1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
|
/* ------------------------- chord ------------------------------------------ */
/* */
/* Tries to detect a chord (or any harmonic relations) of incoming notes. */
/* Written by Olaf Matthes (olaf.matthes@gmx.de) */
/* Get source at http://www.akustische-kunst.org/puredata/maxlib/ */
/* */
/* This program is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU General Public License */
/* as published by the Free Software Foundation; either version 2 */
/* of the License, or (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* */
/* Based on PureData by Miller Puckette and others. */
/* */
/* ---------------------------------------------------------------------------- */
#include "m_pd.h"
#include <stdio.h>
#include <string.h>
#ifndef _WIN32
#include <stdlib.h>
#endif
#define MAX_POLY 32 /* maximum number of notes played at a time */
#define kUnison 0
#define kMaj 1
#define kMin 2
#define kDim 3
#define kAug 4
#define kMaj7 5
#define kDom7 6
#define kMin7 7
#define kHalfDim7 8
#define kDim7 9
#define kMinMaj7 10
#define kMaj7s5 11
#define kMaj7b5 12
#define kDom7s5 13
#define kDom7b5 14
#define kDomb9 15
#define kMaj9 16
#define kDom9 17
#define kMin9 18
#define kHalfDim9 19
#define kMinMaj9 20
#define kDimMaj9 21
#define kMaj9b5 22
#define kDom9b5 23
#define kDom9b13 24
#define kMin9s11 25
#define kmM9b11 26
#define kMaj7b9 27
#define kMaj7s5b9 28
#define kDom7b9 29
#define kMin7b9 30
#define kMinb9s11 31
#define kHalfDimb9 32
#define kDim7b9 33
#define kMinMajb9 34
#define kDimMajb9 35
#define kMaj7s9 36
#define kDom7s9 37
#define kMaj7s11 38
#define kMs9s11 39
#define kHDimb11 40
#define kMaj11 41
#define kDom11 42
#define kMin11 43
#define kHalfDim11 44
#define kDim11 45
#define kMinMaj11 46
#define kDimMaj11 47
#define kMaj11b5 48
#define kMaj11s5 49
#define kMaj11b9 50
#define kMaj11s9 51
#define kMaj11b13 52
#define kMaj11s13 53
#define kM11b5b9 54
#define kDom11b5 55
#define kDom11b9 56
#define kDom11s9 57
#define kHalfDim11b9 58
#define kDom7s11 59
#define kMin7s11 60
#define kDom13s11 61
#define kM7b913 62
#define kMaj7s13 63
#define kMaj9s13 64
#define kM7b9s13 65
#define kDom7b13 66
#define kChrom 67
#define kNone 68
#define kXX -1
static char *version = "chord v0.2, written by Olaf Matthes <olaf.matthes@gmx.de>";
static char* pitch_class[13] = {"C ", "Db ", "D ", "Eb ", "E ", "F ", "Gb ", "G ", "Ab ", "A ", "Bb ", "B ", "no root "};
static char name_class[7] = {'C', 'D', 'E', 'F', 'G', 'A', 'B'};
typedef struct {
int type;
int rootMember;
} t_type_root;
typedef struct chord
{
t_object x_ob;
t_outlet *x_outchordval; /* chord as MIDI note number of base note */
t_outlet *x_outchordclass; /* class of chord's bass note */
t_outlet *x_outchordname; /* chord name, e.g. "Cmajor7" */
t_outlet *x_outchordinversion; /* inversion of the chord (root = 0, 1st = 1, 2nd = 2) */
t_outlet *x_outchordnotes; /* list with note numbers belonging to the chord */
t_int x_pitch;
t_int x_pc[12]; /* pitch class array */
t_int x_abs_pc[12]; /* pitch class array: absolute MIDI note numbers */
t_int x_velo;
t_int x_alloctable[MAX_POLY]; /* a table used to store all playing notes */
t_int x_poly; /* number of notes currently playing */
t_atom x_chordlist[12]; /* list that stores the note numbers for output */
t_int x_split; /* highes note number to process */
t_int x_chord_type; /* chord's type (number between 0 and 68) */
t_int x_chord_root; /* chord's root (pitch class) */
t_int x_chord_bass; /* chord's bass note (MIDI note number) */
t_int x_chord_inversion; /* chord's state of inversion (root, 1st, 2nd) */
} t_chord;
/* functions */
static void chord_kick_out_member(t_chord *x, t_int number, t_int *members);
static void chord_chord_finder(t_chord *x, t_int num_pcs);
static void chord_draw_chord_type(t_chord *x, t_int num_pcs);
static void chord_unison(t_chord *x)
{
int i;
int member = 0;
for(i = 0; i < 12; i++)
if(x->x_pc[i])
{
member = i; // find pitch class
break;
}
x->x_chord_type = 0;
x->x_chord_root = member;
chord_draw_chord_type(x, 1); // output onto the screen
}
static void chord_dyad(t_chord *x)
{
static t_type_root dyads[11] =
{{ kMaj7, 1 }, { kDom7, 1 }, { kMin, 0 }, { kMaj, 0 }, { kMaj, 1 },
{ kDom7 , 0 }, { kMaj, 0 }, { kMaj, 1 }, { kMin, 1 }, { kDom7, 0 }, { kMaj7, 0 }};
register t_type_root* t;
int members[2];
int i, j = 0;
int interval1;
for(i = 0; i < 12; i++)
if(x->x_pc[i]) members[j++] = i; /* load members array with chord pitch classes */
interval1 = members[1] - members[0]; /* calculate interval between first two members */
interval1 = interval1 - 1; /* reduce interval1 to start at zero */
t = &(dyads[interval1]); /* find TypeRoot struct for this interval */
x->x_chord_type = t->type;
if (interval1 == 5)
x->x_chord_root = (members[0]+8)%12;
else
x->x_chord_root = members[t->rootMember];
x->x_chord_inversion = t->rootMember; /* get state of inversion */
chord_draw_chord_type(x, 2); /* output results */
}
static void chord_triad(t_chord *x)
{
static t_type_root triads[10][10] =
{/* interval1 is a half step */
{{ kMaj7b9, 1 }, { kMaj9, 1 }, { kMinMaj7, 1 }, { kMaj7, 1 }, { kDom7s11,2 },
{ kDomb9 , 0 }, { kMaj7, 1 }, { kMaj7s5, 1 }, { kMin9, 2 }, { kMaj7b9, 0 }},
/* interval1 is a whole step */
{{ kMin9, 0 }, { kDom9, 0 }, { kMin7, 1 }, { kDom7, 1 }, { kDom9, 0 },
{ kHalfDim7, 1 }, { kDom7, 1 }, { kDom9, 0 }, { kMaj9, 0 }},
/* interval1 is a minor third */
{{ kMaj7s5, 2 }, { kDom7, 2 }, { kDim, 0 }, { kMin, 0 }, { kMaj, 2 },
{ kDim, 2 }, { kMin7, 0 }, { kMinMaj7, 0 }},
/* interval1 is a major third */
{{ kMaj7, 2 }, { kHalfDim7, 2 }, { kMaj, 0 }, { kAug, 0 }, { kMin, 2 },
{ kDom7, 0 }, { kMaj7, 0 }},
/* interval1 is a perfect fourth */
{{ kDomb9, 1 }, { kDom9, 1 }, { kMin, 1 }, { kMaj, 1 }, { kDom9, 2 },
{ kDom7s11, 1 }},
/* interval1 is an augmented fourth */
{{ kDom7s11, 0 }, { kDom7, 2 }, { kDim, 1 }, { kHalfDim7, 0 }, { kDomb9, 2 }},
/* interval1 is a perfect fifth */
{{ kMaj7, 2 }, { kMin7, 2 }, { kDom7, 0 }, { kMaj7, 0 }},
/* interval1 is a minor sixth */
{{ kMinMaj7, 2 }, { kDom9, 1 }, { kMaj7s5, 0 }},
/* interval1 is a major sixth */
{{ kMaj9, 2 }, { kMin9, 1 }},
/* interval1 is a minor seventh */
{{ kMaj7b9, 2 }}
};
register t_type_root* t;
int members[3];
int i, j = 0;
int interval1, interval2;
