNLMS_tilde_kappa(t_n_CNLMS_tilde *x, t_floatarg f) // threshold for w_coeff
{
if(f < 0.0001f)
f = 0.0001f;
if(f > 10000.0f)
f = 10000.0f;
x->x_kappa = f;
}
static void n_CNLMS_tilde_update(t_n_CNLMS_tilde *x, t_floatarg f) // downsampling of learn rate
{
t_int i=1, u = (t_int)f;
if(u < 0)
u = 0;
else
{
while(i <= u) // convert u for 2^N
i *= 2; // round downward
i /= 2;
u = i;
}
x->x_update = u;
}
/* ============== DSP ======================= */
static t_int *n_CNLMS_tilde_perform_zero(t_int *w)
{
t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)(w[1]);
t_int n = (t_int)(w[2]);
t_int n_io = x->x_n_io;
t_float *out;
t_int i, j;
out = x->x_err_out_ptr_beg;
for(i=0; i<n; i++)
*out++ = 0.0f;
for(j=0; j<n_io; j++)
{
out = x->x_my_kern[j].x_out_ptr_beg;
for(i=0; i<n; i++)
*out++ = 0.0f;
}
return (w+3);
}
static t_int *n_CNLMS_tilde_perform(t_int *w)
{
t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)(w[1]);
t_int n = (t_int)(w[2]);
t_int n_order = x->x_n_order; /* filter-order */
t_int rw_index2, rw_index = x->x_rw_index;
t_int n_io = x->x_n_io;
t_float *in;// first sig in
t_float din;// second sig in
t_float *filt_out;// first sig out
t_float *err_out, err_sum;// second sig out
t_float *read_in_hist;
t_float *w_filt_coeff;
t_float my, my_err, sum;
t_float beta = x->x_beta;
t_float hgamma, gammax = x->x_gamma;
t_float hkappa, kappa = x->x_kappa;
t_int i, j, k, update_counter;
t_int update = x->x_update;
t_int ord8=n_order&0xfffffff8;
t_int ord_residual=n_order&0x7;
t_int compressed = 0;
for(k=0; k<n_io; k++)
{
if(!x->x_my_kern[k].x_w_array_mem_beg)
goto n_CNLMS_tildeperfzero;// this is Musil/Miller style
}
hgamma = gammax * gammax * (float)n_order;
//hkappa = kappa * kappa * (float)n_order;
hkappa = kappa;// kappa regards to energy value, else use line above
for(i=0, update_counter=0; i<n; i++)// history and (block-)convolution
{
rw_index2 = rw_index + n_order;
for(k=0; k<n_io; k++)// times n_io
{
x->x_my_kern[k].x_in_hist[rw_index] = x->x_my_kern[k].x_in_ptr_beg[i]; // save inputs into variabel & history
x->x_my_kern[k].x_in_hist[rw_index+n_order] = x->x_my_kern[k].x_in_ptr_beg[i];
}
din = x->x_des_in_ptr_beg[i];
// begin convolution
err_sum = din;
for(k=0; k<n_io; k++)// times n_io
{
sum = 0.0f;
w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg; // Musil's special convolution buffer struct
read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
for(j=0; j<ord8; j+=8) // loop unroll 8 taps
{
sum += w_filt_coeff[0] * read_in_hist[0];
sum += w_filt_coeff[1] * read_in_hist[-1];
sum += w_filt_coeff[2] * read_in_hist[-2];
sum += w_filt_coeff[3] * read_in_hist[-3];
sum += w_filt_coeff[4] * read_in_hist[-4];
sum += w_filt_coeff[5] * read_in_hist[-5];
sum += w_filt_coeff[6] * read_in_hist[-6];
sum += w_filt_coeff[7] * read_in_hist[-7];
w_filt_coeff += 8;
read_in_hist -= 8;
}
for(j=0; j<ord_residual; j++) // for filter order < 2^N
sum += w_filt_coeff[j] * read_in_hist[-j];
x->x_my_kern[k].x_out_ptr_beg[i] = sum;
err_sum -= sum;
}
x->x_err_out_ptr_beg[i] = err_sum;
// end convolution
if(update) // downsampling of learn rate
{
update_counter++;
if(update_counter >= update)
{
update_counter = 0;
for(k=0; k<n_io; k++)// times n_io
