aboutsummaryrefslogtreecommitdiff
path: root/henon.c
diff options
context:
space:
mode:
Diffstat (limited to 'henon.c')
-rw-r--r--henon.c318
1 files changed, 245 insertions, 73 deletions
diff --git a/henon.c b/henon.c
index a67addd..c921ded 100644
--- a/henon.c
+++ b/henon.c
@@ -1,8 +1,6 @@
-///////////////////////////////////////////////////////////////////////////////////
-/* Henon's Attractor PD External */
-/* Copyright Ben Bogart 2002 */
-/* This program is distributed under the terms of the GNU General Public License */
-///////////////////////////////////////////////////////////////////////////////////
+/* henon Attractor PD External */
+/* Copyright Ben Bogart, 2003 */
+/* This program is distributed under the params of the GNU Public License */
///////////////////////////////////////////////////////////////////////////////////
/* This file is part of Chaos PD Externals. */
@@ -22,88 +20,262 @@
/* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
///////////////////////////////////////////////////////////////////////////////////
-#include "m_pd.h"
+#include <stdio.h>
+#include <stdlib.h>
#include <math.h>
+#include <time.h>
+#include "lyapunov.h"
+
+#define M_a_lo -1
+#define M_a_hi 2
+#define M_b_lo -1
+#define M_b_hi 2
+
+#define M_a 0
+#define M_b 1
+
+#define M_x 0
+#define M_y 1
+
+#define M_param_count 2
+#define M_var_count 2
+#define M_search_count 3
+#define M_failure_limit 1000
+
+static char *version = "henon v0.0, by Ben Bogart, 2003";
t_class *henon_class;
-typedef struct henon_struct
-{
- t_object henon_obj;
- double a, b, lx0, ly0;
- t_outlet *y_outlet;
-} henon_struct;
-
-static void calculate(henon_struct *x)
-{
- double lx0, ly0, lx1, ly1;
- double a, b;
+typedef struct henon_struct {
+ t_object x_obj;
+
+ double vars[M_var_count];
+ double vars_init[M_var_count];
+ t_atom vars_out[M_var_count];
+ t_outlet *vars_outlet;
+
+ t_atom search_out[M_search_count];
+ t_outlet *search_outlet;
- a = x->a;
- b = x->b;
- lx0 = x->lx0;
- ly0 = x->ly0;
-
- lx1 = (ly0 + 1) - (a * pow(lx0,2));
- ly1 = b * lx0;
- x->lx0 = lx1;
- x->ly0 = ly1;
-
- outlet_float(x->henon_obj.ob_outlet, (t_float)lx1);
- outlet_float(x->y_outlet, (t_float)ly1);
+ double a, a_lo, a_hi, b, b_lo, b_hi;
+ t_atom params_out[M_param_count];
+ t_outlet *params_outlet;
+ double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio;
+
+ t_outlet *outlets[M_var_count - 1];
+} henon_struct;
+
+static void calc(henon_struct *henon, double *vars) {
+ double x_0, y_0;
+ x_0 =(vars[M_y]+1)-(henon -> a*pow(vars[M_x],2));
+ y_0 =henon -> b*vars[M_x];
+ vars[M_x] = x_0;
+ vars[M_y] = y_0;
+} // end calc
+
+static void calculate(henon_struct *henon) {
+ calc(henon, henon -> vars);
+ outlet_float(henon -> x_obj.ob_outlet, henon -> vars[M_x]);
+ outlet_float(henon -> outlets[M_y - 1], henon -> vars[M_y]);
+} // end calculate
+
+static void reset(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) {
+ if (argc == M_var_count) {
+ henon -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv);
+ henon -> vars[M_y] = (double) atom_getfloatarg(M_y, argc, argv);
+ } else {
+ henon -> vars[M_x] = henon -> vars_init[M_x];
+ henon -> vars[M_y] = henon -> vars_init[M_y];
+ } // end if
+} // end reset
+
+static char *classify(henon_struct *henon) {
+ static char buff[3];
+ char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
+ buff[0] = c[(int) (((henon -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)];
+ buff[1] = c[(int) (((henon -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)];
+ buff[2] = '\0';
+ return buff;
}
-static void reset(henon_struct *x, t_floatarg lx0, t_floatarg ly0)
-{
- x->lx0 = lx0;
- x->ly0 = ly0;
+static void make_results(henon_struct *henon) {
+ SETFLOAT(&henon -> search_out[0], henon -> lyap_exp);
+ SETSYMBOL(&henon -> search_out[1], gensym(classify(henon)));
+ SETFLOAT(&henon -> search_out[2], henon -> failure_ratio);
