1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
/////////////////////////////////////////////////////////////////////////////
//
// class Neuron
//
// this is an implementation of one neuron of a Neural Network
// so this neuron has a Weight-Matrix IW and a bias vector b1
// this neuron can have n input values, but only one output value
// (see NeuralNet documentations for more information)
//
// header file
//
// Copyright (c) 2005 Georg Holzmann <grh@gmx.at>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef _INCLUDE_NEURON_NET__
#define _INCLUDE_NEURON_NET__
#include <stdlib.h>
#include <stdexcept>
#include "NNException.h"
#include "m_pd.h" //debug
namespace TheBrain
{
//------------------------------------------------------
/* class of one neuron
*/
class Neuron
{
protected:
/* this is the number of input values, which is
* automatically the input and the size of IW
*/
int inputs_;
/* the input weight matrix IW
* (size: inputs )
*/
float *IW_;
/* the bias vector b1
*/
float b1_;
/* the learning rate of the net
*/
float learn_rate_;
/* the range of the input values should be from 0
* to range_
* outputvalues are from -1 to 1
*/
float range_;
public:
/* Constructor
*/
Neuron(int inputs, int dummy=0);
/* Destructor
*/
virtual ~Neuron();
//-----------------------------------------------------
/* Set/Get learning rate
*/
virtual void setLearningRate(float learn_rate)
{ learn_rate_=learn_rate; }
virtual float getLearningRate() const
{ return learn_rate_; }
/* Set/Get range
*/
virtual void setRange(float range)
{ range_=range; }
virtual float getRange() const
{ return range_; }
/* some more get/set methods
*/
virtual int getInputs() const
{ return inputs_; }
virtual float *getIW() const
{ return IW_; }
virtual float getIW(int index) const
{ return IW_[index]; }
virtual void setIW(const float *IW)
{ for(int i=0; i<inputs_; i++) IW_[i] = IW[i]; }
virtual void setIW(int index, float value)
{ IW_[index] = value; }
virtual float getb1() const
{ return b1_; }
virtual void setb1(float b1)
{ b1_ = b1; }
/* dummies
*/
virtual int getMemory() const
{ return 0; }
virtual float *getLW() const
{ return NULL; }
virtual float getLW(int index) const
{ return 0; }
virtual void setLW(const float *LW)
{ }
virtual void setLW(int index, float value)
{ }
//-----------------------------------------------------
/* creates a new IW-matrix (size: inputs_) and
* b1-vector
* ATTENTION: if they exist they'll be deleted
*/
virtual void create()
throw(NNExcept);
/* inits the weight matrix and the bias vector of
* the network with random values between [min|max]
*/
virtual void initRand(const int &min, const int &max)
throw(NNExcept);
/* inits the net with a given weight matrix and bias
* (makes a deep copy)
* ATTENTION: the dimension of IW-pointer must be the same
* as the inputs !!!
*/
virtual void init(const float *IW, float b1)
throw(NNExcept);
/* calculates the output with the current IW, b1 values
* ATTENTION: the array input_data must be in the same
* size as inputs_
*/
virtual float calculate(float *input_data);
/* this method trains the network:
* input_data is, as above, the input data, output_data is the
* output of the current net with input_data (output_data is not
* calculated in that method !), target_output is the desired
* output data
* (this is the LMS-algorithm to train linear neural networks)
* ATTENTION: the array input_data must be in the same
* size as inputs_
* returns the calculated value
*/
/* virtual float trainLMS(const float *input_data, */
/* const float &target_output); */
//-----------------------------------------------------
private:
/* Copy Construction is not allowed
*/
Neuron(const Neuron &src)
{ }
/* assignement operator is not allowed
*/
const Neuron& operator= (const Neuron& src)
{ return *this; }
};
} // end of namespace
#endif //_INCLUDE_NEURON_NET__
|