1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
|
/* nn : Neural Networks for PD
by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it
this software is simply an interface for FANN classes
http://fann.sourceforge.net/
FANN is obviously needed for compilation
this software is licensed under the GNU General Public License
*/
#include <stdio.h>
#include <string.h>
#include "m_pd.h"
#include "fann.h"
#define VERSION "0.03"
#ifndef __DATE__
#define __DATE__ ""
#endif
#define TRAIN 0
#define RUN 1
#define MAXINPUT 100
#define MAXOUTPUT 100
static t_class *ann_mlp_class;
typedef struct _ann_mlp {
t_object x_obj;
struct fann *ann;
int mode; // 0 = training, 1 = running
t_symbol *filename; // name of the file where this ann is saved
t_symbol *filenametrain; // name of the file with training data
float desired_error;
unsigned int max_iterations;
unsigned int iterations_between_reports;
t_outlet *l_out, *f_out;
} t_ann_mlp;
static void help(t_ann_mlp *x)
{
post("");
post("ann_mlp: neural nets for PD");
post("ann_mlp:Davide Morelli - info@davidemorelli.it - (c)2005");
post("ann_mlp:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output");
post("ann_mlp:main commands: create, filename, load, save, train-on-file, run");
post("ann_mlp:see help-nn.pd for details on commands and usage");
post("ann_mlp:this is an interface to FANN");
}
static void createFann(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
unsigned int num_input = 2;
unsigned int num_output = 1;
unsigned int num_layers = 3;
unsigned int num_neurons_hidden = 3;
float connection_rate = 1;
float learning_rate = (float)0.7;
if (argc>0)
num_input = atom_getint(argv++);
if (argc>1)
num_output = atom_getint(argv++);
if (argc>2)
num_layers = atom_getint(argv++);
if (argc>3)
num_neurons_hidden = atom_getint(argv++);
if (argc>4)
connection_rate = atom_getfloat(argv++);
if (argc>5)
learning_rate = atom_getfloat(argv++);
if (num_input>=MAXINPUT)
{
error("too many inputs, maximum allowed is MAXINPUT");
return;
}
if (num_output>=MAXOUTPUT)
{
error("too many outputs, maximum allowed is MAXOUTPUT");
return;
}
x->ann = fann_create(connection_rate, learning_rate, num_layers,
num_input, num_neurons_hidden, num_output);
fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC);
if (x->ann == 0)
{
error("error creating the ann");
} else
{
post("created ann with:");
post("num_input = %i", num_input);
post("num_output = %i", num_output);
post("num_layers = %i", num_layers);
post("num_neurons_hidden = %i", num_neurons_hidden);
post("connection_rate = %f", connection_rate);
post("learning_rate = %f", learning_rate);
}
}
static void print_status(t_ann_mlp *x)
{
if (x->mode == TRAIN)
post("nn:training");
else
post("nn:running");
}
static void train(t_ann_mlp *x)
{
x->mode=TRAIN;
if (x->ann == 0)
{
error("ann not initialized");
return;
}
fann_reset_MSE(x->ann);
print_status(x);
}
static void run(t_ann_mlp *x)
{
x->mode=RUN;
print_status(x);
}
static void set_mode(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
if (argc<1)
{
error("usage: setmode 0/1: 0 for training, 1 for running");
}
else
{
x->mode = atom_getint(argv++);
print_status(x);
}
}
static void train_on_file(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
if (x->ann == 0)
{
error("ann not initialized");
return;
}
if (argc<1)
{
error("you must specify the filename with training data");
return;
} else
{
x->filenametrain = atom_gensym(argv);
}
//post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name);
fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations,
x->iterations_between_reports, x->desired_error);
post("nn: finished training on file %s", x->filenametrain->s_name);
}
static void set_desired_error(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
float desired_error = (float)0.001;
if (0<argc)
{
desired_error = atom_getfloat(argv);
x->desired_error = desired_error;
post("nn:desired_error set to %f", x->desired_error);
} else
{
error("you must pass me a float");
}
}
static void set_max_iterations(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
unsigned int max_iterations = 500000;
if (argc>0)
{
max_iterations = atom_getint(argv);
x->max_iterations = max_iterations;
post("nn:max_iterations set to %i", x->max_iterations);
} else
{
error("you must pass me an int");
}
}
static void set_iterations_between_reports(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