+ SETFLOAT(&henon -> vars_out[M_x], henon -> vars[M_x]);
+ SETFLOAT(&henon -> vars_out[M_y], henon -> vars[M_y]);
+ SETFLOAT(&henon -> params_out[M_a], henon -> a);
+ SETFLOAT(&henon -> params_out[M_b], henon -> b);
+ outlet_list(henon -> params_outlet, gensym("list"), M_param_count, henon -> params_out);
+ outlet_list(henon -> vars_outlet, gensym("list"), M_var_count, henon -> vars_out);
}
-static void param(henon_struct *x, t_floatarg a, t_floatarg b)
-{
- x->a = (double)a;
- x->b = (double)b;
+static void show(henon_struct *henon) {
+ make_results(henon);
+ outlet_anything(henon -> search_outlet, gensym("show"), M_search_count, henon -> search_out);
}
-void *henon_new(void)
-{
- henon_struct *x = (henon_struct *)pd_new(henon_class);
- x->a = 1.4;
- x->b = 0.3;
- x->lx0 = 1;
- x->ly0 = 1;
-
- outlet_new(&x->henon_obj, &s_float); /* Default float outlet */
- x->y_outlet = outlet_new(&x->henon_obj, &s_float); /* New Outlet */
-
- return (void *)x;
+static void param(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) {
+ if (argc != 2) {
+ post("Incorrect number of arguments for henon fractal. Expecting 2 arguments.");
+ return;
+ }
+ henon -> a = (double) atom_getfloatarg(0, argc, argv);
+ henon -> b = (double) atom_getfloatarg(1, argc, argv);
}
+static void seed(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) {
+ if (argc > 0) {
+ srand48(((unsigned int)time(0))|1);
+ } else {
+ srand48((unsigned int) atom_getfloatarg(0, argc, argv));
+ }
+}
-void henon_setup(void)
-{
- post("henon");
+static void lyap(henon_struct *henon, t_floatarg l, t_floatarg h, t_floatarg lim) {
+ henon -> lyap_lo = l;
+ henon -> lyap_hi = h;
+ henon -> lyap_limit = (double) ((int) lim);
+}
- henon_class = class_new(gensym("henon"), /* symname is the symbolic name */
- (t_newmethod)henon_new, /* Constructor Function */
- 0, /* Destructor Function */
- sizeof(henon_struct), /* Size of the structure */
- CLASS_DEFAULT, /* Graphical Representation */
- 0); /* 0 Terminates Argument List */
+static void elyap(henon_struct *henon) {
+ double results[M_var_count];
+ int i;
+ if (lyapunov_full((void *) henon, (t_gotfn) calc, M_var_count, henon -> vars, results) != NULL) {
+ post("elyapunov:");
+ for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); }
+ }
+}
- class_addbang(henon_class, (t_method)calculate);
-
- class_addmethod(henon_class,
- (t_method)reset,
- gensym("reset"),
- A_DEFFLOAT,
- A_DEFFLOAT,
- 0);
-
- class_addmethod(henon_class,
- (t_method)param,
- gensym("param"),
- A_DEFFLOAT,
- A_DEFFLOAT,
- 0);
+static void limiter(henon_struct *henon) {
+ if (henon -> a_lo < M_a_lo) { henon -> a_lo = M_a_lo; }
+ if (henon -> a_lo > M_a_hi) { henon -> a_lo = M_a_hi; }
+ if (henon -> a_hi < M_a_lo) { henon -> a_hi = M_a_lo; }
+ if (henon -> a_hi > M_a_hi) { henon -> a_hi = M_a_hi; }
+ if (henon -> b_lo < M_b_lo) { henon -> b_lo = M_b_lo; }
+ if (henon -> b_lo > M_b_hi) { henon -> b_lo = M_b_hi; }
+ if (henon -> b_hi < M_b_lo) { henon -> b_hi = M_b_lo; }
+ if (henon -> b_hi > M_b_hi) { henon -> b_hi = M_b_hi; }
+}
+
+static void constrain(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) {
+ int i;
+ t_atom *arg = argv;
+ if (argc == 0) {
+ // reset to full limits of search ranges
+ henon -> a_lo = M_a_lo;
+ henon -> a_hi = M_a_hi;
+ henon -> b_lo = M_b_lo;
+ henon -> b_hi = M_b_hi;
+ return;
+ }
+ if (argc == 1) {
+ // set the ranges based on percentage of full range
+ double percent = atom_getfloat(arg);
+ double a_spread = ((M_a_hi - M_a_lo) * percent) / 2;
+ double b_spread = ((M_b_hi - M_b_lo) * percent) / 2;
+ henon -> a_lo = henon -> a - a_spread;
+ henon -> a_hi = henon -> a + a_spread;
+ henon -> b_lo = henon -> b - b_spread;
+ henon -> b_hi = henon -> b + b_spread;
+ limiter(henon);
+ return;
+ }
+ if (argc != M_param_count * 2) {
+ post("Invalid number of arguments for henon constraints, requires 4 values, got %d", argc);
+ return;
+ }
