1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2005 */
#ifdef _MSC_VER
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
/* -- mov_avrg_kern~ - kernel for a moving-average-filter with IIR - */
typedef struct sigmov_avrg_kern
{
t_object x_obj;
double x_wn1;
double x_a0;
double x_sr;
double x_mstime;
int x_nsamps;
int x_counter;
float x_msi;
} t_sigmov_avrg_kern;
t_class *sigmov_avrg_kern_class;
static t_int *sigmov_avrg_kern_perform(t_int *w)
{
float *in_direct = (float *)(w[1]);
float *in_delayed = (float *)(w[2]);
float *out = (float *)(w[3]);
t_sigmov_avrg_kern *x = (t_sigmov_avrg_kern *)(w[4]);
int i, n = (int)(w[5]);
double wn0, wn1=x->x_wn1, a0=x->x_a0;
if(x->x_counter)
{
int counter = x->x_counter;
if(counter >= n)
{
x->x_counter = counter - n;
for(i=0; i<n; i++)
{
wn0 = wn1 + a0*(double)(*in_direct++);
*out++ = (float)wn0;
wn1 = wn0;
}
}
else
{
x->x_counter = 0;
for(i=0; i<counter; i++)
{
wn0 = wn1 + a0*(double)(*in_direct++);
*out++ = (float)wn0;
wn1 = wn0;
}
for(i=counter; i<n; i++)
{
wn0 = wn1 + a0*(double)(*in_direct++ - *in_delayed++);
*out++ = (float)wn0;
wn1 = wn0;
}
}
}
else
{
for(i=0; i<n; i++)
{
wn0 = wn1 + a0*(double)(*in_direct++ - *in_delayed++);
*out++ = (float)wn0;
wn1 = wn0;
}
}
x->x_wn1 = wn1;
return(w+6);
}
static void sigmov_avrg_kern_ft1(t_sigmov_avrg_kern *x, t_floatarg mstime)
{
if(mstime < 0.04)
mstime = 0.04;
x->x_mstime = (double)mstime;
x->x_nsamps = (int)(x->x_sr * x->x_mstime);
x->x_counter = x->x_nsamps;
x->x_wn1 = 0.0;
x->x_a0 = 1.0/(double)(x->x_nsamps);
}
static void sigmov_avrg_kern_reset(t_sigmov_avrg_kern *x)
{
x->x_counter = x->x_nsamps;
x->x_wn1 = 0.0;
}
static void sigmov_avrg_kern_dsp(t_sigmov_avrg_kern *x, t_signal **sp)
{
x->x_sr = 0.001*(double)(sp[0]->s_sr);
x->x_nsamps = (int)(x->x_sr * x->x_mstime);
x->x_counter = x->x_nsamps;
x->x_wn1 = 0.0;
x->x_a0 = 1.0/(double)(x->x_nsamps);
dsp_add(sigmov_avrg_kern_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, x, sp[0]->s_n);
}
static void *sigmov_avrg_kern_new(t_floatarg mstime)
{
t_sigmov_avrg_kern *x = (t_sigmov_avrg_kern *)pd_new(sigmov_avrg_kern_class);
if(mstime < 0.04)
mstime = 0.04;
x->x_mstime = (double)mstime;
x->x_sr = 44.1;
x->x_nsamps = (int)(x->x_sr * x->x_mstime);
x->x_counter = x->x_nsamps;
x->x_wn1 = 0.0;
x->x_a0 = 1.0/(double)(x->x_nsamps);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
outlet_new(&x->x_obj, &s_signal);
x->x_msi = 0;
return(x);
}
void sigmov_avrg_kern_setup(void)
{
sigmov_avrg_kern_class = class_new(gensym("mov_avrg_kern~"), (t_newmethod)sigmov_avrg_kern_new,
0, sizeof(t_sigmov_avrg_kern), 0, A_FLOAT, 0);
CLASS_MAINSIGNALIN(sigmov_avrg_kern_class, t_sigmov_avrg_kern, x_msi);
class_addmethod(sigmov_avrg_kern_class, (t_method)sigmov_avrg_kern_dsp, gensym("dsp"), 0);
class_addmethod(sigmov_avrg_kern_class, (t_method)sigmov_avrg_kern_ft1, gensym("ft1"), A_FLOAT, 0);
class_addmethod(sigmov_avrg_kern_class, (t_method)sigmov_avrg_kern_reset, gensym("reset"), 0);
}
|