aboutsummaryrefslogtreecommitdiff
path: root/burrow~.c
diff options
context:
space:
mode:
Diffstat (limited to 'burrow~.c')
-rw-r--r--burrow~.c545
1 files changed, 545 insertions, 0 deletions
diff --git a/burrow~.c b/burrow~.c
new file mode 100644
index 0000000..cf5be2d
--- /dev/null
+++ b/burrow~.c
@@ -0,0 +1,545 @@
+#include "MSPd.h"
+#include "fftease.h"
+
+#if MSP
+ void *burrow_class;
+#endif
+#if PD
+ static t_class *burrow_class;
+#endif
+
+#define OBJECT_NAME "burrow~"
+
+/* after adding fixes, window factors > 1 are defective. Is there
+a remaining bug, or is this a problem for FFT-only processors? */
+
+/* A few changes:
+
+Threshold and Multiplier now have their own
+inlets, which accept (signal/float). The input
+is now linear, rather than in dB. Reasons for this:
+
+1) Linear input is the Max/MSP convention
+2) It is easy to convert from linear to dB in Max
+3) (My favorite) This cuts down on programmer overhead.
+
+ */
+
+typedef struct _burrow
+{
+#if MSP
+ t_pxobject x_obj;
+#endif
+#if PD
+ t_object x_obj;
+ float x_f;
+#endif
+ int R;
+ int N;
+ int N2;
+ int Nw;
+ int Nw2;
+ int D;
+ int i;
+ int inCount;
+ int invert;
+ int *bitshuffle;
+
+ float threshold;
+ float multiplier;
+ float mult;
+ float *Wanal;
+ float *Wsyn;
+ float *inputOne;
+ float *inputTwo;
+ float *Hwin;
+ float *bufferOne;
+ float *bufferTwo;
+ float *channelOne;
+ float *channelTwo;
+ float *output;
+ float *trigland;
+
+ short connected[8];
+ short mute;
+ int overlap;//overlap factor
+ int winfac;//window factor
+ int vs;//vector size
+} t_burrow;
+
+
+/* msp function prototypes */
+
+void *burrow_new(t_symbol *s, int argc, t_atom *argv);
+t_int *offset_perform(t_int *w);
+t_int *burrow_perform(t_int *w);
+void burrow_dsp(t_burrow *x, t_signal **sp, short *count);
+void burrow_assist(t_burrow *x, void *b, long m, long a, char *s);
+void burrow_float(t_burrow *x, t_floatarg myFloat);
+void burrow_init(t_burrow *x, short initialized);
+void burrow_free(t_burrow *x);
+void burrow_invert(t_burrow *x, t_floatarg toggle);
+void burrow_mute(t_burrow *x, t_floatarg toggle);
+void burrow_fftinfo(t_burrow *x);
+void burrow_tilde_setup(void);
+void burrow_overlap(t_burrow *x, t_floatarg o);
+void burrow_winfac(t_burrow *x, t_floatarg f);
+
+
+#if MSP
+void main(void)
+{
+ setup((t_messlist **)&burrow_class,(method) burrow_new,
+(method)burrow_free, (short) sizeof(t_burrow),0, A_GIMME, 0);
+ addmess((method)burrow_dsp, "dsp", A_CANT, 0);
+ addmess((method)burrow_assist,"assist",A_CANT,0);
+ addmess((method)burrow_invert,"invert", A_FLOAT, 0);
+ addmess((method)burrow_overlap,"overlap", A_FLOAT, 0);
+ addmess((method)burrow_mute,"mute", A_FLOAT, 0);
+ addmess((method)burrow_winfac,"winfac",A_FLOAT,0);
+ addmess((method)burrow_fftinfo,"fftinfo", 0);
+ addfloat((method)burrow_float);
+ dsp_initclass();
+ post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT);
+}
+
+/* float input handling routines (MSP only) */
+
+void burrow_float(t_burrow *x, t_floatarg myFloat)
+{
+int inlet = ((t_pxobject*)x)->z_in;
+ if ( inlet == 2 ) // added two outlets so position is moved over
+ x->threshold = myFloat;
+
+ if ( inlet == 3 )
+ x->multiplier = myFloat;
+}
+#endif
+#if PD
+void burrow_tilde_setup(void)
+{
+ burrow_class = class_new(gensym("burrow~"), (t_newmethod)burrow_new,
+ (t_method)burrow_free ,sizeof(t_burrow), 0,A_GIMME,0);
+ CLASS_MAINSIGNALIN(burrow_class, t_burrow, x_f);
+ class_addmethod(burrow_class, (t_method)burrow_dsp, gensym("dsp"), 0);