+ henon -> a_lo = atom_getfloat(arg++);
+ henon -> a_hi = atom_getfloat(arg++);
+ henon -> b_lo = atom_getfloat(arg++);
+ henon -> b_hi = atom_getfloat(arg++);
+ limiter(henon);
+}
+
+static void search(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) {
+ int not_found, not_expired = henon -> lyap_limit;
+ int jump, i, iterations;
+ t_atom vars[M_var_count];
+ double temp_a = henon -> a;
+ double temp_b = henon -> b;
+ if (argc > 0) {
+ for (i = 0; i < M_var_count; i++) {
+ SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv));
+ }
+ } else {
+ for (i = 0; i < M_var_count; i++) {
+ SETFLOAT(&vars[i], henon -> vars_init[i]);
+ }
+ }
+ do {
+ jump = 500;
+ not_found = 0;
+ iterations = 10000;
+ bad_params:
+ henon -> a = (drand48() * (henon -> a_hi - henon -> a_lo)) + henon -> a_lo;
+ henon -> b = (drand48() * (henon -> b_hi - henon -> b_lo)) + henon -> b_lo;
+ // put any preliminary checks specific to this fractal to eliminate bad_params
+
+ reset(henon, NULL, argc, vars);
+ do { calc(henon, henon -> vars); } while(jump--);
+ henon -> lyap_exp = lyapunov((void *) henon, (t_gotfn) calc, M_var_count, (double *) henon -> vars);
+ if (isnan(henon -> lyap_exp)) { not_found = 1; }
+ if (henon -> lyap_exp < henon -> lyap_lo || henon -> lyap_exp > henon -> lyap_hi) { not_found = 1; }
+ not_expired--;
+ } while(not_found && not_expired);
+ reset(henon, NULL, argc, vars);
+ if (!not_expired) {
+ post("Could not find a fractal after %d attempts.", (int) henon -> lyap_limit);
+ post("Try using wider constraints.");
+ henon -> a = temp_a;
+ henon -> b = temp_b;
+ outlet_anything(henon -> search_outlet, gensym("invalid"), 0, NULL);
+ } else {
+ henon -> failure_ratio = (henon -> lyap_limit - not_expired) / henon -> lyap_limit;
+ make_results(henon);
+ outlet_anything(henon -> search_outlet, gensym("search"), M_search_count, henon -> search_out);
+ }
+}
+
+void *henon_new(t_symbol *s, int argc, t_atom *argv) {
+ henon_struct *henon = (henon_struct *) pd_new(henon_class);
+ if (henon != NULL) {
+ outlet_new(&henon -> x_obj, &s_float);
+ henon -> outlets[0] = outlet_new(&henon -> x_obj, &s_float);
+ henon -> search_outlet = outlet_new(&henon -> x_obj, &s_list);
+ henon -> vars_outlet = outlet_new(&henon -> x_obj, &s_list);
+ henon -> params_outlet = outlet_new(&henon -> x_obj, &s_list);
+ if (argc == M_param_count + M_var_count) {
+ henon -> vars_init[M_x] = henon -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv);
+ henon -> vars_init[M_y] = henon -> vars[M_y] = (double) atom_getfloatarg(1, argc, argv);
+ henon -> a = (double) atom_getfloatarg(2, argc, argv);
+ henon -> b = (double) atom_getfloatarg(3, argc, argv);
+ } else {
+ if (argc != 0 && argc != M_param_count + M_var_count) {
+ post("Incorrect number of arguments for henon fractal. Expecting 4 arguments.");
+ }
+ henon -> vars_init[M_x] = 1;
+ henon -> vars_init[M_y] = 1;
+ henon -> a = 1.4;
+ henon -> b = 0.3;
+ }
+ constrain(henon, NULL, 0, NULL);
+ lyap(henon, -1000000.0, 1000000.0, M_failure_limit);
+ }
+ return (void *)henon;
}
+
+void henon_setup(void) {
+ henon_class = class_new(gensym("henon"), (t_newmethod) henon_new, 0, sizeof(henon_struct), 0, A_GIMME, 0);
+ class_addbang(henon_class, (t_method) calculate);
+ class_addmethod(henon_class, (t_method) reset, gensym("reset"), A_GIMME, 0);
+ class_addmethod(henon_class, (t_method) show, gensym("show"), 0);
+ class_addmethod(henon_class, (t_method) param, gensym("param"), A_GIMME, 0);
+ class_addmethod(henon_class, (t_method) seed, gensym("seed"), A_GIMME, 0);
+ class_addmethod(henon_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
+ class_addmethod(henon_class, (t_method) elyap, gensym("elyapunov"), 0);
+ class_addmethod(henon_class, (t_method) search, gensym("search"), A_GIMME, 0);
+ class_addmethod(henon_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0);
+ class_sethelpsymbol(henon_class, gensym("help-henon.pd"));
+}
+