1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* --------------------------- rhythm ---------------------------------------- */
/* */
/* Detect the beats per minute of a MIDI stream. */
/* Written by Olaf Matthes (olaf.matthes@gmx.de) */
/* Based on code written by Robert Rowe. */
/* Get source at http://www.akustische-kunst.org/puredata/maxlib/ */
/* */
/* This program is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU General Public License */
/* as published by the Free Software Foundation; either version 2 */
/* of the License, or (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* */
/* Based on PureData by Miller Puckette and others. */
/* */
/* ---------------------------------------------------------------------------- */
#include "m_pd.h"
#include <stdio.h>
#include <math.h>
#ifndef _WIN32
#include <stdlib.h>
#endif
#define ALPHA 10
#define ADAPT_ARRAY_SIZE 1000
#ifndef M_PI
#define M_PI 3.14159265358979
#endif
#ifndef TWO_PI
#define TWO_PI 2.0*M_PI
#endif
static char *version = "rhythm v0.1, written by Olaf Matthes <olaf.matthes@gmx.de>";
typedef struct rhythm
{
t_object x_ob;
t_clock *x_tick;
t_outlet *x_out_bpm; /* beats per minute */
t_outlet *x_out_period; /* beats in milliseconds */
t_outlet *x_out_pulse;
t_int x_print; /* switch printing to console window on / off */
t_int x_ticking; /* indicates if clock is ticking or not */
t_int x_model; /* algorhythm to use: 0 - Large & Kolen, 1 - Toiviainen */
t_float x_long_term[ADAPT_ARRAY_SIZE];
t_float x_short_term[ADAPT_ARRAY_SIZE];
t_float x_phi_at_pulse; /* phase at latest pulse */
t_float x_phiVel_at_pulse; /* phase velocity */
t_float x_adapt;
t_float x_errFunc; /* error function */
t_float x_etaLong; /* strength of long-term adaptation */
t_float x_etaShort; /* strength of short-term adaptation */
t_float x_gamma; /* gain parameter */
double x_lastIoi; /* last inter-onset interval */
double x_lastPulseTime; /* time of last pulse */
t_float x_output; /* current output value of the oscillator */
t_float x_phi; /* phase */
double x_expected; /* estimated time of arrival */
t_float x_period;
t_float x_periodStrength;
t_float x_phaseStrength;
double x_startTime;
t_int x_pitch;
t_int x_velo;
/* helpers needed to do the time calculations */
double x_last_input;
} t_rhythm;
/* --------------- rhythm stuff ------------------------------------------------ */
/* bang at the rhythm's pulse */
static void rhythm_tick(t_rhythm *x)
{
outlet_bang(x->x_out_pulse);
clock_delay(x->x_tick, x->x_period);
}
static t_float rhythm_get_adapt_long(t_rhythm *x, t_float arg)
{
int address;
if (arg > 1.0)
address = ADAPT_ARRAY_SIZE - 1;
else if (arg < -1.0)
address = ADAPT_ARRAY_SIZE - 1;
else
address = abs((int)(arg*1000.0));
return x->x_long_term[address];
}
static t_float rhythm_get_adapt_short(t_rhythm *x, t_float arg)
{
int address;
if (arg > 1.0)
address = ADAPT_ARRAY_SIZE - 1;
else if (arg < -1.0)
address = ADAPT_ARRAY_SIZE - 1;
else
address = abs((int)(arg*1000.0));
return x->x_short_term[address];
}
/* Large & Kolen adaptation model */
static void rhythm_large(t_rhythm *x, t_int pulse, double time)