+ class_addmethod(burrow_class, (t_method)burrow_assist, gensym("assist"), 0);
+ class_addmethod(burrow_class, (t_method)burrow_invert, gensym("invert"), A_FLOAT,0);
+ class_addmethod(burrow_class, (t_method)burrow_overlap, gensym("overlap"), A_FLOAT,0);
+ class_addmethod(burrow_class, (t_method)burrow_mute, gensym("mute"), A_FLOAT,0);
+ class_addmethod(burrow_class, (t_method)burrow_fftinfo, gensym("fftinfo"), A_CANT,0);
+ class_addmethod(burrow_class,(t_method)burrow_winfac,gensym("winfac"),A_FLOAT,0);
+ post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT);
+}
+#endif
+
+void burrow_free(t_burrow *x)
+{
+#if MSP
+ dsp_free((t_pxobject *) x);
+#endif
+ free(x->trigland);
+ free(x->bitshuffle);
+ free(x->Wanal);
+ free(x->Wsyn);
+ free(x->Hwin);
+ free(x->inputOne);
+ free(x->inputTwo);
+ free(x->bufferOne);
+ free(x->bufferTwo);
+ free(x->channelOne);
+ free(x->channelTwo);
+ free(x->output);
+
+}
+
+
+void burrow_invert(t_burrow *x, t_floatarg toggle)
+{
+ x->invert = toggle;
+}
+
+void burrow_mute(t_burrow *x, t_floatarg toggle)
+{
+ x->mute = toggle;
+}
+
+void burrow_overlap(t_burrow *x, t_floatarg o)
+{
+ if(!power_of_two(o)){
+ error("%f is not a power of two",o);
+ return;
+ }
+ x->overlap = o;
+ burrow_init(x,1);
+}
+
+void burrow_winfac(t_burrow *x, t_floatarg f)
+{
+ if(!power_of_two(f)){
+ error("%f is not a power of two",f);
+ return;
+ }
+ x->winfac = (int)f;
+ burrow_init(x,1);
+}
+
+void burrow_fftinfo( t_burrow *x )
+{
+ if( ! x->overlap ){
+ post("zero overlap!");
+ return;
+ }
+ post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw);
+}
+
+
+
+/* diagnostic messages for Max */
+
+void burrow_assist (t_burrow *x, void *b, long msg, long arg, char *dst)
+{
+
+ if (msg == 1) {
+
+ switch (arg) {
+ case 0: sprintf(dst,"(signal) Source Sound"); break;
+ case 1: sprintf(dst,"(signal) Burrow Filtering Sound"); break;
+ case 2: sprintf(dst,"(signal/float) Filter Threshold"); break;
+ case 3: sprintf(dst,"(signal/float) Filter Multiplier"); break;
+ }
+ }
+
+ else {
+ if (msg == 2)
+ sprintf(dst,"(signal) Output");
+ }
+}
+
+void burrow_init(t_burrow *x, short initialized)
+{
+int i;
+ x->D = x->vs;
+ x->N = x->D * x->overlap;
+ x->Nw = x->N * x->winfac;
+ limit_fftsize(&x->N,&x->Nw,OBJECT_NAME);
+ x->N2 = (x->N)>>1;
+ x->Nw2 = (x->Nw)>>1;
+ x->inCount = -(x->Nw);
+ x->mult = 1. / (float) x->N;
+ if(!initialized){
+ x->mute = 0;
+ x->invert = 0;
+ x->inputOne = (float *) calloc(MAX_Nw, sizeof(float));
+ x->inputTwo = (float *) calloc(MAX_Nw, sizeof(float));
+ x->bufferOne = (float *) calloc(MAX_N, sizeof(float));
+ x->bufferTwo = (float *) calloc(MAX_N, sizeof(float));
+ x->channelOne = (float *) calloc((MAX_N+2), sizeof(float));
+ x->channelTwo = (float *) calloc((MAX_N+2), sizeof(float));
+ x->Wanal = (float *) calloc(MAX_Nw, sizeof(float));
+ x->Wsyn = (float *) calloc(MAX_Nw, sizeof(float));
+ x->Hwin = (float *) calloc(MAX_Nw, sizeof(float));
+ x->output = (float *) calloc(MAX_Nw, sizeof(float));
+ x->bitshuffle = (int *) calloc(MAX_N * 2, sizeof(int));
+ x->trigland = (float *) calloc(MAX_N * 2, sizeof(float));
+ }
+ memset((char *)x->inputOne,0,x->Nw * sizeof(float));
+ memset((char *)x->inputTwo,0,x->Nw * sizeof(float));
+ memset((char *)x->output,0,x->Nw * sizeof(float));
+ memset((char *)x->bufferOne,0,x->N * sizeof(float));
+ memset((char *)x->bufferTwo,0,x->N * sizeof(float));
+
+ makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0);
