1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/*
* iemmatrix
*
* objects for manipulating simple matrices
* mostly refering to matlab/octave matrix functions
* this functions depends on the GNU scientific library
*
* Copyright (c) 2009, Franz Zotter
* IEM, Graz, Austria
*
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
*
*/
#include "iemmatrix.h"
#include <stdlib.h>
#ifdef HAVE_LIBGSL
#include <gsl/gsl_eigen.h>
#endif
static t_class *mtx_eig_class;
enum WithEigenVectors {WITHEVS=1, WITHOUTEVS=0};
typedef struct _MTXEig_ MTXEig;
struct _MTXEig_
{
t_object x_obj;
#ifdef HAVE_GSL_EIGEN_NONSYMM
gsl_matrix *a;
gsl_matrix_complex *q;
gsl_vector_complex *l;
gsl_eigen_nonsymm_workspace *w;
gsl_eigen_nonsymmv_workspace *wv;
#endif
t_outlet *list_q_out_re;
t_outlet *list_q_out_im;
t_outlet *list_l_out_re;
t_outlet *list_l_out_im;
t_atom *list_q_re;
t_atom *list_q_im;
t_atom *list_l_re;
t_atom *list_l_im;
int size;
enum WithEigenVectors withevs;
};
#ifdef HAVE_GSL_EIGEN_NONSYMM
static void allocMTXqlw (MTXEig *x)
{
x->a=(gsl_matrix*)gsl_matrix_alloc(x->size,x->size);
x->l=(gsl_vector_complex*)gsl_vector_complex_alloc(x->size);
switch (x->withevs) {
case WITHEVS:
x->wv=(gsl_eigen_nonsymmv_workspace*)gsl_eigen_nonsymmv_alloc(x->size);
x->q=(gsl_matrix_complex*)gsl_matrix_complex_alloc(x->size,x->size);
break;
case WITHOUTEVS:
x->w=(gsl_eigen_nonsymm_workspace*)gsl_eigen_nonsymm_alloc(x->size);
}
x->list_q_re=(t_atom*)calloc(sizeof(t_atom),x->size*x->size+2);
x->list_q_im=(t_atom*)calloc(sizeof(t_atom),x->size*x->size+2);
x->list_l_re=(t_atom*)calloc(sizeof(t_atom),x->size);
x->list_l_im=(t_atom*)calloc(sizeof(t_atom),x->size);
}
static void deleteMTXqlw (MTXEig *x)
{
if (x->list_q_re!=0)
free(x->list_q_re);
if (x->list_q_im!=0)
free(x->list_q_im);
if (x->list_l_re!=0)
free(x->list_l_re);
if (x->list_l_im!=0)
free(x->list_l_im);
x->list_q_re = 0;
x->list_q_im = 0;
x->list_l_re = 0;
x->list_l_im = 0;
if (x->a!=0)
gsl_matrix_free(x->a);
if (x->q!=0)
gsl_matrix_complex_free(x->q);
if (x->l!=0)
gsl_vector_complex_free(x->l);
if (x->w!=0)
gsl_eigen_nonsymm_free(x->w);
if (x->wv!=0)
gsl_eigen_nonsymmv_free(x->wv);
x->a = 0;
x->q = 0;
x->l = 0;
x->w = 0;
x->wv = 0;
}
#endif
static void deleteMTXEig (MTXEig *x)
{
#ifdef HAVE_GSL_EIGEN_NONSYMM
deleteMTXqlw(x);
#endif
}
static void *newMTXEig (t_symbol *s, int argc, t_atom *argv)
{
MTXEig *x = (MTXEig *) pd_new (mtx_eig_class);
x->list_l_out_re = outlet_new (&x->x_obj, gensym("list"));
x->list_l_out_im = outlet_new (&x->x_obj, gensym("list"));
if (atom_getsymbol(argv)==gensym("v")) {
x->withevs=1;
x->list_q_out_re = outlet_new (&x->x_obj, gensym("matrix"));
x->list_q_out_im = outlet_new (&x->x_obj, gensym("matrix"));
}
x->list_l_re = 0;
x->list_l_im = 0;
x->list_q_re = 0;
x->list_q_im = 0;
#ifdef HAVE_GSL_EIGEN_NONSYMM
x->a=0;
x->q=0;
x->l=0;
x->w=0;
x->wv=0;
#endif
return ((void *) x);
}
static void mTXEigBang (MTXEig *x)
{
if (x->list_l_re) {
switch (x->withevs) {
case WITHEVS:
outlet_anything(x->list_q_out_im, gensym("matrix"), x->size*x->size+2, x->list_q_im);
outlet_anything(x->list_q_out_re, gensym("matrix"), x->size*x->size+2, x->list_q_re);
case WITHOUTEVS:
outlet_anything(x->list_l_out_im, gensym("list"), x->size, x->list_l_im);
outlet_anything(x->list_l_out_re, gensym("list"), x->size, x->list_l_re);
}
}
}
static void mTXEigMatrix (MTXEig *x, t_symbol *s,
int argc, t_atom *argv)
{
int rows = atom_getint (argv++);
int columns = atom_getint (argv++);
int size = rows * columns;
int in_size = argc-2;
int n,m;
float f;
#ifdef HAVE_GSL_EIGEN_NONSYMM
gsl_complex c;
/* size check */
if (!size)
post("mtx_eig: invalid dimensions");
else if (in_size<size)
post("mtx_eig: sparse matrix not yet supported: use \"mtx_check\"");
else if (rows!=columns)
post("mtx_eig: Eigendecomposition works for square matrices only!");
else {
size=rows;
x->size=size;
deleteMTXqlw(x);
allocMTXqlw(x);
for (n=0;n<in_size;n++)
x->a->data[n]=(double) atom_getfloat(argv++);
switch (x->withevs) {
case WITHOUTEVS:
gsl_eigen_nonsymm(x->a,x->l,x->w);
break;
case WITHEVS:
gsl_eigen_nonsymmv(x->a,x->l,x->q,x->wv);
SETFLOAT((x->list_q_re),(float) x->size);
SETFLOAT((x->list_q_im),(float) x->size);
SETFLOAT((x->list_q_re+1),(float) x->size);
SETFLOAT((x->list_q_im+1),(float) x->size);
for (n=0;n<in_size;n++) {
SETFLOAT((x->list_q_im+2+n), (float) x->q->data[2*n+1]);
SETFLOAT((x->list_q_re+2+n), (float) x->q->data[2*n]);
}
break;
}
for (n=0;n<x->size;n++) {
f=(float) GSL_VECTOR_IMAG(x->l, n);
SETFLOAT((x->list_l_im+n), f);
f=(float) GSL_VECTOR_REAL(x->l, n);
SETFLOAT((x->list_l_re+n), f);
}
mTXEigBang(x);
}
#else
post("mtx_eig: implementation requires more recent gsl version to handle nonsymmetric matrices");
#endif
}
void mtx_eig_setup (void)
{
mtx_eig_class = class_new
(gensym("mtx_eig"),
(t_newmethod) newMTXEig,
(t_method) deleteMTXEig,
sizeof (MTXEig),
CLASS_DEFAULT, A_GIMME, 0);
class_addbang (mtx_eig_class, (t_method) mTXEigBang);
class_addmethod (mtx_eig_class, (t_method) mTXEigMatrix, gensym("matrix"), A_GIMME,0);
}
void iemtx_eig_setup(void){
mtx_eig_setup();
}
|