{
sum = 0.0f;// calculate energy for last n-order samples in filter
read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
for(j=0; j<ord8; j+=8) // unrolling quadrature calc
{
sum += read_in_hist[0] * read_in_hist[0];
sum += read_in_hist[-1] * read_in_hist[-1];
sum += read_in_hist[-2] * read_in_hist[-2];
sum += read_in_hist[-3] * read_in_hist[-3];
sum += read_in_hist[-4] * read_in_hist[-4];
sum += read_in_hist[-5] * read_in_hist[-5];
sum += read_in_hist[-6] * read_in_hist[-6];
sum += read_in_hist[-7] * read_in_hist[-7];
read_in_hist -= 8;
}
for(j=0; j<ord_residual; j++) // residual
sum += read_in_hist[-j] * read_in_hist[-j]; // [-j] only valid for Musil's double buffer structure
sum += hgamma; // convert gammax corresponding to filter order
my = beta / sum;// calculate mue
my_err = my * err_sum;
w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2];
sum = 0.0f;
for(j=0; j<ord8; j+=8) // unrolling quadrature calc
{
w_filt_coeff[0] += read_in_hist[0] * my_err;
sum += w_filt_coeff[0] * w_filt_coeff[0];
w_filt_coeff[1] += read_in_hist[-1] * my_err;
sum += w_filt_coeff[1] * w_filt_coeff[1];
w_filt_coeff[2] += read_in_hist[-2] * my_err;
sum += w_filt_coeff[2] * w_filt_coeff[2];
w_filt_coeff[3] += read_in_hist[-3] * my_err;
sum += w_filt_coeff[3] * w_filt_coeff[3];
w_filt_coeff[4] += read_in_hist[-4] * my_err;
sum += w_filt_coeff[4] * w_filt_coeff[4];
w_filt_coeff[5] += read_in_hist[-5] * my_err;
sum += w_filt_coeff[5] * w_filt_coeff[5];
w_filt_coeff[6] += read_in_hist[-6] * my_err;
sum += w_filt_coeff[6] * w_filt_coeff[6];
w_filt_coeff[7] += read_in_hist[-7] * my_err;
sum += w_filt_coeff[7] * w_filt_coeff[7];
w_filt_coeff += 8;
read_in_hist -= 8;
}
for(j=0; j<ord_residual; j++) // residual
{
w_filt_coeff[j] += read_in_hist[-j] * my_err;
sum += w_filt_coeff[j] * w_filt_coeff[j];
}
if(sum > hkappa)
{
compressed = 1;
my = sqrt(hkappa/sum);
w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg;
for(j=0; j<ord8; j+=8) // unrolling quadrature calc
{
w_filt_coeff[0] *= my;
w_filt_coeff[1] *= my;
w_filt_coeff[2] *= my;
w_filt_coeff[3] *= my;
w_filt_coeff[4] *= my;
w_filt_coeff[5] *= my;
w_filt_coeff[6] *= my;
w_filt_coeff[7] *= my;
w_filt_coeff += 8;
}
for(j=0; j<ord_residual; j++) // residual
w_filt_coeff[j] *= my;
}
}
}
}
rw_index++;
if(rw_index >= n_order)
rw_index -= n_order;
}
x->x_rw_index = rw_index; // back to start
if(compressed)
clock_delay(x->x_clock, 0);
return(w+3);
n_CNLMS_tildeperfzero:
err_out = x->x_err_out_ptr_beg;
for(i=0; i<n; i++)
*err_out++ = 0.0f;
for(j=0; j<n_io; j++)
{
filt_out = x->x_my_kern[j].x_out_ptr_beg;
for(i=0; i<n; i++)
*filt_out++ = 0.0f;
}
return(w+3);
}
static void n_CNLMS_tilde_dsp(t_n_CNLMS_tilde *x, t_signal **sp)
{
t_int i, n = sp[0]->s_n;
t_int ok_w = 1;
t_int m = x->x_n_io;
for(i=0; i<m; i++)
x->x_my_kern[i].x_in_ptr_beg = sp[i]->s_vec;
x->x_des_in_ptr_beg = sp[m]->s_vec;
for(i=0; i<m; i++)
x->x_my_kern[i].x_out_ptr_beg = sp[i+m+1]->s_vec;
x->x_err_out_ptr_beg = sp[2*m+1]->s_vec;
for(i=0; i<m; i++)
{
x->x_my_kern[i].x_w_array_mem_beg = n_CNLMS_tilde_check_array(x->x_my_kern[i].x_w_array_sym_name, x->x_n_order);
if(!x->x_my_kern[i].x_w_array_mem_beg)
ok_w = 0;
}