for(i = 0; i < 12; i++)
if(x->x_pc[i]) members[j++] = i; /* load members array with chord pitch classes */
interval1 = members[1] - members[0]; /* calculate interval between first two members */
interval2 = members[2] - members[0]; /* calculate interval between first and third */
interval2 = interval2 - interval1 - 1; /* reduce interval2 to start at zero */
interval1 = interval1 - 1; /* reduce interval1 to start at zero */
t = &(triads[interval1][interval2]); /* find TypeRoot struct for this interval vector */
x->x_chord_type = t->type;
x->x_chord_root = members[t->rootMember];
switch(t->rootMember) { /* get state of inversion */
case 0:
x->x_chord_inversion = 0;
break;
case 1:
x->x_chord_inversion = 2;
break;
case 2:
x->x_chord_inversion = 1;
}
chord_draw_chord_type(x, 3); /* output onto the screen */
}
static void chord_quartad(t_chord *x)
{
static t_type_root quartads[9][9][9] =
{
{/* interval1 is a half step */
{/* interval2 is a whole step */
{ kM7b9s13, 2 }, { kMinMajb9,1 }, { kMaj7b9, 1 }, { kMaj7s13, 2 }, { kDimMajb9, 1 },
{ kMaj7b9, 1 }, { kMaj7s13, 2 }, { kM7b913, 1 }, { kM7b9s13, 1 }},
{/* interval2 is a minor third */
{ kMinMaj9, 1 }, { kMaj9, 1 }, { kHalfDimb9,0 }, { kMin7b9, 0 }, { kMaj9, 1 },
{ kDim7b9, 0 }, { kMin7b9, 0 }, { kMinMajb9, 0 }},
{/* interval2 is a major third */
{ kMaj7s9, 1 }, { kDom7s11, 3 }, { kDomb9, 0 }, { kMinMaj7, 1 }, { kDom7s9, 3 },
{ kDomb9, 0 }, { kMaj7b9, 0 }},
{/* interval2 is a perfect fourth */
{ kMaj11, 1 }, { kMaj7b5, 1 }, { kMaj7, 1 }, { kMaj7s5, 1 }, { kMin9, 3 },
{ kMaj7s13, 1 }},
{/* interval2 is a tritone */
{ kDimMaj9, 3 }, { kDom11, 3 }, { kDim7b9, 0 }, { kHalfDimb9,0 }, { kDimMajb9, 0 }},
{/* interval2 is a perfect fifth */
{ kMaj11, 3 }, { kDom7s9, 3 }, { kDomb9, 0 }, { kMaj7b9, 0 }},
{/* interval2 is a minor sixth */
{ kMaj7s9, 3 }, { kMin9, 3 }, { kMaj7s13, 1 }},
{/* interval2 is a major sixth */
{ kMinMaj9, 3 }, { kM7b913, 0 }},
{/* interval2 is a minor seventh */
{ kM7b9s13, 0 }}
},
{/* interval1 is a whole step */
{/* interval2 is a minor third */
{ kM7b913, 2 }, { kMin7b9, 1 }, { kDomb9, 1 }, { kMin9, 0 }, { kHalfDimb9,1 },
{ kDomb9, 1 }, { kMin9, 0 }, { kMinMaj9, 0 }},
{/* interval2 is a major third */
{ kMin9, 1 }, { kDom9, 1 }, { kDom9, 0 }, { kDom7s5, 2 }, { kDom9, 1 },
{ kDom9, 0 }, { kMaj9, 0 }},
{/* interval2 is a perfect fourth */
{ kDom7s9, 1 }, { kDom11, 3 }, { kHalfDim7, 1 }, { kMin7, 1 }, { kDom9, 3 },
{ kHalfDimb9,3 }},
{/* interval2 is a tritone */
{ kDom11, 1 }, { kDom7b5, 3 }, { kDom7, 1 }, { kDom7s5, 1 }, { kMin7b9, 3 }},
{/* interval2 is a perfect fifth */
{ kMaj7b5, 3 }, { kDom11, 1 }, { kDom9, 0 }, { kMaj9, 0 }},
{/* interval2 is a minor sixth */
{ kDom7s11, 1 }, { kDom9, 3 }, { kDim7b9, 3 }},
{/* interval2 is a major sixth */
{ kMaj9, 3 }, { kMin7b9, 3 }},
{/* interval2 is a minor seventh */
{ kMinMajb9, 3 }}
},
{/* interval1 is a minor third */
{/* interval2 is a major third */
{ kMaj7s13, 3 }, { kDim7b9, 1 }, { kDom7s9, 0 }, { kMaj7s5, 2 }, { kDim7b9, 1 },
{ kDom7s9, 0 }, { kMaj7s9, 0 }},
{/* interval2 is a perfect fourth */
{ kDomb9, 2 }, { kDom9, 2 }, { kMin7, 2 }, { kDom7, 2 }, { kDom11, 2 },
{ kDom7s11, 2 }},
{/* interval2 is a tritone */
{ kDim7b9, 2 }, { kDom7, 3 }, { kDim7, 0 }, { kHalfDim7, 0 }, { kDomb9, 3 }},
{/* interval2 is a perfect fifth */
{ kMaj7, 3 }, { kHalfDim7,3 }, { kMin7, 0 }, { kMinMaj7, 0 }},
{/* interval2 is a minor sixth */
{ kDomb9, 2 }, { kDom9, 2 }, { kDom7s9, 2 }},
{/* interval2 is a major sixth */
{ kHalfDimb9,2 }, { kDomb9, 3 }},
{/* interval2 is a minor seventh */
{ kMaj7b9, 3 }}
},
{/* interval1 is a major third */
{/* interval2 is a perfect fourth */
{ kMaj7b9, 2 }, { kMaj9, 2 }, { kMinMaj7, 2 }, { kMaj7, 2 }, { kDom11, 0 },
{ kMaj11, 0 }},
{/* interval2 is a tritone */
{ kHalfDimb9,2 }, { kDom7s5, 3 }, { kHalfDim7, 2 }, { kDom7b5, 0 }, { kMaj7b5, 0 }},
{/* interval2 is a perfect fifth */
{ kMaj7s5, 3 }, { kMin7, 3 }, { kDom7, 0 }, { kMaj7, 0 }},
{/* interval2 is a minor sixth */
{ kMinMaj7, 3 }, { kDom7s5, 0 }, { kMaj7s5, 0 }},
{/* interval2 is a major sixth */
{ kMin7b9, 2 }, { kMin9, 2 }},
{/* interval2 is a minor seventh */
{ kMaj7s13, 0 }}
},
{/* interval1 is a perfect fourth */
{/* interval2 is a tritone */
{ kDimMajb9, 2 }, { kMin7b9, 1 }, { kDomb9, 1 }, { kMaj7b5, 2 }, { kDimMaj9, 0 }},
{/* interval2 is a perfect fifth */
{ kMin9, 1 }, { kDom9, 1 }, { kDom11, 0 }, { kDom11, 2 }},
{/* interval2 is a minor sixth */
{ kDom7s9, 1 }, { kDom9, 3 }, { kDim7b9, 3 }},
{/* interval2 is a major sixth */
{ kMaj9, 3 }, { kHalfDimb9,3 }},
{/* interval2 is a minor seventh */
{ kDimMajb9, 3 }}
},
{/* interval1 is a tritone */
{/* interval2 is a perfect fifth */
{ kMaj7s13, 3 }, { kHalfDimb9,1 }, { kDom7s11, 0 }, { kMaj11, 2 }},
{/* interval2 is a minor sixth */
{ kDomb9, 2 }, { kDom9, 2 }, { kDom7s9, 2 }},
{/* interval2 is a major sixth */
{ kDim7b9, 2 }, { kDomb9, 3 }},
{/* interval2 is a minor seventh */
{ kMaj7b9, 3 }}
},
{/* interval1 is a perfect fifth */
{/* interval2 is a minor sixth */
{ kMaj7b9, 2 }, { kMaj9, 2 }, { kMaj7s9, 2 }},
{/* interval2 is a major sixth */
{ kMin7b9, 2 }, { kMin9, 2 }},
{/* interval2 is a minor seventh */
{ kMaj7s13, 0 }}
},
{/* interval1 is a minor sixth */
{/* interval2 is a major sixth */
{ kMinMajb9, 2 }, { kMinMaj9, 2 }},
{/* interval2 is a minor seventh */
{ kM7b913, 3 }}
},
{/* interval1 is a major sixth */
{/* interval2 is a minor seventh */
{ kM7b9s13, 2 }}
}
};
register t_type_root* t;
int members[4];
int interval1, interval2, interval3;
int i, j = 0;
for (i=0; i<12; i++)
if (x->x_pc[i]) members[j++] = i; /* load members array with chord pitch classes */
interval1 = members[1] - members[0]; /* calculate interval between first two members */
interval2 = members[2] - members[0]; /* calculate interval between first and third */
interval3 = members[3] - members[0]; /* calculate interval between first and third */
interval3 = interval3 - interval2 - 1; /* reduce interval3 to start at zero */
interval2 = interval2 - interval1 - 1; /* reduce interval2 to start at zero */
interval1 = interval1 - 1; /* reduce interval1 to start at zero */
/* find TypeRoot struct for this interval set */
t = &(quartads[interval1][interval2][interval3]);
x->x_chord_type = t->type;
x->x_chord_root = members[t->rootMember];
