aboutsummaryrefslogtreecommitdiff
path: root/modules/resofilt.c
diff options
context:
space:
mode:
authorHans-Christoph Steiner <eighthave@users.sourceforge.net>2006-05-25 16:40:19 +0000
committerHans-Christoph Steiner <eighthave@users.sourceforge.net>2006-05-25 16:40:19 +0000
commitd962ed33f6b5fe3040cfbd798f63ab9aa36d1f9e (patch)
treef700234efa8d57c28ce9be56e0db5f6526921fbe /modules/resofilt.c
parent2994949cca515f63fb82fa1d114ce07eb213220d (diff)
renamed files to match their class names
svn path=/trunk/externals/creb/; revision=5127
Diffstat (limited to 'modules/resofilt.c')
-rw-r--r--modules/resofilt.c397
1 files changed, 0 insertions, 397 deletions
diff --git a/modules/resofilt.c b/modules/resofilt.c
deleted file mode 100644
index ba74532..0000000
--- a/modules/resofilt.c
+++ /dev/null
@@ -1,397 +0,0 @@
-/*
- * resofilt.c - some high quality time variant filters
- * Copyright (c) 2000-2003 by Tom Schouten
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-
-/* some (expensive) time variant iir filters,
- i.e. moog 4-pole transfer function using the impulse
- invariant transform with self osc and
- signal freq and reso inputs */
-
-
-#include "m_pd.h"
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include "filters.h"
-
-
-typedef struct resofiltctl
-{
- t_float c_state[4]; /* filter state */
- t_float c_f_prev;
- t_float c_r_prev;
-
-} t_resofiltctl;
-
-typedef struct resofilt
-{
- t_object x_obj;
- t_float x_f;
- t_resofiltctl x_ctl;
- t_perfroutine x_dsp;
-} t_resofilt;
-
-
-static inline void _sat_state(t_float *x)
-{
- const float norm_squared_max = 1.0f;
- float norm_squared = x[0] * x[0] + x[1] * x[1];
-
- if (norm_squared > norm_squared_max){
- float scale = 1.0f / sqrt(norm_squared);
- x[0] *= scale;
- x[1] *= scale;
- }
-}
-
-
-/* the moog vcf discretized with an impulse invariant transform */
-
-static t_int *resofilt_perform_fourpole(t_int *w)
-{
-
- t_resofiltctl *ctl = (t_resofiltctl *)(w[1]);
- t_int n = (t_int)(w[2]);
- t_float *in = (float *)(w[3]);
- t_float *freq = (float *)(w[4]);
- t_float *reso = (float *)(w[5]);
- t_float *out = (float *)(w[6]);
-
- int i;
- t_float inv_n = 1.0f / ((float)n);
- t_float inv_sr = 1.0f / sys_getsr();
-
- t_float phasor[2], phasor_rot[2];
- t_float radior[2], radior_rot[2];
- t_float scalor, scalor_inc;
-
- t_float f,r,freq_rms,reso_rms;
- t_float f_prev = ctl->c_f_prev;
- t_float r_prev = ctl->c_r_prev;
-
- /* use rms of input to drive freq and reso
- this is such that connecting a dsp signal to the inlets has a reasonable result,
- even if the inputs are oscillatory. the rms values will be interpolated linearly
- (that is, linearly in the "analog" domain, so exponentially in the z-domain) */
-
- reso_rms = freq_rms = 0.0f;
- for (i=0; i<n; i++){
- t_float _freq = *freq++; /* first input is the reso frequency (absolute) */
- t_float _reso = *reso++; /* second input is the resonnance (0->1), >1 == self osc */
- freq_rms += _freq * _freq;
- reso_rms += _reso * _reso;
- }
- freq_rms = sqrt(freq_rms * inv_n) * inv_sr;
- reso_rms = sqrt(reso_rms * inv_n);
- f = (freq_rms > 0.5f) ? 0.5f : freq_rms;
- r = sqrt(sqrt(reso_rms));
-
-
- /* calculate the new pole locations
- we use an impulse invariant transform: the moog vcf poles are located at
- s_p = (-1 +- r \sqrt{+- j}, with r = (k/4)^(1/4) \in [0,1]
-
- the poles are always complex, so we can use an orthogonal implementation
- both conj pole pairs have the same angle, so we can use one phasor and 2 radii
- */
-
- /* compute phasor, radius and update eqs