if(!ok_w)
dsp_add(n_CNLMS_tilde_perform_zero, 2, x, n);
else
dsp_add(n_CNLMS_tilde_perform, 2, x, n);
}
/* setup/setdown things */
static void n_CNLMS_tilde_free(t_n_CNLMS_tilde *x)
{
t_int i, n_io=x->x_n_io, n_order=x->x_n_order;
for(i=0; i<n_io; i++)
freebytes(x->x_my_kern[i].x_in_hist, 2*x->x_n_order*sizeof(t_float));
freebytes(x->x_my_kern, n_io*sizeof(t_n_CNLMS_tilde_kern));
clock_free(x->x_clock);
}
static void *n_CNLMS_tilde_new(t_symbol *s, t_int argc, t_atom *argv)
{
t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)pd_new(n_CNLMS_tilde_class);
char buffer[400];
int i;
t_int n_order=39, n_io=1;
t_symbol *w_name;
t_float beta=0.1f;
t_float gammax=0.00001f;
t_float kappa = 1.0f;
if((argc >= 6) &&
IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h
IS_A_FLOAT(argv,1) &&
IS_A_FLOAT(argv,2) &&
IS_A_FLOAT(argv,3) &&
IS_A_FLOAT(argv,4) &&
IS_A_SYMBOL(argv,5))
{
n_io = (t_int)atom_getintarg(0, argc, argv);
n_order = (t_int)atom_getintarg(1, argc, argv);
beta = (t_float)atom_getfloatarg(2, argc, argv);
gammax = (t_float)atom_getfloatarg(3, argc, argv);
kappa = (t_float)atom_getfloatarg(4, argc, argv);
w_name = (t_symbol *)atom_getsymbolarg(5, argc, argv);
if(beta < 0.0f)
beta = 0.0f;
if(beta > 2.0f)
beta = 2.0f;
if(gammax < 0.0f)
gammax = 0.0f;
if(gammax > 1.0f)
gammax = 1.0f;
if(kappa < 0.0001f)
kappa = 0.0001f;
if(kappa > 10000.0f)
kappa = 10000.0f;
if(n_order < 2)
n_order = 2;
if(n_order > 11111)
n_order = 11111;
if(n_io < 1)
n_io = 1;
if(n_io > 60)
n_io = 60;
for(i=0; i<n_io; i++)
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
for(i=0; i<=n_io; i++)
outlet_new(&x->x_obj, &s_signal);
x->x_out_compressing_bang = outlet_new(&x->x_obj, &s_bang);
x->x_msi = 0;
x->x_n_io = n_io;
x->x_n_order = n_order;
x->x_update = 0;
x->x_beta = beta;
x->x_gamma = gammax;
x->x_kappa = kappa;
x->x_my_kern = (t_n_CNLMS_tilde_kern *)getbytes(x->x_n_io*sizeof(t_n_CNLMS_tilde_kern));
for(i=0; i<n_io; i++)
{
sprintf(buffer, "%d_%s", i+1, w_name->s_name);
x->x_my_kern[i].x_w_array_sym_name = gensym(buffer);
x->x_my_kern[i].x_w_array_mem_beg = (t_float *)0;
x->x_my_kern[i].x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float));
}
x->x_clock = clock_new(x, (t_method)n_CNLMS_tilde_tick);
return(x);
}
else
{
post("n_CNLMSC~-ERROR: need 5 float- + 1 symbol-arguments:");
post(" number_of_filters + order_of_filters + learnrate_beta + security_value_gamma + threshold_kappa + array_name_taps");
return(0);
}
}
void n_CNLMS_tilde_setup(void)
{
n_CNLMS_tilde_class = class_new(gensym("n_CNLMS~"), (t_newmethod)n_CNLMS_tilde_new, (t_method)n_CNLMS_tilde_free,
sizeof(t_n_CNLMS_tilde), 0, A_GIMME, 0);
CLASS_MAINSIGNALIN(n_CNLMS_tilde_class, t_n_CNLMS_tilde, x_msi);
class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_dsp, gensym("dsp"), 0);
class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N)
class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate
class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal
class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_kappa, gensym("kappa"), A_FLOAT, 0); // method: threshold for compressing w_coeff
//class_sethelpsymbol(n_CNLMS_tilde_class, gensym("iemhelp2/n_CNLMS~"));
}
|