switch(t->rootMember) { /* get state of inversion */
case 0:
x->x_chord_inversion = 0;
break;
case 1:
x->x_chord_inversion = 2;
break;
case 2:
x->x_chord_inversion = 2;
break;
case 3:
x->x_chord_inversion = 1;
}
chord_draw_chord_type(x, 4); /* output results */
}
static void chord_fatal_error(char* s1, char* s2)
{
post("chord: error: %s : %s", s1, s2);
}
static void chord_quintad(t_chord *x)
{
static int initialized = 0;
static t_type_root quintads[8][8][8][8];
register int i, j, k, l;
register t_type_root *t;
t_int members[5];
int interval1, interval2, interval3, interval4;
int *st;
int maj9[5][4] = {{1,1,2,3}, {0,1,1,2}, {3,0,1,1}, {2,3,0,1}, {1,2,3,0}};
int dom9[5][4] = {{1,1,2,2}, {1,1,1,2}, {2,1,1,1}, {2,2,1,1}, {1,2,2,1}};
int min9[5][4] = {{1,0,3,2}, {1,1,0,3}, {2,1,1,0}, {3,2,1,1}, {0,3,2,1}};
int had9[5][4] = {{1,0,2,3}, {1,1,0,2}, {3,1,1,0}, {2,3,1,1}, {0,2,3,1}};
int miM9[5][4] = {{1,0,3,3}, {0,1,0,3}, {3,0,1,0}, {3,3,0,1}, {0,3,3,0}};
int diM9[5][4] = {{1,0,2,4}, {0,1,0,2}, {4,0,1,0}, {2,4,0,1}, {0,2,4,0}};
int M9b5[5][4] = {{1,1,1,4}, {0,1,1,1}, {4,0,1,1}, {1,4,0,1}, {1,1,4,0}};
int D9b5[5][4] = {{1,1,1,3}, {1,1,1,1}, {3,1,1,1}, {1,3,1,1}, {1,1,3,1}};
int mM91[5][4] = {{1,0,0,6}, {0,1,0,0}, {6,0,1,0}, {0,6,0,1}, {0,0,6,0}};
int M7b9[5][4] = {{0,2,2,3}, {0,0,2,2}, {3,0,0,2}, {2,3,0,0}, {2,2,3,0}};
int M5b9[5][4] = {{0,2,3,2}, {0,0,2,3}, {2,0,0,2}, {3,2,0,0}, {2,3,2,0}};
int D7b9[5][4] = {{0,2,2,2}, {1,0,2,2}, {2,1,0,2}, {2,2,1,0}, {2,2,2,1}};
int m7b9[5][4] = {{0,1,3,2}, {1,0,1,3}, {2,1,0,1}, {3,2,1,0}, {1,3,2,1}};
int mb51[5][4] = {{0,1,2,0}, {4,0,1,2}, {0,4,0,1}, {2,0,4,0}, {1,2,0,4}};
int d7b9[5][4] = {{0,1,2,3}, {1,0,1,2}, {3,1,0,1}, {2,3,1,0}, {1,2,3,1}};
int mMb9[5][4] = {{0,1,3,3}, {0,0,1,3}, {3,0,0,1}, {3,3,0,0}, {1,3,3,0}};
int dMb9[5][4] = {{0,1,2,4}, {0,0,1,2}, {4,0,0,1}, {2,4,0,0}, {1,2,4,0}};
int dib9[5][4] = {{0,1,2,2}, {2,0,1,2}, {2,2,0,1}, {2,2,2,0}, {1,2,2,2}};
int M7s9[5][4] = {{2,0,2,3}, {0,2,0,2}, {3,0,2,0}, {2,3,0,2}, {0,2,3,0}};
int D7s9[5][4] = {{2,0,2,2}, {1,2,0,2}, {2,1,2,0}, {2,2,1,2}, {0,2,2,1}};
int M7s1[5][4] = {{3,1,0,3}, {0,3,1,0}, {3,0,3,1}, {0,3,0,3}, {1,0,3,0}};
int d9b3[5][4] = {{1,1,2,0}, {3,1,1,2}, {0,3,1,1}, {2,0,3,1}, {1,2,0,3}};
int M9s3[5][4] = {{1,4,2,0}, {0,1,4,2}, {0,0,1,4}, {2,0,0,1}, {4,2,0,0}};
int M9st[5][4] = {{1,1,5,0}, {0,1,1,5}, {0,0,1,1}, {5,0,0,1}, {1,5,0,0}};
int s9s1[5][4] = {{2,0,1,0}, {4,2,0,1}, {0,4,2,0}, {1,0,4,2}, {0,1,0,4}};
int h7b1[5][4] = {{2,0,1,3}, {1,2,0,1}, {3,1,2,0}, {1,3,1,2}, {0,1,3,1}};
int M711[5][4] = {{3,0,1,3}, {0,3,0,1}, {3,0,3,0}, {1,3,0,3}, {0,1,3,0}};
int M115[5][4] = {{1,1,0,5}, {0,1,1,0}, {5,0,1,1}, {0,5,0,1}, {1,0,5,0}};
int d711[5][4] = {{3,0,1,2}, {1,3,0,1}, {2,1,3,0}, {1,2,1,3}, {0,1,2,1}};
int d712[5][4] = {{1,1,0,1}, {4,1,1,0}, {1,4,1,1}, {0,1,4,1}, {1,0,1,4}};
int d713[5][4] = {{1,1,0,4}, {1,1,1,0}, {4,1,1,1}, {0,4,1,1}, {1,0,4,1}};
int m711[5][4] = {{2,1,1,2}, {1,2,1,1}, {2,1,2,1}, {1,2,1,2}, {1,1,2,1}};
int m712[5][4] = {{1,0,1,1}, {4,1,0,1}, {1,4,1,0}, {1,1,4,1}, {0,1,1,4}};
int di11[5][4] = {{1,0,1,0}, {5,1,0,1}, {0,5,1,0}, {1,0,5,1}, {0,1,0,5}};
int mM11[5][4] = {{2,1,1,3}, {0,2,1,1}, {3,0,2,1}, {1,3,0,2}, {1,1,3,0}};
int dM11[5][4] = {{2,1,0,4}, {0,2,1,0}, {4,0,2,1}, {0,4,0,2}, {1,0,4,0}};
int Meb5[5][4] = {{3,0,0,4}, {0,3,0,0}, {4,0,3,0}, {0,4,0,3}, {0,0,4,0}};
int Mes5[5][4] = {{3,0,2,2}, {0,3,0,2}, {2,0,3,0}, {2,2,0,3}, {0,2,2,0}};
int Meb9[5][4] = {{0,2,0,5}, {0,0,2,0}, {5,0,0,2}, {0,5,0,0}, {2,0,5,0}};
int Mes9[5][4] = {{2,0,0,5}, {0,2,0,0}, {5,0,2,0}, {0,5,0,2}, {0,0,5,0}};
int Deb5[5][4] = {{3,0,0,3}, {1,3,0,0}, {3,1,3,0}, {0,3,1,3}, {0,0,3,1}};
int Mes3[5][4] = {{3,0,4,0}, {0,3,0,4}, {0,0,3,0}, {4,0,0,3}, {0,4,0,0}};
int Deb9[5][4] = {{0,2,0,4}, {1,0,2,0}, {4,1,0,2}, {0,4,1,0}, {2,0,4,1}};
int De91[5][4] = {{0,2,0,1}, {4,0,2,0}, {1,4,0,2}, {0,1,4,0}, {2,0,1,4}};
int Des9[5][4] = {{2,0,0,4}, {1,2,0,0}, {4,1,2,0}, {0,4,1,2}, {0,0,4,1}};
int Ds11[5][4] = {{3,1,0,2}, {1,3,1,0}, {2,1,3,1}, {0,2,1,3}, {1,0,2,1}};
int m7s1[5][4] = {{2,2,0,2}, {1,2,2,0}, {2,1,2,2}, {0,2,1,2}, {2,0,2,1}};
int D3s1[5][4] = {{5,0,1,0}, {1,5,0,1}, {0,1,5,0}, {1,0,1,5}, {0,1,0,1}};
int Mb9s[5][4] = {{0,2,5,0}, {0,0,2,5}, {0,0,0,2}, {5,0,0,0}, {2,5,0,0}};
int D7b3[5][4] = {{3,2,0,1}, {1,3,2,0}, {1,1,3,2}, {0,1,1,3}, {2,0,1,1}};
if (!initialized) {
for (i=0; i<8; i++)
for (j=0; j<8; j++)
for (k=0; k<8; k++)
for (l=0; l<8; l++) {
quintads[i][j][k][l].type = kNone;
quintads[i][j][k][l].rootMember = kXX;
}
// major ninths
for (i=0; i<5; i++) {
st = maj9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
t->type = kMaj9;
t->rootMember = i;
}
// dominant ninths
for (i=0; i<5; i++) {
st = dom9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "dom9");
t->type = kDom9;
t->rootMember = i;
}
// minor ninths
for (i=0; i<5; i++) {
st = min9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "min9");
t->type = kMin9;
t->rootMember = i;
}
// half diminished ninths
for (i=0; i<5; i++) {
st = had9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "had9");
t->type = kHalfDim9;
t->rootMember = i;
}
// minor/major ninths
for (i=0; i<5; i++) {
st = miM9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "miM9");
t->type = kMinMaj9;
t->rootMember = i;
}
// diminished/major ninths
for (i=0; i<5; i++) {
st = diM9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "diM9");
t->type = kDimMaj9;
t->rootMember = i;
}
// major ninth flat 5
for (i=0; i<5; i++) {
st = M9b5[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M9b5");
t->type = kMaj9b5;
t->rootMember = i;
}
// dominant ninth flat 5
for (i=0; i<5; i++) {
st = D9b5[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D9b5");
t->type = kDom9b5;
t->rootMember = i;
}
// minor/major ninth flat 11
for (i=0; i<5; i++) {
st = mM91[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "mM91");
t->type = kmM9b11;
t->rootMember = i;
}
// major seventh flat nine
for (i=0; i<5; i++) {
st = M7b9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M7b9");
t->type = kMaj7b9;
t->rootMember = i;
}
// major seventh sharp five flat nine
for (i=0; i<5; i++) {
st = M5b9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M5b9");
t->type = kMaj7s5b9;
t->rootMember = i;
}
// dominant seventh flat nine
for (i=0; i<5; i++) {
st = D7b9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D7b9");