- since these are at k-rate, the expense is justifyable */
- phasor[0] = cos(2.0 * M_PI * r_prev * f_prev);
- phasor[1] = sin(2.0 * M_PI * r_prev * f_prev);
- phasor_rot[0] = cos(2.0 * M_PI * (r*f - r_prev*f_prev) * inv_n);
- phasor_rot[1] = sin(2.0 * M_PI * (r*f - r_prev*f_prev) * inv_n);
-
- radior[0] = exp(f_prev * (-1.0 + r_prev)); /* dominant radius */
- radior[1] = exp(f_prev * (-1.0 - r_prev));
- radior_rot[0] = exp((f*(-1.0f + r) - f_prev * (-1.0 + r_prev)) * inv_n);
- radior_rot[1] = exp((f*(-1.0f - r) - f_prev * (-1.0 - r_prev)) * inv_n);
-
- /* moog like scaling */
- if (1){
- float r2 = r_prev * r_prev;
- float r4 = r2 * r2;
- scalor = 1.0f + (1.0f + 4.0f * r4);
- r2 = r * r;
- r4 = r2 * r2;
- scalor_inc = ((1.0f + (1.0f + 4.0f * r4)) - scalor) * inv_n;
- }
-
- /* no scaling */
- else{
- scalor = 1.0f;
- scalor_inc = 0.0f;
- }
-
- ctl->c_f_prev = f;
- ctl->c_r_prev = r;
-
-
-
-
-
- /* perform filtering */
- for (i=0; i<n; i++){
- float poleA[2], poleB[2];
- float *stateA = ctl->c_state;
- float *stateB = ctl->c_state+2;
-
- float x;
-
- /* compute poles */
- poleA[0] = radior[0] * phasor[0];
- poleA[1] = radior[0] * phasor[1];
- poleB[0] = radior[1] * phasor[0];
- poleB[1] = radior[1] * phasor[1];
-
-
- /* perform filtering: use 2 DC normalized complex one-poles:
- y[k] = x[k] + a(y[k-1] - x[k]) or y(z) = (1-a)/(1-az^{-1}) x(z) */
-
- x = *in++ * scalor;
-
- /* nondominant pole first */
- stateB[0] -= x;
- vcmul2(stateB, poleB);
- x = stateB[0] += x;
-
- /* dominant pole second */
- stateA[0] -= x;
- vcmul2(stateA, poleA);
- x = stateA[0] += x;
-
- *out++ = x;
-
- /* saturate (normalize if pow > 1) state to prevent explosion and to allow self-osc */
- _sat_state(stateA);
- _sat_state(stateB);
-
- /* interpolate filter coefficients */
- vcmul2(phasor, phasor_rot);
- radior[0] *= radior_rot[0];
- radior[1] *= radior_rot[1];
- scalor += scalor_inc;
-
- }
-
- return (w+7);
-}
-
-
-
-
-
-/* 303-style modified moog vcf (3-pole) */
-
-static t_int *resofilt_perform_threepole(t_int *w)
-{
-
- t_resofiltctl *ctl = (t_resofiltctl *)(w[1]);
- t_int n = (t_int)(w[2]);
- t_float *in = (float *)(w[3]);
- t_float *freq = (float *)(w[4]);
- t_float *reso = (float *)(w[5]);
- t_float *out = (float *)(w[6]);
-
- int i;
- t_float inv_n = 1.0f / ((float)n);
- t_float inv_sr = 1.0f / sys_getsr();
-
- t_float phasor[2], phasor_rot[2];
- t_float radior[2], radior_rot[2];
- t_float scalor, scalor_inc;
-
- t_float f,r,freq_rms,reso_rms;
- t_float f_prev = ctl->c_f_prev;
- t_float r_prev = ctl->c_r_prev;
-
- t_float sqrt5 = sqrtf(5.0f);
-
- /* use rms of input to drive freq and reso */
- reso_rms = freq_rms = 0.0f;
- for (i=0; i<n; i++){
- t_float _freq = *freq++; /* first input is the reso frequency (absolute) */
- t_float _reso = *reso++; /* second input is the resonnance (0->1), >1 == self osc */
- freq_rms += _freq * _freq;
- reso_rms += _reso * _reso;
- }
- freq_rms = sqrt(freq_rms * inv_n) * inv_sr;
- reso_rms = sqrt(reso_rms * inv_n);
- f = (freq_rms > 0.5f) ? 0.25f : freq_rms * 0.5f;
- r = cbrt(reso_rms);
-
-
- /* calculate the new pole locations
- we use an impulse invariant transform: the 303 vcf poles are located at
- s_p = omega(-1 + r sqrt(5) e^{pi/3(1+2p)})
-
- real pole: omega * (-1 -r)
- complex pole:
- real = omega (-1 + r)
- imag = omega (+- 2 r)
-
-
- this is a strange beast. legend goes it was "invented" by taking the moog vcf
- and moving one cap up, such that the not-so controllable 3-pole that emerged
- would avoid the moog patent..