{
while (time > (x->x_expected+(x->x_period/2))) // move the expectation point
x->x_expected += x->x_period; // to be within one period of onset
x->x_phi = (t_float)(time - x->x_expected) / x->x_period; // calculate phi
if (pulse) { // if this was an onset
x->x_adapt = x->x_gamma * (cos(TWO_PI*x->x_phi)-1.0);
x->x_adapt = 1.0 / cosh(x->x_adapt);
x->x_adapt *= x->x_adapt;
x->x_adapt *= sin(TWO_PI*x->x_phi);
x->x_adapt *= (x->x_period / TWO_PI);
x->x_period += (x->x_periodStrength*x->x_adapt); // update period
x->x_expected += (x->x_phaseStrength *x->x_adapt); // and phase
x->x_phi = (t_float)(time - x->x_expected) / x->x_period;
}
x->x_output = 1+tanh(x->x_gamma*(cos(TWO_PI*x->x_phi)-1.0)); // oscillator output
}
/* Toiviainen adaptation model */
static void rhythm_toiviainen(t_rhythm *x, t_int pulse, double time)
{
t_float deltaTime, varPhi, adaptLong, adaptShort;
/* if just starting, initialize phi */
if(x->x_lastPulseTime < 0)
{
x->x_phi = x->x_phi_at_pulse + x->x_phiVel_at_pulse * ((t_float)(time-x->x_startTime) / 1000.0);
}
else
{
deltaTime = time - x->x_lastPulseTime;
varPhi = (deltaTime/1000.0) * x->x_phiVel_at_pulse;
adaptLong = rhythm_get_adapt_long(x, varPhi); // get long adaptation from table
adaptShort = rhythm_get_adapt_short(x, varPhi); // get short adaptation from table
x->x_phi = x->x_phi_at_pulse + varPhi + x->x_errFunc * (x->x_etaLong*adaptLong + x->x_etaShort*adaptShort);
if (pulse) // change tempo if on pulse
x->x_phiVel_at_pulse = x->x_phiVel_at_pulse * (1 + x->x_etaLong * x->x_errFunc * adaptShort);
}
if (pulse) {
x->x_output = 1+tanh(x->x_gamma*(cos(TWO_PI*x->x_phi)-1.0));
x->x_errFunc = x->x_output * (x->x_output - 2.0) * sin(TWO_PI * x->x_phi);
x->x_phi_at_pulse = x->x_phi;
}
x->x_period = 1000.0 / x->x_phiVel_at_pulse; // update period
}
static void rhythm_move(t_rhythm *x, t_int pulse, double time)
{
switch (x->x_model) /* choose adaptation model */
{
case 0:
rhythm_large(x, pulse, time);
break;
case 1:
rhythm_toiviainen(x, pulse, time);
break;
}
if(x->x_ticking == 0)
{
x->x_ticking = 1; /* prevent us from further calls */
clock_delay(x->x_tick, 0); /* start pulse bangs */
}
}
/* main processing function */
static void rhythm_float(t_rhythm *x, t_floatarg f)
{
t_int velo = x->x_velo;
double time = clock_gettimesince(x->x_last_input);
x->x_pitch = (t_int)f;
if(velo != 0) /* note-on received */
{
if (x->x_startTime == 0) {
x->x_startTime = time;
return;
}
if (x->x_period < 2.0) {
x->x_period = (t_float)(time - x->x_startTime);
x->x_phiVel_at_pulse = 1000.0 / x->x_period;
}
rhythm_move(x, 1, time);
if (x->x_lastPulseTime >= 0)
{
x->x_lastIoi = time - x->x_lastPulseTime;
}
x->x_lastPulseTime = time;
x->x_last_input = clock_getlogicaltime();
outlet_float(x->x_out_period, x->x_period);
outlet_float(x->x_out_bpm, 60000.0/x->x_period);
}
return;
}
/* get velocity */
static void rhythm_ft1(t_rhythm *x, t_floatarg f)
{
x->x_velo = (t_int)f;
}
/* toggle printing on/off (not used right now!) */
static void rhythm_print(t_rhythm *x)
{
if(x->x_print)x->x_print = 0;
else x->x_print = 1;
}
/* initialise array for Toiviainen adaptation model */