+ init_rdft( x->N, x->bitshuffle, x->trigland);
+}
+
+void *burrow_new(t_symbol *s, int argc, t_atom *argv)
+{
+#if MSP
+ t_burrow *x = (t_burrow *) newobject(burrow_class);
+ dsp_setup((t_pxobject *)x,4);
+ outlet_new((t_pxobject *)x, "signal");
+#endif
+#if PD
+ t_burrow *x = (t_burrow *)pd_new(burrow_class);
+ /* add three additional signal inlets */
+ inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
+ inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
+ inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
+ outlet_new(&x->x_obj, gensym("signal"));
+#endif
+
+/* optional arguments: threshold, multiplier, overlap, winfac */
+
+ x->threshold = atom_getfloatarg(0,argc,argv);
+ x->multiplier = atom_getfloatarg(1,argc,argv);
+ x->overlap = atom_getfloatarg(2,argc,argv);
+ x->winfac = atom_getfloatarg(3,argc,argv);
+
+ if(!power_of_two(x->overlap)){
+ x->overlap = 4;
+ }
+ if(!power_of_two(x->winfac)){
+ x->winfac = 1;
+ }
+ if(x->threshold > 1.0 || x->threshold < 0.0){
+ x->threshold = 0;
+ }
+ if(x->multiplier > 1.0 || x->multiplier < 0.0){
+ x->multiplier = .01;
+ }
+
+ x->vs = sys_getblksize();
+ x->R = sys_getsr();
+
+ burrow_init(x,0);
+ return(x);
+
+}
+
+
+t_int *burrow_perform(t_int *w)
+{
+/* get our inlets and outlets */
+
+ t_burrow *x = (t_burrow *) (w[1]);
+ t_float *inOne = (t_float *)(w[2]);
+ t_float *inTwo = (t_float *)(w[3]);
+ t_float *flt_threshold = (t_float *)(w[4]);
+ t_float *flt_multiplier = (t_float *)(w[5]);
+ t_float *out = (t_float *)(w[6]);
+ t_int n = w[7];
+
+ short *connected = x->connected;
+
+ int
+ i,j,
+ inCount,
+ R,
+ N,
+ N2,
+ D,
+ Nw,
+ invert = 0,
+ even, odd,
+ *bitshuffle;
+
+ float maxamp,
+ threshold = 1.,
+ multiplier = 1.,
+ mult,
+ a1, b1,
+ a2, b2,
+ *inputOne,
+ *inputTwo,
+ *bufferOne,
+ *bufferTwo,
+ *output,
+ *Wanal,
+ *Wsyn,
+ *channelOne,
+ *channelTwo,
+ *trigland;
+
+/* dereference structure */
+
+ inputOne = x->inputOne;
+ inputTwo = x->inputTwo;
+ bufferOne = x->bufferOne;
+ bufferTwo = x->bufferTwo;
+ inCount = x->inCount;
+
+ R = x->R;
+ N = x->N;
+ N2 = x->N2;
+ D = x->D;
+ Nw = x->Nw;
+ Wanal = x->Wanal;
+ Wsyn = x->Wsyn;
+ output = x->output;
+
+ channelOne = x->channelOne;
+ channelTwo = x->channelTwo;
+ bitshuffle = x->bitshuffle;
+ trigland = x->trigland;
+ multiplier = x->multiplier;
+ threshold = x->threshold;
+ mult = x->mult;
+ invert = x->invert;
+
+ if(connected[2]){
+ threshold = *flt_threshold;
+ } else {
+ threshold = x->threshold;
+ }
+
+ if(connected[3]){
+ multiplier = *flt_multiplier;
+ } else {
+ multiplier = x->multiplier;
+ }
+
+/* save some CPUs if muted */
+ if(x->mute){
+ while(n--)
+ *out++ = 0.0;
+ return (w+8);
+ }
+
+/* fill our retaining buffers */
+
+ inCount += D;
+
+ for ( j = 0 ; j < Nw - D ; j++ ) {
+ inputOne[j] = inputOne[j+D];
+ inputTwo[j] = inputTwo[j+D];
+ }
+
+ for ( j = Nw-D; j < Nw; j++ ) {
+ inputOne[j] = *inOne++;
+ inputTwo[j] = *inTwo++;
+ }
+
+/* apply hamming window and fold our window buffer into the fft buffer */
+
+ fold( inputOne, Wanal, Nw, bufferOne, N, inCount );
+ fold( inputTwo, Wanal, Nw, bufferTwo, N, inCount );
+
+
+/* do an fft */
+
+ rdft( N, 1, bufferOne, bitshuffle, trigland );
+ rdft( N, 1, bufferTwo, bitshuffle, trigland );
+
+/* use redundant coding for speed, even though moving the invert variable
+ comparison outside of the for loop will give us only a minimal performance
+ increase (hypot and atan2 are the most intensive portions of this code).