t->type = kDom7b9;
t->rootMember = i;
}
// minor seventh flat nine
for (i=0; i<5; i++) {
t = &(quintads[m7b9[i][0]][m7b9[i][1]][m7b9[i][2]][m7b9[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "m7b9");
t->type = kMin7b9;
t->rootMember = i;
}
// minor flat nine sharp eleventh
for (i=0; i<5; i++) {
st = mb51[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "mb51");
t->type = kMinb9s11;
t->rootMember = i;
}
// half diminished seventh flat nine
for (i=0; i<5; i++) {
st = d7b9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d7b9");
t->type = kHalfDimb9;
t->rootMember = i;
}
// minor/major seventh flat nine
for (i=0; i<5; i++) {
st = mMb9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "mMb9");
t->type = kMinMajb9;
t->rootMember = i;
}
// diminished major seventh flat nine
for (i=0; i<5; i++) {
st = dMb9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "dMb9");
t->type = kDimMajb9;
t->rootMember = i;
}
// diminished seventh flat nine
for (i=0; i<5; i++) {
t = &(quintads[dib9[i][0]][dib9[i][1]][dib9[i][2]][dib9[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "dib9");
t->type = kDim7b9;
t->rootMember = i;
}
// major seventh sharp nine
for (i=0; i<5; i++) {
t = &(quintads[M7s9[i][0]][M7s9[i][1]][M7s9[i][2]][M7s9[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M7s9");
t->type = kMaj7s9;
t->rootMember = i;
}
// dominant seventh sharp nine
for (i=0; i<5; i++) {
t = &(quintads[D7s9[i][0]][D7s9[i][1]][D7s9[i][2]][D7s9[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D7s9");
t->type = kDom7s9;
t->rootMember = i;
}
// major seventh sharp eleventh
for (i=0; i<5; i++) {
t = &(quintads[M7s1[i][0]][M7s1[i][1]][M7s1[i][2]][M7s1[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M7s1");
t->type = kMaj7s11;
t->rootMember = i;
}
// dominant ninth flat thirteenth
for (i=0; i<5; i++) {
st = d9b3[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d9b3");
t->type = kDom9b13;
t->rootMember = i;
}
// major ninth sharp thirteenth
for (i=0; i<5; i++) {
st = M9s3[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M9s3");
t->type = kMaj9s13;
t->rootMember = i;
}
// major ninth sharp thirteenth
for (i=0; i<5; i++) {
t = &(quintads[M9st[i][0]][M9st[i][1]][M9st[i][2]][M9st[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M9st");
t->type = kMaj9s13;
t->rootMember = i;
}
// major chord sharp ninth sharp eleventh
for (i=0; i<5; i++) {
st = s9s1[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "s9s1");
t->type = kMs9s11;
t->rootMember = i;
}
// half diminished seven flat 11
for (i=0; i<5; i++) {
st = h7b1[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "h7b1");
t->type = kHDimb11;
t->rootMember = i;
}
// major eleventh
for (i=0; i<5; i++) {
t = &(quintads[M711[i][0]][M711[i][1]][M711[i][2]][M711[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M711");
t->type = kMaj11;
t->rootMember = i;
}
// major eleventh
for (i=0; i<5; i++) {
t = &(quintads[M115[i][0]][M115[i][1]][M115[i][2]][M115[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M711");
t->type = kMaj11;
t->rootMember = i;
}
// dominant eleventh
for (i=0; i<5; i++) {
t = &(quintads[d711[i][0]][d711[i][1]][d711[i][2]][d711[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d711");
t->type = kDom11;
t->rootMember = i;
}
// dominant eleventh
for (i=0; i<5; i++) {
t = &(quintads[d712[i][0]][d712[i][1]][d712[i][2]][d712[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d712");
t->type = kDom11;
t->rootMember = i;
}
// dominant eleventh
for (i=0; i<5; i++) {
st = d713[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d713");
t->type = kDom11;
t->rootMember = i;
}
// minor eleventh
for (i=0; i<5; i++) {
t = &(quintads[m711[i][0]][m711[i][1]][m711[i][2]][m711[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "m711");
t->type = kMin11;
t->rootMember = i;
}
// minor eleventh
for (i=0; i<5; i++) {
t = &(quintads[m712[i][0]][m712[i][1]][m712[i][2]][m712[i][3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "m712");
t->type = kMin11;
t->rootMember = i;
}
// diminished eleventh
for (i=0; i<5; i++) {
st = di11[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "di11");
t->type = kDim11;
t->rootMember = i;
}
// minor/major eleventh
for (i=0; i<5; i++) {
st = mM11[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "mM11");
t->type = kMinMaj11;
t->rootMember = i;
}
// diminished major eleventh
for (i=0; i<5; i++) {
st = dM11[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "dM11");
t->type = kDimMaj11;
t->rootMember = i;
}
// major eleventh flat fifth
for (i=0; i<5; i++) {
st = Meb5[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Meb5");
t->type = kMaj11b5;
t->rootMember = i;
}
// major eleventh sharp fifth
for (i=0; i<5; i++) {
st = Mes5[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Mes5");
t->type = kMaj11s5;
t->rootMember = i;
}
// major eleventh flat ninth
for (i=0; i<5; i++) {
st = Meb9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Meb9");
t->type = kMaj11b9;
t->rootMember = i;
}
// major eleventh sharp ninth
for (i=0; i<5; i++) {
st = Mes9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Mes9");
t->type = kMaj11s9;
t->rootMember = i;
}
// major eleventh sharp thirteenth
for (i=0; i<5; i++) {
st = Mes3[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Mes3");
t->type = kMaj11s13;
t->rootMember = i;
}
// dominant eleventh flat fifth
for (i=0; i<5; i++) {
st = Deb5[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Deb5");
t->type = kDom11b5;
t->rootMember = i;
}
// dominant eleventh flat ninth
for (i=0; i<5; i++) {
st = Deb9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Deb9");
t->type = kDom11b9;
t->rootMember = i;
}
// dominant eleventh flat ninth
for (i=0; i<5; i++) {
st = De91[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "De91");
t->type = kDom11b9;
t->rootMember = i;
}
// dominant eleventh sharp ninth
for (i=0; i<5; i++) {
st = Des9[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Des9");
t->type = kDom11s9;
t->rootMember = i;
}
// dominant seventh sharp eleventh
for (i=0; i<5; i++) {
st = Ds11[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Ds11");
t->type = kDom7s11;
t->rootMember = i;
}
// minor seventh sharp eleventh
for (i=0; i<5; i++) {
st = m7s1[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "m7s1");
