diff options
Diffstat (limited to 'sqosc~')
-rwxr-xr-x | sqosc~/sqosc-help.pd | 116 | ||||
-rwxr-xr-x | sqosc~/sqosc.c | 461 |
2 files changed, 577 insertions, 0 deletions
diff --git a/sqosc~/sqosc-help.pd b/sqosc~/sqosc-help.pd new file mode 100755 index 0000000..1a5cf6d --- /dev/null +++ b/sqosc~/sqosc-help.pd @@ -0,0 +1,116 @@ +#N canvas 166 14 572 824 12;
+#X obj 149 229 dac~;
+#X obj 257 179 tabwrite~ wave;
+#X obj 15 319 table wave 512;
+#X msg 257 149 bang;
+#X text 297 148 graph;
+#X floatatom 230 32 5 0 1 0 - - -;
+#X msg 225 -2 0.001;
+#X obj 7 48 osc~ 1;
+#X obj 46 160 *~ 100;
+#X floatatom 7 25 5 0 0 0 - - -;
+#X floatatom 184 53 5 0 0 0 - - -;
+#X floatatom 78 79 5 0 0 0 - - -;
+#X obj 77 47 line;
+#X msg 93 22 0 10000;
+#X msg 81 -13 20000 10000;
+#X obj 7 79 +~ 1;
+#X msg 313 24 0.1;
+#X floatatom 275 67 5 0 0 0 - - -;
+#X obj 359 46 line;
+#X msg 346 -8 0.01 10000;
+#X msg 382 17 0.99 10000;
+#X msg 296 -8 0.5;
+#X obj 379 127 metro 100;
+#X obj 379 96 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1
+;
+#X obj 184 30 mtof;
+#X obj 184 -33 counter 127;
+#X obj 184 -76 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
+1;
+#X obj 184 -57 metro 100;
+#X floatatom 251 -78 5 0 0 0 - - -;
+#X msg 250 -102 10000;
+#X floatatom 364 -67 5 0 0 0 - - -;
+#X obj 362 -149 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
+1;
+#X obj 361 -90 counter 2;
+#X obj 403 -32 sel 1 2;
+#X obj 362 -118 metro 10000;
+#X text 18 255 creation arguments: frequency pulsewidth bandwidth;
+#X text 17 274 inlets: frequency phase pulsewidth;
+#X text 22 295 outlet: pulse;
+#X obj 24 -91 random 1000;
+#X obj 24 -65 * 0.001;
+#X obj 24 -115 metro 100;
+#X obj 24 -134 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0
+1;
+#X floatatom 91 -136 5 0 0 0 - - -;
+#X msg 91 -161 100;
+#X obj 163 96 sqosc~ 440 0.5 2000;
+#X obj 146 -171 osc~ 1;
+#X obj 147 -148 +~ 1;
+#X obj 146 -125 *~ 100;
+#X floatatom 211 -152 5 0 0 1 fm - -;
+#X floatatom 146 -192 5 0 0 0 - - -;
+#X obj 379 151 spigot;
+#X obj 422 96 tgl 15 0 empty empty sync_graph 20 7 0 8 -262144 -1 -1
+0 1;
+#X msg 379 176 0;
+#X obj 342 71 loadbang;
+#X obj 164 72 +~;
+#X floatatom 431 -162 5 0 0 0 - - -;
+#X connect 3 0 1 0;
+#X connect 5 0 44 1;
+#X connect 6 0 5 0;
+#X connect 7 0 15 0;
+#X connect 9 0 7 0;
+#X connect 10 0 54 1;
+#X connect 11 0 8 1;
+#X connect 12 0 11 0;
+#X connect 13 0 12 0;
+#X connect 14 0 12 0;
+#X connect 15 0 8 0;
+#X connect 16 0 17 0;
+#X connect 17 0 44 2;
+#X connect 18 0 17 0;
+#X connect 19 0 18 0;
+#X connect 20 0 18 0;
+#X connect 21 0 17 0;
+#X connect 22 0 1 0;
+#X connect 22 0 50 0;
+#X connect 23 0 22 0;
+#X connect 24 0 10 0;
+#X connect 25 0 24 0;
+#X connect 26 0 27 0;
+#X connect 27 0 25 0;
+#X connect 28 0 27 1;
+#X connect 29 0 28 0;
+#X connect 30 0 33 0;
+#X connect 31 0 34 0;
+#X connect 32 0 30 0;
+#X connect 33 0 21 0;
+#X connect 33 1 16 0;
+#X connect 34 0 32 0;
+#X connect 38 0 39 0;
+#X connect 39 0 17 0;
+#X connect 40 0 38 0;
+#X connect 41 0 40 0;
+#X connect 42 0 40 1;
+#X connect 43 0 42 0;
+#X connect 44 0 1 0;
+#X connect 44 0 0 1;
+#X connect 44 0 0 0;
+#X connect 45 0 46 0;
+#X connect 46 0 47 0;
+#X connect 47 0 54 0;
+#X connect 48 0 47 1;
+#X connect 49 0 45 0;
+#X connect 50 0 52 0;
+#X connect 51 0 50 1;
+#X connect 52 0 5 0;
+#X connect 53 0 23 0;
+#X connect 53 0 3 0;
+#X connect 53 0 48 0;
+#X connect 54 0 44 0;
+#X connect 55 0 34 1;
