diff options
Diffstat (limited to 'src/mtx_spherical_harmonics')
-rw-r--r-- | src/mtx_spherical_harmonics/sph_radial.c | 82 | ||||
-rw-r--r-- | src/mtx_spherical_harmonics/sph_radial.h | 26 |
2 files changed, 108 insertions, 0 deletions
diff --git a/src/mtx_spherical_harmonics/sph_radial.c b/src/mtx_spherical_harmonics/sph_radial.c new file mode 100644 index 0000000..ec3536e --- /dev/null +++ b/src/mtx_spherical_harmonics/sph_radial.c @@ -0,0 +1,82 @@ +/* + * Recursive computation of (arbitrary degree) spherical Bessel/Neumann/Hankel functions, + * according to Gumerov and Duraiswami, + * "The Fast Multipole Methods for the Helmholtz Equation in Three Dimensions", + * Elsevier, 2005. + * + * Implementation by Franz Zotter, Institute of Electronic Music and Acoustics + * (IEM), University of Music and Dramatic Arts (KUG), Graz, Austria + * http://iem.at/Members/zotter, 2007. + * + * This code is published under the Gnu General Public License, see + * "LICENSE.txt" + */ + +#include <math.h> + +#include "sph_radial.h" + +#define EPS 1e-10 + +static void radialRecurrence (double x, double *y, int n); + +// the two recurrences for higher n: +// by now no numeric stabilization for the bessel function is performed + +static void radialRecurrence (double x, double *y, int n) { + int k; + for (k=1;k<n;k++) { + y[k+1] = -y[k-1] + y[k]/x * (2*k+1); + } +} + +static void radialDiffRecurrence (double x, double *y1, double *yd, int n) { + int k; + for (k=0;k<n;k++) { + yd[k] = y1[k]/x * n - y1[k+1]; + } +} + +void sphBessel (double x, double *y, int n) { //TODO: small values! + if (y==0) + return; + if (n>=0) + y[0] = (x<EPS)?1.0:sin(x)/x; + if (n>=1) + y[1] = -cos(x)/x + y[0]/x; + post("before %f %f %f",y[0],y[1],y[2]); + radialRecurrence (x,y,n); + post("after %f %f %f",y[0],y[1],y[2]); +} + +void sphNeumann (double x, double *y, int n) { + if (y==0) + return; + if (n>=0) + y[0] = -cos(x)/x; + if (n>=1) + y[1] = ((x<EPS)?1.0:sin(x)/x) - y[0]/x; + radialRecurrence (x,y,n); +} + +void sphBesselDiff (double x, double *y, int n) { + double *y1; + if (n<0) + return; + if ((y1 = (double*)calloc(n+2,sizeof(double)))==0) + return; + sphBessel (x,y1,n+1); + radialDiffRecurrence (x,y1,y,n); + free(y1); +} + +void sphNeumannDiff (double x, double *y, int n) { + double *y1; + if (n<0) + return; + if ((y1 = (double*)calloc(n+2,sizeof(double)))==0) + return; + sphNeumann (x,y,n+1); + radialDiffRecurrence (x,y1,y,n); + free(y1); +} diff --git a/src/mtx_spherical_harmonics/sph_radial.h b/src/mtx_spherical_harmonics/sph_radial.h new file mode 100644 index 0000000..43661ce --- /dev/null +++ b/src/mtx_spherical_harmonics/sph_radial.h @@ -0,0 +1,26 @@ +/* + * Recursive computation of (arbitrary degree) spherical Bessel/Neumann/Hankel functions, + * according to Gumerov and Duraiswami, + * "The Fast Multipole Methods for the Helmholtz Equation in Three Dimensions", + * Elsevier, 2005. + * + * Implementation by Franz Zotter, Institute of Electronic Music and Acoustics + * (IEM), University of Music and Dramatic Arts (KUG), Graz, Austria + * http://iem.at/Members/zotter, 2007. + * + * This code is published under the Gnu General Public License, see + * "LICENSE.txt" + */ + +#ifndef __SPH_RADIAL_H__ +#define __SPH_RADIAL_H__ + +void sphBessel (double x, double *y, int n); + +void sphNeumann (double x, double *y, int n); + +void sphBesselDiff (double x, double *y, int n); + +void sphNeumannDiff (double x, double *y, int n); + +#endif // __SPH_RADIAL_H__ |