t->type = kMin7s11;
t->rootMember = i;
}
// dominant thirteenth sharp eleventh
for (i=0; i<5; i++) {
st = D3s1[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D3s1");
t->type = kDom13s11;
t->rootMember = i;
}
// major seventh flat ninth sharp thirteenth
for (i=0; i<5; i++) {
st = Mb9s[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "Mb9s");
t->type = kM7b9s13;
t->rootMember = i;
}
// dominant seventh flat thirteenth
for (i=0; i<5; i++) {
st = D7b3[i];
t = &(quintads[st[0]][st[1]][st[2]][st[3]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D7b3");
t->type = kDom7b13;
t->rootMember = i;
}
initialized = 1;
return;
}
j = 0;
for (i=0; i<12; i++)
if (x->x_pc[i]) members[j++] = i; /* load members array with chord pitch classes */
interval1 = members[1] - members[0]; /* calculate interval between first two members */
interval2 = members[2] - members[0]; /* calculate interval between first and third */
interval3 = members[3] - members[0]; /* calculate interval between first and third */
interval4 = members[4] - members[0]; /* calculate interval between first and fourth */
interval4 = interval4 - interval3 - 1; /* reduce interval4 to start at zero */
interval3 = interval3 - interval2 - 1; /* reduce interval3 to start at zero */
interval2 = interval2 - interval1 - 1; /* reduce interval2 to start at zero */
interval1 = interval1 - 1; /* reduce interval1 to start at zero */
// find TypeRoot struct for this interval set
t = &(quintads[interval1][interval2][interval3][interval4]);
if (t->rootMember != kXX)
{
x->x_chord_type = t->type;
x->x_chord_root = members[t->rootMember];
switch(t->rootMember) { /* get state of inversion */
case 0:
x->x_chord_inversion = 0;
break;
case 1:
x->x_chord_inversion = 2;
break;
case 2:
x->x_chord_inversion = 2;
break;
case 3:
x->x_chord_inversion = 2;
break;
case 4:
x->x_chord_inversion = 1;
}
chord_draw_chord_type(x, 5); /* output result */
} else
chord_kick_out_member(x, 5, members);
}
static void chord_sextad(t_chord *x)
{
static int initialized = 0;
static t_type_root sextads[7][7][7][7][7];
register int i, j, k, l, m;
register t_type_root *t;
register int* st;
t_int members[6];
int interval1, interval2, interval3, interval4, interval5;
int D9b3[6][5] =
{{1,1,2,0,1}, {1,1,1,2,0}, {1,1,1,1,2}, {0,1,1,1,1}, {2,0,1,1,1}, {1,2,0,1,1}};
int m9s1[6][5] =
{{1,0,2,0,2}, {1,1,0,2,0}, {2,1,1,0,2}, {0,2,1,1,0}, {2,0,2,1,1}, {0,2,0,2,1}};
int M711[6][5] =
{{1,1,0,1,3}, {0,1,1,0,1}, {3,0,1,1,0}, {1,3,0,1,1}, {0,1,3,0,1}, {1,0,1,3,0}};
int D711[6][5] =
{{1,1,0,1,2}, {1,1,1,0,1}, {2,1,1,1,0}, {1,2,1,1,1}, {0,1,2,1,1}, {1,0,1,2,1}};
int hd11[6][5] =
{{1,0,1,0,3}, {1,1,0,1,0}, {3,1,1,0,1}, {0,3,1,1,0}, {1,0,3,1,1}, {0,1,0,3,1}};
int M1b5[6][5] =
{{1,1,0,0,4}, {0,1,1,0,0}, {4,0,1,1,0}, {0,4,0,1,1}, {0,0,4,0,1}, {1,0,0,4,0}};
int M159[6][5] =
{{0,2,0,0,4}, {0,0,2,0,0}, {4,0,0,2,0}, {0,4,0,0,2}, {0,0,4,0,0}, {2,0,0,4,0}};
int M1s3[6][5] =
{{1,1,0,4,0}, {0,1,1,0,4}, {0,0,1,1,0}, {4,0,0,1,1}, {0,4,0,0,1}, {1,0,4,0,0}};
int hd19[6][5] =
{{0,1,1,0,3}, {1,0,1,1,0}, {3,1,0,1,1}, {0,3,1,0,1}, {1,0,3,1,0}, {1,1,0,3,1}};
int M1b3[6][5] =
{{3,0,1,0,2}, {0,3,0,1,0}, {2,0,3,0,1}, {0,2,0,3,0}, {1,0,2,0,3}, {0,1,0,2,0}};
int D1b5[6][5] =
{{1,1,0,0,3}, {1,1,1,0,0}, {3,1,1,1,0}, {0,3,1,1,1}, {0,0,3,1,1}, {1,0,0,3,1}};
int D1s9[6][5] =
{{2,0,0,1,2}, {1,2,0,0,1}, {2,1,2,0,0}, {1,2,1,2,0}, {0,1,2,1,2}, {0,0,1,2,1}};
int m791[6][5] =
{{0,1,2,0,2}, {1,0,1,2,0}, {2,1,0,1,2}, {0,2,1,0,1}, {2,0,2,1,0}, {1,2,0,2,1}};
int d7s1[6][5] =
{{1,1,1,0,2}, {1,1,1,1,0}, {2,1,1,1,1}, {0,2,1,1,1}, {1,0,2,1,1}, {1,1,0,2,1}};
int d3s1[6][5] =
{{3,1,0,1,0}, {1,3,1,0,1}, {0,1,3,1,0}, {1,0,1,3,1}, {0,1,0,1,3}, {1,0,1,0,1}};
if (!initialized) {
for (i=0; i<7; i++)
for (j=0; j<7; j++)
for (k=0; k<7; k++)
for (l=0; l<7; l++)
for (m=0; m<7; m++) {
sextads[i][j][k][l][m].type = kNone;
sextads[i][j][k][l][m].rootMember = kXX;
}
// dominant ninth flat thirteen
for (i=0; i<6; i++) {
st = D9b3[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D9b3");
t->type = kDom9b13;
t->rootMember = i;
}
// minor ninth sharp eleventh
for (i=0; i<6; i++) {
st = m9s1[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "m9s1");
t->type = kMin9s11;
t->rootMember = i;
}
// major eleventh
for (i=0; i<6; i++) {
st = M711[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M711");
t->type = kMaj11;
t->rootMember = i;
}
// dominant eleventh
for (i=0; i<6; i++) {
st = D711[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D711");
t->type = kDom11;
t->rootMember = i;
}
// half diminished eleventh
for (i=0; i<6; i++) {
st = hd11[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "hd11");
t->type = kHalfDim11;
t->rootMember = i;
}
// major eleventh flat 5
for (i=0; i<6; i++) {
st = M1b5[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M1b5");
t->type = kMaj11b5;
t->rootMember = i;
}
// major eleventh flat 5 flat 9
for (i=0; i<6; i++) {
st = M159[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M159");
t->type = kM11b5b9;
t->rootMember = i;
}
// major eleventh sharp 13
for (i=0; i<6; i++) {
st = M1s3[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M1s3");
t->type = kMaj11s13;
t->rootMember = i;
}
// half diminished eleventh flat 9
for (i=0; i<6; i++) {
st = hd19[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "hd19");
t->type = kHalfDim11b9;
t->rootMember = i;
}
// major eleventh flat 13
for (i=0; i<6; i++) {
st = M1b3[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "M1b3");
t->type = kMaj11b13;
t->rootMember = i;
}
// dominant eleventh flat five
for (i=0; i<6; i++) {
st = D1b5[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D1b5");
t->type = kDom11b5;
t->rootMember = i;
}
// dominant eleventh sharp nine
for (i=0; i<6; i++) {
st = D1s9[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "D1s9");
t->type = kDom11s9;
t->rootMember = i;
}
// minor seventh flat 9 sharp 11
for (i=0; i<6; i++) {
st = m791[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "m791");
t->type = kMinb9s11;
t->rootMember = i;
}
// dominant seventh sharp 11
for (i=0; i<6; i++) {
st = d7s1[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d7s1");
t->type = kDom7s11;
t->rootMember = i;
}
// dominant thirteenth sharp 11
for (i=0; i<6; i++) {
st = d3s1[i];
t = &(sextads[st[0]][st[1]][st[2]][st[3]][st[4]]);