+ consider adding a table lookup for atan2 instead.
+*/
+
+
+if (invert) {
+
+/* convert to polar coordinates from complex values */
+
+ for ( i = 0; i <= N2; i++ ) {
+
+ odd = ( even = i<<1 ) + 1;
+
+ a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) );
+ b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) );
+
+ a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) );
+ b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) );
+
+ *(channelOne+even) = hypot( a1, b1 );
+ *(channelOne+odd) = -atan2( b1, a1 );
+
+ *(channelTwo+even) = hypot( a2, b2 );
+
+ /* use simple threshold from second signal to trigger filtering */
+
+ if ( *(channelTwo+even) < threshold )
+ *(channelOne+even) *= multiplier;
+
+/* *(channelTwo+odd) = -atan2( b2, a2 ); */
+
+ }
+}
+
+else {
+
+/* convert to polar coordinates from complex values */
+
+ for ( i = 0; i <= N2; i++ ) {
+
+ odd = ( even = i<<1 ) + 1;
+
+ a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) );
+ b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) );
+
+ a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) );
+ b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) );
+
+ *(channelOne+even) = hypot( a1, b1 );
+ *(channelOne+odd) = -atan2( b1, a1 );
+
+ *(channelTwo+even) = hypot( a2, b2 );
+
+ /* use simple threshold from second signal to trigger filtering */
+
+ if ( *(channelTwo+even) > threshold )
+ *(channelOne+even) *= multiplier;
+
+/* *(channelTwo+odd) = -atan2( b2, a2 ); */
+
+ }
+}
+
+/* convert back to complex form, read for the inverse fft */
+
+ for ( i = 0; i <= N2; i++ ) {
+
+ odd = ( even = i<<1 ) + 1;
+
+ *(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) );
+
+ if ( i != N2 )
+ *(bufferOne+odd) = -(*(channelOne+even)) * sin( *(channelOne+odd) );
+ }
+
+
+/* do an inverse fft */
+
+ rdft( N, -1, bufferOne, bitshuffle, trigland );
+
+/* dewindow our result */
+
+ overlapadd( bufferOne, N, Wsyn, output, Nw, inCount);
+
+/* set our output and adjust our retaining output buffer */
+
+ for ( j = 0; j < D; j++ )
+ *out++ = output[j] * mult;
+
+ for ( j = 0; j < Nw - D; j++ )
+ output[j] = output[j+D];
+
+ for ( j = Nw - D; j < Nw; j++ )
+ output[j] = 0.;
+
+
+/* restore state variables */
+
+ x->inCount = inCount % Nw;
+ return (w+8);
+}
+
+void burrow_dsp(t_burrow *x, t_signal **sp, short *count)
+{
+ long i;
+ #if MSP
+ for( i = 0; i < 4; i++ ){
+ x->connected[i] = count[i];
+ }
+ #endif
+ /* signal is always connected in Pd */
+ #if PD
+ for( i = 0; i < 4; i++ ){
+ x->connected[i] = 1;
+ }
+ #endif
+ /* reinitialize if vector size or sampling rate has been changed */
+ if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){
+ x->vs = sp[0]->s_n;
+ x->R = sp[0]->s_sr;
+ burrow_init(x,1);
+ }
+ dsp_add(burrow_perform, 7, x,
+ sp[0]->s_vec,
+ sp[1]->s_vec,
+ sp[2]->s_vec,
+ sp[3]->s_vec,
+ sp[4]->s_vec,
+ sp[0]->s_n);
+}
+