1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/////////////////////////////////////////////////////////////////////////////
//
// class LinNeuralNet
//
// this is an implementation of a simple linear neural net with one neuron
// so this net has a Weight-Matrix IW and a bias vector b1
// this net can have n input values, but only one output value
// (see NeuralNet documentations for more information)
//
// header file
//
// Copyright (c) 2004 Georg Holzmann <grh@gmx.at>
//
// For information on usage and redistribution, and for a DISCLAIMER OF ALL
// WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef _INCLUDE_LIN_NEURAL_NET__
#define _INCLUDE_LIN_NEURAL_NET__
#include <stdlib.h>
#include <ctime>
//#include "m_pd.h" // for debug
class LinNeuralNet
{
protected:
/* this is the number of input values, which is
* automatically the netsize and the size of IW
*/
int netsize_;
/* the input weight matrix IW
* (size: netsize )
*/
float *IW_;
/* the bias vector b1
*/
float b1_;
/* the learning rate of the net
*/
float learn_rate_;
/* the range of the input values should be from 0
* to range_
* outputvalues are from -1 to 1
*/
float range_;
public:
/* Constructor
*/
LinNeuralNet(int netsize);
/* Destructor
*/
virtual ~LinNeuralNet();
//-----------------------------------------------------
/* Set/Get learning rate
*/
virtual void setLearningRate(float learn_rate)
{ learn_rate_=learn_rate; }
virtual float getLearningRate() const
{ return learn_rate_; }
/* Set/Get range
*/
virtual void setRange(float range)
{ range_=range; }
virtual float getRange() const
{ return range_; }
/* some more get/set methods
*/
virtual int getNetsize() const
{ return netsize_; }
virtual float *getIW() const
{ return IW_; }
virtual void setIW(const float *IW)
{ for(int i=0; i<netsize_; i++) IW_[i] = IW[i]; }
virtual float getb1() const
{ return b1_; }
virtual void setb1(float b1)
{ b1_ = b1; }
//-----------------------------------------------------
/* creates a new IW-matrix (size: netsize_) and
* b1-vector
* returns false if there's a failure
* ATTENTION: if they exist they'll be deleted
*/
virtual bool createNeurons();
/* inits the weight matrix and the bias vector of
* the network with random values between [min|max]
* returns false if there's a failure
*/
virtual bool initNetworkRand(const int &min, const int &max);
/* inits the net with a given weight matrix and bias
* (makes a deep copy)
* ATTENTION: the dimension of IW-pointer must be the same
* as the netsize !!!
* returns false if there's a failure
*/
virtual bool initNetwork(const float *IW, float b1);
/* calculates the output with the current IW, b1 values
* ATTENTION: the array input_data must be in the same
* size as netsize_
*/
virtual float calculateNet(float *input_data);
/* this method trains the network:
* input_data is, as above, the input data, output_data is the
* output of the current net with input_data (output_data is not
* calculated in that method !), target_output is the desired
* output data
* (this is the LMS-algorithm to train linear neural networks)
* returns false if there's a failure
* ATTENTION: the array input_data must be in the same
* size as netsize_
*/
virtual bool trainNet(float *input_data, const float &output_data,
const float &target_output);
private:
/* Copy Construction is not allowed
*/
LinNeuralNet(const LinNeuralNet &src)
{ }
/* assignement operator is not allowed
*/
const LinNeuralNet& operator= (const LinNeuralNet& src)
{ return *this; }
};
#endif //_INCLUDE_LIN_NEURAL_NET__
|