if (t->type != kNone) chord_fatal_error("redefining chord", "d3s1");
t->type = kDom13s11;
t->rootMember = i;
}
initialized = 1;
return;
}
j = 0;
for (i=0; i<12; i++)
if (x->x_pc[i]) members[j++] = i; // load members array with chord pitch classes
interval1 = members[1] - members[0]; // calculate interval between first two members
interval2 = members[2] - members[0]; // calculate interval between first and third
interval3 = members[3] - members[0]; // calculate interval between first and third
interval4 = members[4] - members[0]; // calculate interval between first and fourth
interval5 = members[5] - members[0]; // calculate interval between first and fifth
interval5 = interval5 - interval4 - 1; // reduce interval5 to start at zero
interval4 = interval4 - interval3 - 1; // reduce interval4 to start at zero
interval3 = interval3 - interval2 - 1; // reduce interval3 to start at zero
interval2 = interval2 - interval1 - 1; // reduce interval2 to start at zero
interval1 = interval1 - 1; // reduce interval1 to start at zero
// find TypeRoot struct for this interval set
t = &(sextads[interval1][interval2][interval3][interval4][interval5]);
if (t->rootMember != kXX) {
x->x_chord_type = t->type;
x->x_chord_root = members[t->rootMember];
switch(t->rootMember) { /* get state of inversion */
case 0:
x->x_chord_inversion = 0;
break;
case 1:
x->x_chord_inversion = 2;
break;
case 2:
x->x_chord_inversion = 2;
break;
case 3:
x->x_chord_inversion = 2;
break;
case 4:
x->x_chord_inversion = 2;
break;
case 5: x->x_chord_inversion = 1;
}
chord_draw_chord_type(x, 6); // output onto the screen
} else
chord_kick_out_member(x, 6, members);
}
static int chord_accidental(t_int pc)
{
switch (pc) {
case 0:
case 2:
case 4:
case 5:
case 7:
case 9:
case 11: return 0;
case 1:
case 3:
case 6:
case 8:
case 10:
default: return 1;
}
}
static int chord_name_third(t_chord *x, char* chord, int c, int rootName)
{
int third = (x->x_chord_root+4)%12; // look for major third
if (x->x_pc[third]) { // if one is there
x->x_pc[third] = 0; // erase from pcs array
chord[c++] = name_class[(rootName+2)%7];
if (chord_accidental(third)) { // if it has an chord_accidental
// make it a flat if the root also has an chord_accidental
if (chord_accidental(x->x_chord_root))
chord[c++] = 'b';
// otherwise make it a sharp
else
chord[c++] = '#';
}
chord[c++] = ' ';
return c; // return if major third found
}
third = (x->x_chord_root+3)%12; // no major, look for minor third
if (x->x_pc[third]) { // if one is there
x->x_pc[third] = 0; // erase from pcs array
chord[c++] = name_class[(rootName+2)%7];
if (chord_accidental(third)) // if it has an chord_accidental
chord[c++] = 'b'; else // make it a flat
if (chord_accidental(x->x_chord_root)) { // if the root has an chord_accidental
chord[c++] = 'b'; // make the third a flat
if (chord[0] == 'G') // if the root is Gb
chord[c++] = 'b'; // this must be Bbb
}
chord[c++] = ' ';
return c;
}
return c; // if we get here there was no third
}
static int chord_name_fifth(t_chord *x, char* chord, int c, int rootName)
{
int fifth = (x->x_chord_root+7)%12;
if (x->x_pc[fifth]) {
x->x_pc[fifth] = 0;
chord[c++] = name_class[(rootName+4)%7];
if (chord_accidental(fifth)) {
if (chord_accidental(x->x_chord_root)) chord[c++] = 'b';
else chord[c++] = '#';
}
chord[c++] = ' ';
return c;
}
fifth = (x->x_chord_root+6)%12;
if (x->x_pc[fifth]) {
x->x_pc[fifth] = 0;
chord[c++] = name_class[(rootName+4)%7];
if (chord[0] != 'B') chord[c++] = 'b';
if (chord_accidental(x->x_chord_root)) chord[c++] = 'b';
chord[c++] = ' ';
return c;
}
fifth = (x->x_chord_root+8)%12;
if (x->x_pc[fifth]) {
x->x_pc[fifth] = 0;
chord[c++] = name_class[(rootName+4)%7];
if (chord_accidental(fifth)) chord[c++] = '#'; else
if (!chord_accidental(x->x_chord_root)) {
chord[c++] = '#';
if (chord[0] == 'B')
chord[c++] = '#';
}
chord[c++] = ' ';
return c;
}
return c;
}
static int chord_name_seventh(t_chord *x, char* chord, int c, int rootName)
{
int seventh = (x->x_chord_root+11)%12;
if (x->x_pc[seventh]) {
x->x_pc[seventh] = 0;
chord[c++] = name_class[(rootName+6)%7];
if (chord_accidental(seventh)) chord[c++] = '#';
chord[c++] = ' ';
return c;
}
seventh = (x->x_chord_root+10)%12;
if (x->x_pc[seventh]) {
x->x_pc[seventh] = 0;
chord[c++] = name_class[(rootName+6)%7];
if (chord_accidental(seventh) || chord_accidental(x->x_chord_root))
chord[c++] = 'b';
chord[c++] = ' ';
return c;
}
seventh = (x->x_chord_root+9)%12;
if (x->x_pc[seventh]) {
x->x_pc[seventh] = 0;
chord[c++] = name_class[(rootName+6)%7];
chord[c++] = 'b';
if (chord_accidental(x->x_chord_root)) chord[c++] = 'b'; else
if (chord_accidental((seventh+1)%12)) chord[c++] = 'b';
chord[c++] = ' ';
return c;
}
return c;
}
static int chord_name_ninth(t_chord *x, char* chord, int c, int rootName)
{
int ninth = (x->x_chord_root+2)%12;
if (x->x_pc[ninth]) {
x->x_pc[ninth] = 0;
chord[c++] = name_class[(rootName+1)%7];
if (chord_accidental(ninth)) {
if (chord_accidental(x->x_chord_root)) chord[c++] = 'b';
else chord[c++] = '#';
}
chord[c++] = ' ';
return c;
}
ninth = (x->x_chord_root+1)%12;
if (x->x_pc[ninth]) {
x->x_pc[ninth] = 0;
chord[c++] = name_class[(rootName+1)%7];
if (chord_accidental(ninth)) chord[c++] = 'b';
else {
if (chord_accidental(x->x_chord_root)) {
chord[c++] = 'b';
if ((x->x_chord_root == 1) || (x->x_chord_root == 6) || (x->x_chord_root == 8))
chord[c++] = 'b';
}
}
chord[c++] = ' ';
return c;
}
ninth = (x->x_chord_root+3)%12;
if (x->x_pc[ninth]) {
x->x_pc[ninth] = 0;
chord[c++] = name_class[(rootName+1)%7];
if (chord_accidental(ninth)) chord[c++] = '#'; else
if (!chord_accidental(x->x_chord_root)) {
chord[c++] = '#';
if (chord_accidental((x->x_chord_root+2)%12))
chord[c++] = '#';
}
chord[c++] = ' ';
return c;
}
return c;
}
static int chord_name_eleventh(t_chord *x, char* chord, int c, int rootName)
{
int eleventh = (x->x_chord_root+5)%12;
if (x->x_pc[eleventh]) {
x->x_pc[eleventh] = 0;
chord[c++] = name_class[(rootName+3)%7];
if (chord_accidental(eleventh)) chord[c++] = 'b'; else
if (chord_accidental(x->x_chord_root)) chord[c++] = 'b';
chord[c++] = ' ';
return c;
}
eleventh = (x->x_chord_root+6)%12;
if (x->x_pc[eleventh]) {
x->x_pc[eleventh] = 0;
chord[c++] = name_class[(rootName+3)%7];
if (chord_accidental(eleventh)) chord[c++] = '#'; else
if ((!chord_accidental(x->x_chord_root)) && (x->x_chord_root == 11))