static void rhythm_calculate_adaptations(t_rhythm *x)
{
int i;
t_float f;
for(i = 0; i < ADAPT_ARRAY_SIZE; i++)
{
f = (t_float)i/(t_float)ADAPT_ARRAY_SIZE;
x->x_long_term[i] = f+(ALPHA*f*f/2.0+2.0*f+3.0/ALPHA)*exp(-ALPHA*f)-3.0/ALPHA;
x->x_short_term[i] = 1.0-(ALPHA*ALPHA*f*f/2.0+ALPHA*f+1.0)*exp(-ALPHA*f);
}
}
static void rhythm_reset(t_rhythm *x)
{
if(x->x_ticking)clock_unset(x->x_tick);
x->x_ticking = 0;
x->x_gamma = 1.0; /* default value for gain parameter */
x->x_phi = 0.0;
x->x_output = 1+tanh(x->x_gamma*(cos(TWO_PI*x->x_phi)-1.0));
x->x_expected = 0;
x->x_lastIoi = 0;
x->x_lastPulseTime = -1;
x->x_period = 1.0;
x->x_periodStrength = 0.2;
x->x_phaseStrength = 0.2;
x->x_errFunc = 0.0;
x->x_etaLong = 0.2;
x->x_etaShort = 0.2;
x->x_phi_at_pulse = 0.0;
x->x_phiVel_at_pulse = 0.9;
x->x_startTime = 0;
rhythm_calculate_adaptations(x);
}
static void rhythm_model(t_rhythm *x, t_floatarg f)
{
if(f == 1)
{
x->x_model = 1; /* Toiviainen model */
rhythm_reset(x);
post("rhythm: using \"Toiviainen\" adaptation model");
}
else
{
x->x_model = 0; /* Large and Kolen model */
rhythm_reset(x);
post("rhythm: using \"Large and Kolen\" adaptation model");
}
}
static t_class *rhythm_class;
static void rhythm_free(t_rhythm *x)
{
clock_free(x->x_tick);
}
static void *rhythm_new(t_floatarg f)
{
t_rhythm *x = (t_rhythm *)pd_new(rhythm_class);
inlet_new(&x->x_ob, &x->x_ob.ob_pd, gensym("float"), gensym("ft1"));
x->x_out_bpm = outlet_new(&x->x_ob, gensym("float"));
x->x_out_period = outlet_new(&x->x_ob, gensym("float"));
x->x_out_pulse = outlet_new(&x->x_ob, gensym("bang"));
x->x_tick = clock_new(x, (t_method)rhythm_tick);
rhythm_reset(x);
if(f == 1)
{
x->x_model = 1; /* Toiviainen model */
post("rhythm: using \"Toiviainen\" adaptation model");
}
else
{
x->x_model = 0; /* Large and Kolen model */
post("rhythm: using \"Large and Kolen\" adaptation model");
}
return (void *)x;
}
#ifndef MAXLIB
void rhythm_setup(void)
{
rhythm_class = class_new(gensym("rhythm"), (t_newmethod)rhythm_new,
(t_method)rhythm_free, sizeof(t_rhythm), 0, A_DEFFLOAT, 0);
class_addfloat(rhythm_class, rhythm_float);
class_addmethod(rhythm_class, (t_method)rhythm_ft1, gensym("ft1"), A_FLOAT, 0);
class_addmethod(rhythm_class, (t_method)rhythm_model, gensym("model"), A_FLOAT, 0);
class_addmethod(rhythm_class, (t_method)rhythm_reset, gensym("reset"), 0);
class_addmethod(rhythm_class, (t_method)rhythm_print, gensym("print"), 0);
post(version);
}
#else
void maxlib_rhythm_setup(void)
{
rhythm_class = class_new(gensym("maxlib_rhythm"), (t_newmethod)rhythm_new,
(t_method)rhythm_free, sizeof(t_rhythm), 0, A_DEFFLOAT, 0);
class_addcreator((t_newmethod)rhythm_new, gensym("rhythm"), A_DEFFLOAT, 0);
class_addfloat(rhythm_class, rhythm_float);
class_addmethod(rhythm_class, (t_method)rhythm_ft1, gensym("ft1"), A_FLOAT, 0);
class_addmethod(rhythm_class, (t_method)rhythm_model, gensym("model"), A_FLOAT, 0);
class_addmethod(rhythm_class, (t_method)rhythm_reset, gensym("reset"), 0);
class_addmethod(rhythm_class, (t_method)rhythm_print, gensym("print"), 0);
class_sethelpsymbol(rhythm_class, gensym("maxlib/rhythm-help.pd"));
}
#endif
|