unsigned int iterations_between_reports = 1000;
if (argc>0)
{
iterations_between_reports = atom_getint(argv);
x->iterations_between_reports = iterations_between_reports;
post("nn:iterations_between_reports set to %i", x->iterations_between_reports);
} else
{
error("you must pass me an int");
}
}
// run the ann using floats in list passed to the inlet as input values
// and send result to outlet as list of float
static void run_the_net(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
int i=0;
fann_type input[MAXINPUT];
fann_type *calc_out;
t_atom lista[MAXOUTPUT];
int quanti;
float valoreTMP;
if (x->ann == 0)
{
error("ann not initialized");
return;
}
quanti = x->ann->num_output;
// fill input array with zeros
for (i=0; i<MAXINPUT; i++)
{
input[i]=0;
}
// fill output array with zeros
for (i=0; i<MAXOUTPUT; i++)
{
SETFLOAT(lista + i,0);
}
// fill input array with actual data sent to inlet
for (i=0;i<argc;i++)
{
input[i] = atom_getfloat(argv++);
}
// run the ann
calc_out = fann_run(x->ann, input);
// fill the output array with result from ann
for (i=0;i<quanti;i++)
{
valoreTMP = calc_out[i];
//post("calc_out[%i]=%f", i, calc_out[i]);
SETFLOAT(lista+i, valoreTMP);
}
// send output array to outlet
outlet_anything(x->l_out,
gensym("list") ,
quanti,
lista);
}
static void train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
int i=0;
fann_type input[MAXINPUT];
fann_type output[MAXOUTPUT];
//fann_type *calcMSE;
//t_atom lista[MAXOUTPUT];
int quantiINs;
int quantiOUTs;
float mse;
if (x->ann == 0)
{
error("ann not initialized");
return;
}
quantiINs = x->ann->num_input;
quantiOUTs = x->ann->num_output;
if ((quantiINs + quantiOUTs)>argc)
{
error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats");
return;
}
// fill input array with zeros
for (i=0; i<MAXINPUT; i++)
{
input[i]=0;
}
// fill input array with zeros
for (i=0; i<MAXOUTPUT; i++)
{
output[i]=0;
}
// fill input array with actual data sent to inlet
for (i=0;i<quantiINs;i++)
{
input[i] = atom_getfloat(argv++);
}
for (i=0;i<quantiOUTs;i++)
{
output[i] = atom_getfloat(argv++);
}
//fann_reset_MSE(x->ann);
fann_train(x->ann, input, output);
mse = fann_get_MSE(x->ann);
outlet_float(x->f_out, mse);
}
static void manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
if (x->mode)
run_the_net(x, sl, argc, argv);
else
{
train_on_the_fly(x, sl, argc, argv);
}
}
static void set_filename(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
if (argc>0) {
x->filename = atom_gensym(argv);
} else
{
error("you must specify the filename");
}
post("nn:filename set to %s", x->filename->s_name);
}
static void load_ann_from_file(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
if (argc>0) {
x->filename = atom_gensym(argv);
}
x->ann = fann_create_from_file(x->filename->s_name);
if (x->ann == 0)
error("error opening %s", x->filename->s_name);
else
post("nn:ann loaded fom file %s", x->filename->s_name);
}
static void save_ann_to_file(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
if (argc>0) {
x->filename = atom_gensym(argv);
}
if (x->ann == 0)
{
error("ann is not initialized");
} else
{
fann_save(x->ann, x->filename->s_name);
post("nn:ann saved in file %s", x->filename->s_name);
}
}
// functions for training algo:
static void set_FANN_TRAIN_INCREMENTAL(t_ann_mlp *x)
{
if (x->ann == 0)
{
error("ann is not initialized");
} else
{
fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL);
post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL");
}
}
static void set_FANN_TRAIN_BATCH(t_ann_mlp *x)
{
if (x->ann == 0)
{
error("ann is not initialized");
} else
{
fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH);
post("nn:training algorithm set to FANN_TRAIN_BATCH");
}
}
static void set_FANN_TRAIN_RPROP(t_ann_mlp *x)
{
if (x->ann == 0)
{
error("ann is not initialized");
} else
{
fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP);
post("nn:training algorithm set to FANN_TRAIN_RPROP");
}
}
static void set_FANN_TRAIN_QUICKPROP(t_ann_mlp *x)
{
if (x->ann == 0)
{
error("ann is not initialized");
} else
{
fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP);
post("nn:training algorithm set to FANN_TRAIN_QUICKPROP");
}
}
static void set_activation_function_output(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
t_symbol *parametro = 0;
int funzione = 0;
if (x->ann == 0)
{