chord[c++] = '#';
chord[c++] = ' ';
return c;
}
return c;
}
static int chord_name_thirteenth(t_chord *x, char* chord, int c, int rootName)
{
int thirteenth = (x->x_chord_root+9)%12;
if (x->x_pc[thirteenth]) {
x->x_pc[thirteenth] = 0;
chord[c++] = name_class[(rootName+5)%7];
if (chord_accidental(thirteenth)) {
if (chord_accidental(x->x_chord_root))
chord[c++] = 'b';
else
chord[c++] = '#';
}
chord[c++] = ' ';
return c;
}
thirteenth = (x->x_chord_root+10)%12;
if (x->x_pc[thirteenth]) {
x->x_pc[thirteenth] = 0;
chord[c++] = name_class[(rootName+5)%7];
if (chord_accidental(thirteenth)) chord[c++] = '#'; else
if (!chord_accidental(x->x_chord_root)) {
chord[c++] = '#';
if (chord_accidental((x->x_chord_root+9)%12))
chord[c++] = '#';
}
chord[c++] = ' ';
return c;
}
thirteenth = (x->x_chord_root+8)%12;
if (x->x_pc[thirteenth]) {
x->x_pc[thirteenth] = 0;
chord[c++] = name_class[(rootName+5)%7];
if (chord_accidental(thirteenth)) chord[c++] = 'b'; else
if (chord_accidental(x->x_chord_root)) {
chord[c++] = 'b';
if (chord_accidental(x->x_chord_root+9)%12)
chord[c++] = 'b';
}
chord[c++] = ' ';
return c;
}
return c;
}
static void chord_spell_chord(t_chord *x, char *chord, t_int num_pcs)
{
int rootName = 0; // keep index of root name class
int c = 0; // pointer to current character
int named = 0; // how many members have been named
int mark;
int i;
// use chordRoot to set rootName index and store characters for name
switch (x->x_chord_root)
{
case 0: chord[c++] = name_class[rootName=0]; break;
case 1: chord[c++] = name_class[rootName=1];
chord[c++] = 'b'; break;
case 2: chord[c++] = name_class[rootName=1]; break;
case 3: chord[c++] = name_class[rootName=2];
chord[c++] = 'b'; break;
case 4: chord[c++] = name_class[rootName=2]; break;
case 5: chord[c++] = name_class[rootName=3]; break;
case 6: chord[c++] = name_class[rootName=4];
chord[c++] = 'b'; break;
case 7: chord[c++] = name_class[rootName=4]; break;
case 8: chord[c++] = name_class[rootName=5];
chord[c++] = 'b'; break;
case 9: chord[c++] = name_class[rootName=5]; break;
case 10: chord[c++] = name_class[rootName=6];
chord[c++] = 'b'; break;
case 11: chord[c++] = name_class[rootName=6]; break;
default: break;
}
x->x_pc[x->x_chord_root] = 0; /* set this member to zero */
chord[c++] = ' '; // insert space
if (++named == num_pcs) { // if everything is named
chord[c] = '\0'; // terminate the string
return; // and return
}
mark = c; // use mark to see if new names are added
for (i=0; i<6; i++) {
// advance search by thirds
switch (i) {
case 0: mark = chord_name_third (x, chord, c, rootName); break;
case 1: mark = chord_name_fifth (x, chord, c, rootName); break;
case 2: mark = chord_name_seventh (x, chord, c, rootName); break;
case 3: mark = chord_name_ninth (x, chord, c, rootName); break;
case 4: mark = chord_name_eleventh (x, chord, c, rootName); break;
case 5: mark = chord_name_thirteenth(x, chord, c, rootName); break;
}
if (mark != c) { // if new name is added
++named; // increment count of named members
c = mark; // update character pointer
}
if (named == num_pcs) { // if everything is named
chord[c] = '\0'; // terminate the string
return; // and return
}
}
chord[c] = '\0';
}
static void chord_draw_chord_type(t_chord *x, t_int num_pcs)
{
char chord[255]; /* output string */
int i, j;
/* get members of chord */
j = 0;
for(i = 0; i < 12; i++)
{
if(x->x_pc[i])
{
SETFLOAT(x->x_chordlist+j, x->x_abs_pc[i]);
j++;
}
}
if (x->x_chord_type != kNone)
{
chord_spell_chord(x, chord, num_pcs); /* spell chord members */
}
else
{
post("going...");
chord[0] = '\0';
for(i = 0; i < 12; i++)
if (x->x_pc[i])
strcat(chord, pitch_class[i]); /* output single notes */
post("did it");
}
strcat(chord, ": ");
strcat(chord, pitch_class[x->x_chord_root]);
/* append name of chord type */
switch (x->x_chord_type) {
case kUnison: strcat(chord, "unison"); break;
case kMaj: strcat(chord, "major"); break;
case kMin: strcat(chord, "minor"); break;
case kDim: strcat(chord, "diminished"); break;
case kAug: strcat(chord, "augmented"); break;
case kMaj7: strcat(chord, "major 7th"); break;
case kDom7: strcat(chord, "dominant 7th"); break;
case kMin7: strcat(chord, "minor 7th"); break;
case kHalfDim7: strcat(chord, "half diminished 7th"); break;
case kDim7: strcat(chord, "diminished 7th"); break;
case kMinMaj7: strcat(chord, "minor/major 7th"); break;
case kMaj7s5: strcat(chord, "major 7th #5"); break;
case kMaj7b5: strcat(chord, "major 7th b5"); break;
case kDom7s5: strcat(chord, "dominant 7th #5"); break;
case kDom7b5: strcat(chord, "dominant 7th b5"); break;
case kDomb9: strcat(chord, "dominant b9"); break;
case kMaj9: strcat(chord, "major 9th"); break;
case kDom9: strcat(chord, "dominant 9th"); break;
case kMin9: strcat(chord, "minor 9th"); break;
case kHalfDim9: strcat(chord, "half diminished 9th"); break;
case kMinMaj9: strcat(chord, "minor major 9th"); break;
case kDimMaj9: strcat(chord, "diminished major 9th");break;
case kMaj9b5: strcat(chord, "major 9th b5"); break;
case kDom9b5: strcat(chord, "dominant 9th b5"); break;
case kDom9b13: strcat(chord, "dominant 9th b13"); break;
case kMin9s11: strcat(chord, "minor 9th #11"); break;
case kmM9b11: strcat(chord, "minor/maj 9th b11"); break;
case kMaj7b9: strcat(chord, "major 7th b9"); break;
case kMaj7s5b9: strcat(chord, "major 7th #5 b9"); break;
case kDom7b9: strcat(chord, "dominant 7th b9"); break;
case kMin7b9: strcat(chord, "minor 7th b9"); break;
case kMinb9s11: strcat(chord, "minor b9 #11"); break;
case kHalfDimb9:strcat(chord, "half diminished b9"); break;
case kDim7b9: strcat(chord, "diminished b9"); break;
case kMinMajb9: strcat(chord, "minor/major b9"); break;
case kDimMajb9: strcat(chord, "diminished M7 b9"); break;
case kMaj7s9: strcat(chord, "major 7th #9"); break;
case kDom7s9: strcat(chord, "dominant #9"); break;
case kMaj7s11: strcat(chord, "major 7th #11"); break;
case kMaj9s13: strcat(chord, "major 9th #13"); break;
case kMs9s11: strcat(chord, "major #9 #11"); break;
case kHDimb11: strcat(chord, "half diminished b11"); break;
case kMaj11: strcat(chord, "major 11th"); break;
case kDom11: strcat(chord, "dominant 11th"); break;
case kMin11: strcat(chord, "minor 11th"); break;
case kHalfDim11:strcat(chord, "half diminished 11th");break;
case kDim11: strcat(chord, "diminished 11th"); break;
