blob: 056e6bdff35595a1cde847edb0f5b131cd755b92 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#N canvas 0 22 565 389 10;
#X text 74 61 Lyapunov Exponent;
#X text 25 82 This value is an estimate of the attractors potential
for chaos. It will not necessarily be the same for any given run using
any arbitrary fractal. The description below attempts to put "attractors"
into three catagories.;
#X text 48 262 Don't forget \, just because an "attractor" is not chaotic
\, it does not mean that it will not generate an interesting stream
of number \, if only until they converge.;
#X text 40 151 < 0;
#X text 78 151 These are not chaotic \, may produce a "shortterm"
stream of intrest;
#X text 39 179 == 0;
#X text 80 179 Attractors converge to one or more points;
#X text 40 197 > 0;
#X text 80 198 Chaos begins. Higher values indicate "more" chaos.;