error("ann not initialized");
return;
}
if (argc>0) {
parametro = atom_gensym(argv);
if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0)
funzione = FANN_THRESHOLD;
if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0)
funzione = FANN_THRESHOLD_SYMMETRIC;
if (strcmp(parametro->s_name, "FANN_LINEAR")==0)
funzione = FANN_LINEAR;
if (strcmp(parametro->s_name, "FANN_SIGMOID")==0)
funzione = FANN_SIGMOID;
if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0)
funzione = FANN_SIGMOID_STEPWISE;
if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0)
funzione = FANN_SIGMOID_SYMMETRIC;
if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0)
funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE;
fann_set_activation_function_output(x->ann, funzione);
} else
{
error("you must specify the activation function");
}
post("nn:activation function set to %s (%i)", parametro->s_name, funzione);
}
static void print_ann_details(t_ann_mlp *x)
{
if (x->ann == 0)
{
post("nn:ann is not initialized");
} else
{
post("nn:follows a description of the current ann:");
post("nn:num_input=%i", x->ann->num_input);
post("nn:num_output=%i", x->ann->num_output);
post("nn:learning_rate=%f", x->ann->learning_rate);
post("nn:connection_rate=%f", x->ann->connection_rate);
post("nn:total_neurons=%i", x->ann->total_neurons);
post("nn:total_connections=%i", x->ann->total_connections);
post("nn:last error=%i", x->ann->errstr);
if (x->filename == 0)
{
post("nn:filename not set");
} else
{
post("nn:filename=%s", x->filename->s_name);
}
}
}
static void *nn_new(t_symbol *s, int argc, t_atom *argv)
{
t_ann_mlp *x = (t_ann_mlp *)pd_new(ann_mlp_class);
x->l_out = outlet_new(&x->x_obj, &s_list);
x->f_out = outlet_new(&x->x_obj, &s_float);
x->desired_error = (float)0.001;
x->max_iterations = 500000;
x->iterations_between_reports = 1000;
x->mode=RUN;
if (argc>0) {
x->filename = atom_gensym(argv);
load_ann_from_file(x, NULL , 0, NULL);
}
return (void *)x;
}
// free resources
static void nn_free(t_ann_mlp *x)
{
struct fann *ann = x->ann;
fann_destroy(ann);
// TODO: free other resources!
}
void ann_mlp_setup(void) {
post("");
post("ann_mlp: neural nets for PD");
post("version: "VERSION"");
post("compiled: "__DATE__);
post("author: Davide Morelli");
post("contact: info@davidemorelli.it www.davidemorelli.it");
ann_mlp_class = class_new(gensym("ann_mlp"),
(t_newmethod)nn_new,
(t_method)nn_free, sizeof(t_ann_mlp),
CLASS_DEFAULT, A_GIMME, 0);
// general..
class_addmethod(ann_mlp_class, (t_method)help, gensym("help"), 0);
class_addmethod(ann_mlp_class, (t_method)createFann, gensym("create"), A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)train, gensym("train"), 0);
class_addmethod(ann_mlp_class, (t_method)run, gensym("run"), 0);
class_addmethod(ann_mlp_class, (t_method)set_mode, gensym("setmode"), A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)train_on_file, gensym("train-on-file"), A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)manage_list, gensym("data"), A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)set_filename, gensym("filename"), A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)load_ann_from_file, gensym("load"),A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)save_ann_to_file, gensym("save"),A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)print_ann_details, gensym("details"), 0);
// change training parameters
class_addmethod(ann_mlp_class, (t_method)set_desired_error, gensym("desired_error"),A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)set_max_iterations, gensym("max_iterations"),A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0);
// change training and activation algorithms
class_addmethod(ann_mlp_class, (t_method)set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0);
class_addmethod(ann_mlp_class, (t_method)set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0);
class_addmethod(ann_mlp_class, (t_method)set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0);
class_addmethod(ann_mlp_class, (t_method)set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0);
class_addmethod(ann_mlp_class, (t_method)set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0);
// the most important one: running the ann
class_addlist(ann_mlp_class, (t_method)manage_list);
// help patch
class_sethelpsymbol(ann_mlp_class, gensym("help-ann_mlp"));
}
|