diff --git a/sqosc~/sqosc.c b/sqosc~/sqosc.c new file mode 100755 index 0000000..f832633 --- /dev/null +++ b/sqosc~/sqosc.c @@ -0,0 +1,461 @@ +/* sqosc.c Martin Peach 20060613 based on d_osc.c */ +/* 20060707 using x-x^3/3 to smooth the ramp */ +/* Copyright (c) 1997-1999 Miller Puckette. +* For information on usage and redistribution, and for a DISCLAIMER OF ALL +* WARRANTIES, see the file, "LICENSE.txt," in this distribution. */ + +/* sinusoidal oscillator and table lookup; see also tabosc4~ in d_array.c. +*/ + +#include "m_pd.h" +#include "math.h" +#include <stdio.h> /* for file io */ + +#define UNITBIT32 1572864. /* 3*2^19; bit 32 has place value 1 */ + + /* machine-dependent definitions. These ifdefs really + should have been by CPU type and not by operating system! */ +#ifdef IRIX + /* big-endian. Most significant byte is at low address in memory */ +#define HIOFFSET 0 /* word offset to find MSB */ +#define LOWOFFSET 1 /* word offset to find LSB */ +#define int32 long /* a data type that has 32 bits */ +#endif /* IRIX */ + +#ifdef MSW + /* little-endian; most significant byte is at highest address */ +#define HIOFFSET 1 +#define LOWOFFSET 0 +#define int32 long +#endif + +#if defined(__FreeBSD__) || defined(__APPLE__) +#include <machine/endian.h> +#endif + +#ifdef __APPLE__ +#define __BYTE_ORDER BYTE_ORDER +#define __LITTLE_ENDIAN LITTLE_ENDIAN +#endif + +#ifdef __linux__ +#include <endian.h> +#endif + +#if defined(__unix__) || defined(__APPLE__) +#if !defined(__BYTE_ORDER) || !defined(__LITTLE_ENDIAN) +#error No byte order defined +#endif + +#if __BYTE_ORDER == __LITTLE_ENDIAN +#define HIOFFSET 1 +#define LOWOFFSET 0 +#else +#define HIOFFSET 0 /* word offset to find MSB */ +#define LOWOFFSET 1 /* word offset to find LSB */ +#endif /* __BYTE_ORDER */ +#include <sys/types.h> +#define int32 int32_t +#endif /* __unix__ or __APPLE__*/ + +union tabfudge +{ + double tf_d; + int32 tf_i[2]; +}; + +static t_class *sqosc_class, *scalarsqosc_class; + +static float *sqosc_table; +/* COSTABSIZE is 512 in m_pd.h, we start with that... */ +#define LOGSQOSCTABSIZE 9 +#define SQOSCTABSIZE 512 +#define HALFSQOSCTABSIZE 256 + +typedef struct _sqosc +{ + t_object x_obj; + double x_phase; + float x_conv; + float x_f; /* frequency if scalar */ + float x_pw; /* pulse width 0-1, default 0.5 */ + float x_bw; /* bandwidth */ + float x_slew; /* slew time in samples */ + double x_dpw; /* pulse width in this pulse */ + int x_pulse_ended; /* nonzero if pulse has finished */ +// FILE *x_logfp; +// int x_logcount; +} t_sqosc; + +static void sqosc_maketable(void); +void sqosc_tilde_setup(void); +static void sqosc_ft1(t_sqosc *x, t_float f); +static void sqosc_pw(t_sqosc *x, t_float pw); +static void sqosc_dsp(t_sqosc *x, t_signal **sp); +static t_int *sqosc_perform(t_int *w); +static void *sqosc_new(t_floatarg f, t_floatarg pw, t_float bw); + +static void sqosc_maketable(void) +{ + int i; + float *fp, phase, phsinc = (2. * 3.14159) / SQOSCTABSIZE; + union tabfudge tf; + //FILE *cosfp; + + if (sqosc_table) return; + //cosfp = fopen("sqosctable.txt", "wb"); + sqosc_table = (float *)getbytes(sizeof(float) * (SQOSCTABSIZE+1)); + for (i = SQOSCTABSIZE + 1, fp = sqosc_table, phase = 0; i--; + fp++, phase += phsinc) + { + *fp = cos(phase); + //fprintf(cosfp, "%f: %f\n", phase, *fp); + } + //fclose(cosfp); + /* here we check at startup whether the byte alignment + is as we declared it. If not, the code has to be + recompiled the other way. */ + tf.tf_d = UNITBIT32 + 0.5; + if ((unsigned)tf.tf_i[LOWOFFSET] != 0x80000000) + bug("cos~: unexpected machine