aboutsummaryrefslogtreecommitdiff
path: root/src/mtx_spherical_harmonics
diff options
context:
space:
mode:
Diffstat (limited to 'src/mtx_spherical_harmonics')
-rw-r--r--src/mtx_spherical_harmonics/chebyshev12.c10
-rw-r--r--src/mtx_spherical_harmonics/sharmonics.c2
-rw-r--r--src/mtx_spherical_harmonics/sharmonics_normalization.c9
3 files changed, 16 insertions, 5 deletions
diff --git a/src/mtx_spherical_harmonics/chebyshev12.c b/src/mtx_spherical_harmonics/chebyshev12.c
index 462341b..64af232 100644
--- a/src/mtx_spherical_harmonics/chebyshev12.c
+++ b/src/mtx_spherical_harmonics/chebyshev12.c
@@ -1,5 +1,5 @@
/*
- Evaluates all circular harmonics
+ Evaluates all fully normalized circular harmonics
at the angles phi up to the order nmax.
using the recurrence for the Chebyshev
polynomials of the first and second kind
@@ -42,6 +42,8 @@ void chebyshev12(double *phi, Cheby12WorkSpace *wc) {
const int incr=2*wc->nmax+1;
double *cosphi;
double *sinphi;
+ const double oneoversqrt2pi=1.0/sqrt(2.0*M_PI);
+ const double oneoversqrtpi=1.0/sqrt(M_PI);
// memory allocation
if ((wc!=0)&&(phi!=0)) {
if ((cosphi=(double*)calloc(wc->l,sizeof(double)))==0) {
@@ -56,9 +58,9 @@ void chebyshev12(double *phi, Cheby12WorkSpace *wc) {
cosphi[l]=cos(phi[l]);
sinphi[l]=sin(phi[l]);
// initial value T_0=1
- wc->t[l0]=1;
- wc->t[l0+1]=cosphi[l];
- wc->t[l0-1]=sinphi[l];
+ wc->t[l0]=oneoversqrt2pi;
+ wc->t[l0+1]=cosphi[l]*oneoversqrtpi;
+ wc->t[l0-1]=sinphi[l]*oneoversqrtpi;
}
// recurrence for n>1
for (n=2; n<=wc->nmax; n++) {
diff --git a/src/mtx_spherical_harmonics/sharmonics.c b/src/mtx_spherical_harmonics/sharmonics.c
index 5d6f853..dbfcb18 100644
--- a/src/mtx_spherical_harmonics/sharmonics.c
+++ b/src/mtx_spherical_harmonics/sharmonics.c
@@ -43,7 +43,7 @@ static void sharmonics_initlegendrenormlzd(SHWorkSpace *ws) {
}
}
-// multiplying Chebyshev sin/cos to the preliminary result
+// multiplying normalized Chebyshev sin/cos to the preliminary result
// Y_n^m(phi,theta) = Y_n^m(theta) * T_m(phi)
// ny0 and nt0 denote where the position (n,m)=(n,0) or m=0 is in the arrays
// ly0 and lt0 denote the starting position for one vertex in the arrays
diff --git a/src/mtx_spherical_harmonics/sharmonics_normalization.c b/src/mtx_spherical_harmonics/sharmonics_normalization.c
index ca97292..d7fe00a 100644
--- a/src/mtx_spherical_harmonics/sharmonics_normalization.c
+++ b/src/mtx_spherical_harmonics/sharmonics_normalization.c
@@ -27,8 +27,14 @@ SHNorml *sharmonics_normalization_new (const size_t nmax) {
wn=0;
}
else {
+ /*
+ deprecated:
// computing N_n^m for m=0, wrongly normalized
wn->n[0]=sqrt(1/(2*M_PI));
+ */
+
+ // computing N_n^m for m=0,
+ wn->n[0]=oneoversqrt2;
for (n=1,n0=1; n<=nmax; n++) {
wn->n[n0]=wn->n[0] * sqrt(2*n+1);
n0+=n+1;
@@ -40,11 +46,14 @@ SHNorml *sharmonics_normalization_new (const size_t nmax) {
}
n0+=n+1;
}
+ /*
+ deprecated:
// correcting normalization of N_n^0
for (n=0,n0=0; n<=nmax; n++) {
wn->n[n0]*=oneoversqrt2;
n0+=n+1;
}
+ */
}
}
return wn;