-
- so, the sound is not so much the locations of the poles, but how the filter
- reacts to time varying controls. i.e. the pole movement with constant reso,
- used in the tb-303.
-
- */
-
- /* compute phasor, radius and update eqs */
- phasor[0] = cos(2.0 * M_PI * r_prev * f_prev * 2.0f);
- phasor[1] = sin(2.0 * M_PI * r_prev * f_prev * 2.0f);
- phasor_rot[0] = cos(2.0 * M_PI * (r*f - r_prev*f_prev) * 2.0f * inv_n);
- phasor_rot[1] = sin(2.0 * M_PI * (r*f - r_prev*f_prev) * 2.0f * inv_n);
-
- radior[0] = exp(f_prev * (-1.0 + r_prev)); /* dominant radius */
- radior[1] = exp(f_prev * (-1.0 - sqrt5 * r_prev));
- radior_rot[0] = exp((f*(-1.0f + r) - f_prev * (-1.0 + r_prev)) * inv_n);
- radior_rot[1] = exp((f*(-1.0f - r) - f_prev * (-1.0 - sqrt5 * r_prev)) * inv_n);
-
- /* 303 like scaling */
- if (1){
- float r3 = r_prev * r_prev * r_prev;
- scalor = 1.0f + (1.0f + 3.0f * r_prev);
- r3 = r * r * r;
- scalor_inc = ((1.0f + (1.0f + 3.0f * r3)) - scalor) * inv_n;
- }
-
- /* no scaling */
- else{
- scalor = 1.0f;
- scalor_inc = 0.0f;
- }
-
- ctl->c_f_prev = f;
- ctl->c_r_prev = r;
-
-
- ctl->c_state[3] = 0.0f;
- /* perform filtering */
- for (i=0; i<n; i++){
- float poleA[2], poleB[2];
- float *stateA = ctl->c_state;
- float *stateB = ctl->c_state+2;
-
- float x;
-
- /* compute poles */
- poleA[0] = radior[0] * phasor[0];
- poleA[1] = radior[0] * phasor[1];
-
- poleB[0] = radior[1];
-
-
- /* perform filtering: use (real part of) 2 DC normalized complex one-poles:
- y[k] = x[k] + a(y[k-1] - x[k]) or y(z) = (1-a)/(1-az^{-1}) x(z) */
-
- x = *in++ * scalor;
-
- /* nondominant pole first */
- stateB[0] -= x;
- stateB[0] *= poleB[0];
- x = stateB[0] += x;
-
- /* dominant pole second */
- stateA[0] -= x;
- vcmul2(stateA, poleA);
- x = stateA[0] += x;
-
- *out++ = x;
-
- /* saturate (normalize if pow > 1) state to prevent explosion and to allow self-osc */
- _sat_state(stateA);
- _sat_state(stateB);
-
- /* interpolate filter coefficients */
- vcmul2(phasor, phasor_rot);
- radior[0] *= radior_rot[0];
- radior[1] *= radior_rot[1];
- scalor += scalor_inc;
-
- }
-
- return (w+7);
-}
-
-
-
-
-
-static void resofilt_dsp(t_resofilt *x, t_signal **sp)
-{
- int n = sp[0]->s_n;
-
- dsp_add(x->x_dsp,
- 6,
- &x->x_ctl,
- sp[0]->s_n,
- sp[0]->s_vec,
- sp[1]->s_vec,
- sp[2]->s_vec,
- sp[3]->s_vec);
-
-}
-static void resofilt_free(t_resofilt *x)
-{
-
-
-}
-
-t_class *resofilt_class;
-
-static void *resofilt_new(t_floatarg algotype)
-{
- t_resofilt *x = (t_resofilt *)pd_new(resofilt_class);
-
- /* in */
- inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
- inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
-
- /* out */
- outlet_new(&x->x_obj, gensym("signal"));
-
-
- /* set algo type */
- if (algotype == 3.0f){
- post("resofilt~: 3-pole lowpass ladder vcf");
- x->x_dsp = resofilt_perform_threepole;
- }
- else {
- post("resofilt~: 4-pole lowpass ladder vcf");
- x->x_dsp = resofilt_perform_fourpole;
- }
-
-
- return (void *)x;
-}
-
-void resofilt_tilde_setup(void)
-{
- resofilt_class = class_new(gensym("resofilt~"), (t_newmethod)resofilt_new,
- (t_method)resofilt_free, sizeof(t_resofilt), 0, A_DEFFLOAT, 0);
- CLASS_MAINSIGNALIN(resofilt_class, t_resofilt, x_f);
- class_addmethod(resofilt_class, (t_method)resofilt_dsp, gensym("dsp"), 0);
-}
-