alignment"); +} + +static void *sqosc_new(t_floatarg f, t_floatarg pw, t_floatarg bw) +{ + t_sqosc *x = (t_sqosc *)pd_new(sqosc_class); + + x->x_f = f; /* the initial frequency in Hz */ + outlet_new(&x->x_obj, gensym("signal")); + inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1")); + inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("pw")); + post("sqosc_new frequency %f, pulsewidth %f bandwidth %f", f, pw, bw); + x->x_phase = 0; + x->x_conv = 0; + if ((pw <= 0)||(pw >= 1)) + { + post("sqosc: second argument (pulse width) must be greater than 0 and less than 1, using 0.5"); + x->x_pw = 0.5 * SQOSCTABSIZE; + } + else x->x_pw = pw * SQOSCTABSIZE; + if (bw < 0) + { + post("sqosc: third argument (bandwidth) must be greater than 0, using 10000"); + x->x_bw = 10000; + } + else x->x_bw = bw; + x->x_slew = HALFSQOSCTABSIZE/x->x_bw;/* slew = time of half bandwidth cycle */ + x->x_dpw = x->x_pw; /* pulse width in this pulse */ + x->x_pulse_ended = 1; /* nonzero if pulse has finished */ +// x->x_logfp = fopen("sqosclog.txt", "wb"); +// x->x_logcount = 0; + return (x); +} + +/* +This is corrected from Chun Lee's explanation in an email at: +http://music.columbia.edu/pipermail/music-dsp/2004-November/028814.html + +1-> a double variable UNITBIT32 is assigned to 1572864. This is what it +looks like in memory in a little endian machine: +byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 +00000000 00000000 00000000 00000000 00000000 00000000 0001 1100 1000001 0 +|<------fraction------------------>|<----1572864--------->|exponent |sign| + +The reason for 1572864 (1.5 X 2^20) is that its representation in IEEE754 format (double) +has 51 zeros to the right of a placeholding 1 bit, which can then be used as +a wide fixed-point register with the binary point at bit 32, so the lower 32 bits +can be used as a fractional accumulator with 32-bit precision. +Adding 1 to INITBIT32 adds a 1 at bit 32, with no change in exponent, +so the lower 32 bits act as a fraction of one. The 31 zero bits in the integer part +can be set as high as 2147483647 (31 1s) without affecting the precision. + +The upper 32 bits are 1094189056, or 01000001 00111000 00000000 00000000 in binary. +The sign bit is zero, or positive. The upper bit of the exponent is one, meaning +the number is normalized, or full precision.The exponent is 1043 minus the bias +of 1023, or 20. + +This is the representation of the number 1.5 X 2^20 = 1572864: + +IEEE Standard 754 Double Precision Storage Format (double): +63 62 52 51 32 31 0 ++--------+----------------+-------------------+------------------------------+ +| s 1bit | e[62:52] 11bit | f[51:32] 20bit | f[31:0] 32bit | ++--------+----------------+-------------------+------------------------------+ +B0-------------->B1---------->B2----->B3----->B4----->B5----->B6----->B7-----> +0 10000010011 1000000000000000000000000000000000000000000000000000 + +2-> there is the tabfudge like: + +Union tabfudge +{ + double tf_d; + int32 tf_i[2]; +} + +In dsp_perfrom: + +Union tabfudge tf; + +tf.tf_d = UNITBIT32; + +3-> the phase is accumulated into tf_d plus the UNITBIT32 + +Double dphase = x_phase + UNITBIT32; + +4-> byte 0 to byte 3 is stored as a separate variable as: + +int normhipart = tf.tf_I[HIOFFSET]; //where HIOFFSET is used to find MSB + +5-> in the actual dsp block, although the phase is accumulated into +tf.tf_d, bytes 0 to 3 of tf.tf_d are constantly forced to be a +constant by: + +tf.tf_i[HIOFFSET] = normhipart; + +6-> because of