aboutsummaryrefslogtreecommitdiff
path: root/src/mtx_spherical_radial.c
blob: e47adc0351593046fcfd59778c7d8b54f620b50b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 *  iemmatrix
 *
 *  objects for manipulating simple matrices
 *  mostly refering to matlab/octave matrix functions
 *  this functions depends on the GNU scientific library
 *
 * Copyright (c) 2009, Franz Zotter
 * IEM, Graz, Austria
 *
 * For information on usage and redistribution, and for a DISCLAIMER OF ALL
 * WARRANTIES, see the file, "LICENSE.txt," in this distribution.
 *
 */

#include "iemmatrix.h"
#include <stdlib.h>
#include "mtx_spherical_harmonics/sph_radial.c"

static t_class *mtx_spherical_radial_class;

typedef struct _MTXSph_ MTXSph;
struct _MTXSph_
{
  t_object x_obj;
  t_outlet *list_h_re_out;
  t_outlet *list_h_im_out;
  t_atom *list_h_re;
  t_atom *list_h_im;
  double *kr;
  double *h_re;
  double *h_im;
  size_t nmax;
  size_t l;
};

static void allocMTXSphdata (MTXSph *x) 
{
   x->kr=(double*)calloc(x->l,sizeof(double));
   if (x->list_h_re_out!=0) {
      x->list_h_re=(t_atom*)calloc(x->l*(x->nmax+1)+2,sizeof(t_atom));
      x->h_re=(double*)calloc(x->l*(x->nmax+1),sizeof(double));
   }
   if (x->list_h_im_out!=0) {
      x->list_h_im=(t_atom*)calloc(x->l*(x->nmax+1)+2,sizeof(t_atom));
      x->h_im=(double*)calloc(x->l*(x->nmax+1),sizeof(double));
   }
}

static void deleteMTXSphdata (MTXSph *x) 
{
   if (x->kr!=0)
      free(x->kr);
   if (x->h_re!=0)
      free(x->h_re);
   if (x->h_im!=0)
      free(x->h_im);
   if (x->list_h_re!=0)
      free(x->list_h_re);
   if (x->list_h_im!=0)
      free(x->list_h_im);
   x->list_h_re=0;
   x->list_h_im=0;
   x->h_re=0;
   x->h_im=0;
   x->kr=0;
}

static void *newMTXSph (t_symbol *s, int argc, t_atom *argv)
{
  int nmax;
  char whichfunction = 'j';
  t_symbol *fsym;
  MTXSph *x = (MTXSph *) pd_new (mtx_spherical_radial_class);
  x->list_h_re = 0; 
  x->list_h_im = 0; 
  x->list_h_im_out = 0; 
  x->list_h_re_out = 0; 
  x->kr = 0; 
  x->h_re = 0; 
  x->h_im = 0; 
  x->l=0;
  fsym=atom_getsymbol(argv);
  if (fsym->s_name!=0)
     whichfunction=fsym->s_name[0];
  switch (whichfunction) {
     default:
     case 'j':
        x->list_h_re_out = outlet_new (&x->x_obj, gensym("matrix"));
	break;
     case 'h':
        x->list_h_re_out = outlet_new (&x->x_obj, gensym("matrix"));
     case 'y':
        x->list_h_im_out = outlet_new (&x->x_obj, gensym("matrix"));
  }
  nmax=(int) atom_getfloat(argv+1);
  if (nmax<0)
     nmax=0;
  x->nmax=nmax;
  
  return ((void *) x);
} 

static void mTXSphBang (MTXSph *x)
{
  if (x->list_h_im!=0) {
    outlet_anything(x->list_h_im_out, gensym("matrix"), x->l*(x->nmax+1)+2, x->list_h_im);
  }
  if (x->list_h_re!=0) {
    outlet_anything(x->list_h_re_out, gensym("matrix"), x->l*(x->nmax+1)+2, x->list_h_re);
  }
}

static void mTXSphMatrix (MTXSph *x, t_symbol *s, 
			      int argc, t_atom *argv)
{
  int rows = atom_getint (argv++);
  int columns = atom_getint (argv++);
  int size = rows * columns;
  int in_size = argc-2;
  unsigned int n,ofs;


  /* size check */
  if (!size) 
    post("mtx_spherical_radial: invalid dimensions");
  else if (in_size<size) 
    post("mtx_spherical_radial: sparse matrix not yet supported: use \"mtx_check\"");
  else if ((rows!=1)||(columns<1))
     post("mtx_spherical_radial: 1 X L matrix expected with kr and h vector, but got more rows/no entries");
  else {
     if (x->l!=columns) {
        deleteMTXSphdata(x);
        x->l=columns;
        allocMTXSphdata(x);
     }
     for (n=0;n<x->l;n++) {
        x->kr[n]=(double) atom_getfloat(argv+n);
     }
  
     if (x->h_re!=0) 
	for (n=0,ofs=0;n<x->l;n++,ofs+=x->nmax+1)
	    sphBessel(x->kr[n], x->h_re+ofs, x->nmax);

     if (x->h_im!=0) 
	for (n=0,ofs=0;n<x->l;n++,ofs+=x->nmax+1)
	    sphNeumann(x->kr[n], x->h_im+ofs, x->nmax);
     
     if (x->h_re!=0) {
        SETFLOAT(x->list_h_re+1,(float)(x->nmax+1));
        SETFLOAT(x->list_h_re,(float)x->l);
	for (n=0;n<x->l*(x->nmax+1);n++)
           SETFLOAT(x->list_h_re+n+2,(float)x->h_re[n]);
     }
     
     if (x->h_im!=0) {
        SETFLOAT(x->list_h_im+1,(float)(x->nmax+1));
        SETFLOAT(x->list_h_im,(float)x->l);
	for (n=0;n<x->l*(x->nmax+1);n++)
           SETFLOAT(x->list_h_im+n+2,(float)x->h_im[n]);
     }

     mTXSphBang(x);
  }
}

void mtx_spherical_radial_setup (void)
{
  mtx_spherical_radial_class = class_new 
    (gensym("mtx_spherical_radial"),
     (t_newmethod) newMTXSph,
     (t_method) deleteMTXSphdata,
     sizeof (MTXSph),
     CLASS_DEFAULT, A_GIMME, 0);
  class_addbang (mtx_spherical_radial_class, (t_method) mTXSphBang);
  class_addmethod (mtx_spherical_radial_class, (t_method) mTXSphMatrix, gensym("matrix"), A_GIMME,0);
}

void iemtx_spherical_radial_setup(void){
  mtx_spherical_radial_setup();
}