diff options
author | IOhannes m zmölnig <zmoelnig@users.sourceforge.net> | 2005-04-27 16:51:59 +0000 |
---|---|---|
committer | IOhannes m zmölnig <zmoelnig@users.sourceforge.net> | 2005-04-27 16:51:59 +0000 |
commit | ef2bda92941a71ea418c4eb01f9e95cd0d96ad9a (patch) | |
tree | aebdd664e312c04dfae7e9b81b29bd5f02190f5b /src | |
parent | eca989eb11d9f22ad1acddd182523f98a12f25d4 (diff) |
cholesky decomposition
svn path=/trunk/externals/iem/iemmatrix/; revision=2836
Diffstat (limited to 'src')
-rw-r--r-- | src/mtx_cholesky.c | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/src/mtx_cholesky.c b/src/mtx_cholesky.c new file mode 100644 index 0000000..b9e97b8 --- /dev/null +++ b/src/mtx_cholesky.c @@ -0,0 +1,117 @@ +/* + * iemmatrix + * + * objects for manipulating simple matrices + * mostly refering to matlab/octave matrix functions + * + * Copyright (c) IOhannes m zmölnig, forum::für::umläute + * IEM, Graz, Austria + * + * For information on usage and redistribution, and for a DISCLAIMER OF ALL + * WARRANTIES, see the file, "LICENSE.txt," in this distribution. + * + */ +#include "iemmatrix.h" + +/* mtx_cholesky */ + +/* + * calculate the "Cholesky Decomposition" of a "symmetric and positive definite matrix " + * no check is done, whether the input matrix is really symmetric and positive definite. + */ + +static t_class *mtx_cholesky_class; + +static void mtx_cholesky_matrix(t_matrix *x, t_symbol *s, int argc, t_atom *argv) +{ + /* maybe we should do this in double or long double ? */ + int row=atom_getfloat(argv); + int col=atom_getfloat(argv+1); + int i, j, k, row2=row*row; + + t_matrixfloat *original, *cholesky; + t_matrixfloat *a1, *b1; // dummy pointers + + int ok = 0; + + if(row*col+2>argc){ + post("mtx_print : sparse matrices not yet supported : use \"mtx_check\""); + return; + } + if (row!=col){ + post("mtx_cholesky: only symmetric and positive definite matrices can be cholesky-decomposed"); + return; + } + + // reserve memory for outputting afterwards + adjustsize(x, row, row); + // 1. get the 2 matrices : orig; invert (create as eye, but will be orig^(-1)) + cholesky = (t_matrixfloat *)getbytes(sizeof(t_matrixfloat)*row2); + // 1a extract values of A to float-buf + original=matrix2float(argv); + + // 2 set the cholesky matrix to zero + for(i=0; i<row2; i++)cholesky[i]=0.; + + // 3 do the cholesky decomposition + for(i=0; i<col; i++){ + // 3a get the diagonal element + // l_ii=sqrt(a_ii-sum(k=1..i-1)((l_ik)^2)) + t_matrixfloat sum=0.; + t_matrixfloat result=0.f; + + for(k=0; k<i; k++){ + t_matrixfloat lik=cholesky[k*col+i]; + sum+=lik*lik; + } + if((result=original[i*(col+1)]-sum)<0){ + post("[mtx_cholesky]: only symmetric and positive definite matrices can be cholesky-decomposed"); + return; + } + result=sqrtf(result); // LATER check whether this is real + cholesky[i*(col+1)]=result; + // 3b get the other elements within this row/col + // l_ji=(a_ji-sum(k=1..i-1)(l_jk*l_ik))/l_ii + for(j=i+1; j<row; j++){ + sum=0.; + for(k=0; k<i; k++){ + t_matrixfloat ljk=cholesky[k*col+j]; + t_matrixfloat lik=cholesky[k*col+i]; + + sum+=ljk*lik; + } + cholesky[i*row+j]=(original[i*col+j]-sum)/result; + } + } + + // 4. output the matrix + // 4a convert the floatbuf to an atombuf; + float2matrix(x->atombuffer, cholesky); + // 4b destroy the buffers + freebytes(original, sizeof(t_matrixfloat)*row2); + + // 4c output the atombuf; + matrix_bang(x); +} + +static void *mtx_cholesky_new(t_symbol *s, int argc, t_atom *argv) +{ + t_matrix *x = (t_matrix *)pd_new(mtx_cholesky_class); + outlet_new(&x->x_obj, 0); + x->col=x->row=0; + x->atombuffer=0; + + return (x); +} +void mtx_cholesky_setup(void) +{ + mtx_cholesky_class = class_new(gensym("mtx_cholesky"), (t_newmethod)mtx_cholesky_new, + (t_method)matrix_free, sizeof(t_matrix), 0, A_GIMME, 0); + class_addbang (mtx_cholesky_class, matrix_bang); + class_addmethod(mtx_cholesky_class, (t_method)mtx_cholesky_matrix, gensym("matrix"), A_GIMME, 0); + class_sethelpsymbol(mtx_cholesky_class, gensym("iemmatrix/mtx_cholesky")); +} + +void iemtx_cholesky_setup(void){ + mtx_cholesky_setup(); +} |