case kMinMaj11: strcat(chord, "minor/major 11th"); break;
case kDimMaj11: strcat(chord, "diminished maj 11th"); break;
case kMaj11b5: strcat(chord, "major 11th b5"); break;
case kMaj11s5: strcat(chord, "major 11th #5"); break;
case kMaj11b9: strcat(chord, "major 11th b9"); break;
case kMaj11s9: strcat(chord, "major 11th #9"); break;
case kMaj11b13: strcat(chord, "major 11th b13"); break;
case kMaj11s13: strcat(chord, "major 11th #13"); break;
case kM11b5b9: strcat(chord, "major 11th b5 b9"); break;
case kDom11b5: strcat(chord, "dominant 11th b5"); break;
case kDom11b9: strcat(chord, "dominant 11th b9"); break;
case kDom11s9: strcat(chord, "dominant 11th #9"); break;
case kHalfDim11b9:strcat(chord, "half dim 11th b9"); break;
case kDom7s11: strcat(chord, "dominant #11"); break;
case kMin7s11: strcat(chord, "minor 7th #11"); break;
case kDom13s11: strcat(chord, "dominant 13th #11"); break;
case kM7b913: strcat(chord, "major 7 b9 13"); break;
case kMaj7s13: strcat(chord, "major 7th #13"); break;
case kM7b9s13: strcat(chord, "major 7 b9 #13"); break;
case kDom7b13: strcat(chord, "dominant 7th b13"); break;
case kChrom: strcat(chord, "chromatic"); break;
case kNone:
default: strcat(chord, "unknown"); break;
}
x->x_chord_bass = x->x_abs_pc[x->x_chord_root]; /* get MIDI note number of bass */
/* output results */
outlet_list(x->x_outchordnotes, NULL, j, x->x_chordlist);
outlet_float(x->x_outchordinversion, x->x_chord_inversion);
outlet_symbol(x->x_outchordname, gensym(chord));
outlet_float(x->x_outchordclass, x->x_chord_root);
outlet_float(x->x_outchordval, x->x_chord_bass);
}
static void chord_kick_out_member(t_chord *x, t_int number, t_int *members)
{
int *distances;
int minDistance = 1000;
int badMember = 0;
int i, j, interval;
distances = getbytes(number*sizeof(int));
for (i=0; i<number; i++) {
// initialize total distance to zero
distances[i] = 0;
for (j=0; j<number; j++)
if (j != i) {
// get absolute value of interval size
interval = abs(members[i] - members[j]);
// make inversions of intervals equivalent
if (interval > 6) interval = 12 - interval;
// add absolute interval size to total
distances[i] += interval;
}
// if this is the smallest total distance
if (distances[i] < minDistance) {
// remember it
minDistance = distances[i];
badMember = i;
}
}
freebytes(distances, number * sizeof(int));
x->x_pc[members[badMember]] = 0; // cancel out most dissonant member
chord_chord_finder(x, number-1); // call chord finder again without it
x->x_pc[members[badMember]] = 1; // replace most dissonant member
}
static void chord_chord_finder(t_chord *x, t_int num_pcs)
{
int i;
x->x_chord_type = kNone;
x->x_chord_root = kXX; /* none */
switch (num_pcs) {
case 1: chord_unison(x); break;
case 2: chord_dyad(x); break;
case 3: chord_triad(x); break;
case 4: chord_quartad(x); break;
case 5: chord_quintad(x); break;
case 6: chord_sextad(x); break;
default: x->x_chord_type = kChrom;
for(i = 0; i < 12; i++) // 12 was num_pcs !?
{
if(x->x_pc[i])
{
x->x_chord_root = i;
break;
}
}
}
}
static void chord_float(t_chord *x, t_floatarg f)
{
t_int velo = x->x_velo;
t_int allloc = 0;
t_int num_pc = 0; /* number of pitch classes present */
int i, j, k, l;
x->x_pitch = (t_int)f;
if(x->x_pitch <= x->x_split)
{
/* first we need to put the note into the allocation table */
if(velo == 0) /* got note-off: remove from allocation table */
{
if(x->x_poly > 0)x->x_poly--; /* polyphony has decreased by one */
for(i = 0; i < MAX_POLY; i++) /* search for voice allocation number */
{
/* search for corresponding alloc number */
if(x->x_alloctable[i] == x->x_pitch)
{
x->x_alloctable[i] = -1; /* free the alloc number */
break;
}
/* couldn't find it ? */
if(i == MAX_POLY - 1)
{
post("chord: no corresponding note-on found (ignored)");
return;
}
}
return; /* no need to look for chord */
}
else /* we got a note-on message */
{
if(x->x_poly == MAX_POLY)
{
post("chord: too many note-on messages (ignored)");
return;
}
x->x_poly++; /* number of currently playing notes has increased */
/* assign a voice allocation number */
for(i = 0; i < MAX_POLY; i++)
{
/* search for free alloc number */
if(x->x_alloctable[i] == -1)
{
x->x_alloctable[i] = x->x_pitch; /* ... and store pitch */
break;
}
}
/* copy all notes into the pitch class array */
for(i = 0; i < 12; i++)
{
x->x_pc[i] = 0; /* empty pitch class */
x->x_abs_pc[i] = -1; /* empty absolute values */
}
for(i = 0; i < MAX_POLY; i++)
{
/* check for presence of pitch class */
if(x->x_alloctable[i] != -1)
{
if(!x->x_pc[x->x_alloctable[i]%12]) /* a new pitch class */
{
x->x_abs_pc[x->x_alloctable[i]%12] = x->x_alloctable[i];
}
else if(x->x_abs_pc[x->x_alloctable[i]%12] > x->x_alloctable[i]) /* remember lowest pitch */
{
x->x_abs_pc[x->x_alloctable[i]%12] = x->x_alloctable[i];
}
x->x_pc[x->x_alloctable[i]%12] = 1; /* indicate presence of pc */
}
}
/* count number of pitch classes */
for(i = 0; i < 12; i++)
{
num_pc += x->x_pc[i];
}
// post("%d pitch classes", num_pc);
}
}
chord_chord_finder(x, num_pc);
}
static void chord_ft1(t_chord *x, t_floatarg f)
{
x->x_velo = (t_int)f;
}
static t_class *chord_class;
static void *chord_new(t_floatarg f)
{
int i;
t_chord *x = (t_chord *)pd_new(chord_class);
inlet_new(&x->x_ob, &x->x_ob.ob_pd, gensym("float"), gensym("ft1"));
x->x_outchordval = outlet_new(&x->x_ob, gensym("float"));
x->x_outchordclass = outlet_new(&x->x_ob, gensym("float"));
x->x_outchordname = outlet_new(&x->x_ob, gensym("symbol"));
x->x_outchordinversion = outlet_new(&x->x_ob, gensym("float"));
x->x_outchordnotes = outlet_new(&x->x_ob, gensym("float"));
x->x_split = (t_int)f;
if(x->x_split == 0)x->x_split = 128;
for(i = 0; i < MAX_POLY; i++)x->x_alloctable[i] = -1;
return (void *)x;
}
#ifndef MAXLIB
void chord_setup(void)
{
chord_class = class_new(gensym("chord"), (t_newmethod)chord_new,
0, sizeof(t_chord), 0, A_DEFFLOAT, 0);
#else
void maxlib_chord_setup(void)
{
chord_class = class_new(gensym("maxlib_chord"), (t_newmethod)chord_new,
0, sizeof(t_chord), 0, A_DEFFLOAT, 0);
#endif
class_addfloat(chord_class, chord_float);
class_addmethod(chord_class, (t_method)chord_ft1, gensym("ft1"), A_FLOAT, 0);
#ifndef MAXLIB
post(version);
#else
class_addcreator((t_newmethod)chord_new, gensym("chord"), A_DEFFLOAT, 0);
class_sethelpsymbol(chord_class, gensym("maxlib/chord-help.pd"));
#endif
}
|