this, to get the fraction part out of the tf.tf_d, simply do: + +tf.tf_d - UNITBIT32; + +7-> mission accomplished!!!!! + +*/ + +static t_int *sqosc_perform(t_int *w) +{ + t_sqosc *x = (t_sqosc *)(w[1]); + t_float *in = (t_float *)(w[2]); + t_float *out = (t_float *)(w[3]); + t_float sample; + int n = (int)(w[4]); + float *tab = sqosc_table, *addr, f1, f2, frac; + int index; + double dphase = x->x_phase + UNITBIT32; + int normhipart; + union tabfudge tf; + float conv = x->x_conv; + double lastin, findex, slewindex; + static double twothirds = 2.0/3.0; + static double onethird = 1.0/3.0; + + tf.tf_d = UNITBIT32; /* set the phase accumulator to (1.5 X 2^20) making it effectively fixed-point */ + normhipart = tf.tf_i[HIOFFSET]; /* save the sign, exponent, and integer part of a fixed accumulator */ + tf.tf_d = dphase; /* the current phase plus the "frame" */ + lastin = *in++; /* latest frequency */ + if (lastin < 0) lastin = -lastin;/* negative frequency is the same as positive here */ + if (lastin > x->x_bw) lastin = x->x_bw;// limit frequency to bandwidth + slewindex = x->x_slew*lastin; + dphase += lastin * conv; /* new phase is old phase + (frequency * table period) */ + //addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); /* point to the current sample in the table */ + index = tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1); + tf.tf_i[HIOFFSET] = normhipart; /* zero the non-fractional part of the phase */ + frac = tf.tf_d - UNITBIT32; /* extract the fractional part of the phase */ + while (--n) + { + tf.tf_d = dphase; + //f1 = addr[0]; /* first sample */ + if (index <= slewindex) + { /* rising phase */ + if(x->x_pulse_ended) + {/* set pw for this pulse once only*/ + if(x->x_pw < slewindex)x->x_dpw = slewindex; + else if (x->x_pw > SQOSCTABSIZE-slewindex)x->x_dpw = SQOSCTABSIZE-slewindex; + else x->x_dpw = x->x_pw; + x->x_pulse_ended = 0; + } + //findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE; + //addr = tab + HALFSQOSCTABSIZE + (int)findex; + f1 = 1.0-2.0*(slewindex-index)/slewindex;// a ramp from -1 to +1 // addr[0]; + f1 = f1 - pow(f1, 3.0)*onethird;// smooth the ramp +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "rise index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else if (index < x->x_dpw) f1 = twothirds; /* risen */ + else if (index <= slewindex+x->x_dpw) + { /* falling phase */ +// findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE; +// addr = tab + (int)findex; + f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;// a ramp from +1 to -1 // addr[0]; + f1 = f1 - pow(f1, 3.0)*onethird;// smooth the ramp + x->x_pulse_ended = 1; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "fall index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else + { /* fallen */ + f1 = -twothirds; + } + lastin = *in++; + if (lastin < 0) lastin = -lastin;/* negative frequency is the same as positive here */ + if (lastin > x->x_bw) lastin = x->x_bw;// limit frequency to bandwidth + slewindex = x->x_slew*lastin; + dphase += lastin * conv; /* next phase */ + //f2 = addr[1]; /* second sample */ + if (index+1 <= slewindex) + { + f2 = 1.0-2.0*(slewindex-index-1)/slewindex;// addr[1]; + f2 = f2 - pow(f2, 3.0)*onethird; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "rise index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else if (index+1 < x->x_dpw) f2 = twothirds; + else if (index+1 <= slewindex+x->x_dpw) + { + f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;// addr[1]; + f2 = f2 - pow(f2, 3.0)*onethird; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "fall index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else f2 = -twothirds; + + sample = f1 + frac * (f2 - f1); /* output first sample plus fraction of second sample (linear interpolation) */ + *out++ = sample; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "index %ld f1 %f f2 %f frac %f out %f\n", index, f1, f2, frac, sample); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + //addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); /* point to the next sample */ + index = tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1); + tf.tf_i[HIOFFSET] = normhipart; /* zero the non-fractional part */ + + frac = tf.tf_d - UNITBIT32; /* get next fractional part */ + } + //f1 = addr[0]; + if (index <= slewindex) + { + if(x->x_pulse_ended) + {/* set pw for this pulse once only*/ + if(x->x_pw < slewindex)x->x_dpw = slewindex; + else if (x->x_pw > SQOSCTABSIZE-slewindex)x->x_dpw = SQOSCTABSIZE-slewindex; + else x->x_dpw = x->x_pw; + x->x_pulse_ended = 0; + } + //findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE; + //addr = tab + HALFSQOSCTABSIZE + (int)findex; + f1 = 1.0-2.0*(slewindex-index)/slewindex;// addr[0]; + f1 = f1 - pow(f1, 3.0)*onethird; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "rise2 index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else if (index < x->x_dpw) f1 = twothirds; /* risen */ + else if (index <= slewindex+x->x_dpw) + { /* falling phase */ +// findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE; +// addr = tab + (int)findex; + f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;// addr[0]; + f1 = f1 - pow(f1, 3.0)*onethird; + x->x_pulse_ended = 1; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "fall2 index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); +// ++x->x_logcount; +/// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else + { /* fallen */ + f1 = -twothirds; + } + //f2 = addr[1]; /* second sample */ + if (index+1 <= slewindex) + { + f2 = 1.0-2.0*(slewindex-index-1)/slewindex;// addr[1]; + f2 = f2 - pow(f2, 3.0)*onethird; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "rise2 index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else if (index+1 < x->x_dpw) f2 = twothirds; + else if (index+1 <= slewindex+x->x_dpw) + { + f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;// addr[1]; + f2 = f2 - pow(f2, 3.0)*onethird; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "fall2 index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + } + else f2 = -twothirds; + sample = f1 + frac * (f2 - f1); /* the final sample */ + *out++ = sample; +// if (x->x_logcount < 1000) +// { +// fprintf(x->x_logfp, "*index %ld f1 %f f2 %f frac %f out %f\n", index, f1, f2, frac, sample); +// ++x->x_logcount; +// if (x->x_logcount >= 1000) fclose(x->x_logfp); +// } + + tf.tf_d = UNITBIT32 * SQOSCTABSIZE; /* this just changes the exponent if the table size is a power of 2 */ + normhipart = tf.tf_i[HIOFFSET]; /* ...so we get more integer digits but fewer fractional ones */ + tf.tf_d = dphase + (UNITBIT32 * SQOSCTABSIZE - UNITBIT32); /* subtract one UNITBIT32 we added at the beginning */ + tf.tf_i[HIOFFSET] = normhipart; /* wrap any overflow to the table size */ + x->x_phase = tf.tf_d - UNITBIT32 * SQOSCTABSIZE; /* extract just the phase */ + return (w+5); +} +static void sqosc_dsp(t_sqosc *x, t_signal **sp) +{ +// static int once = 0; + + x->x_conv = SQOSCTABSIZE/sp[0]->s_sr; +/* conv = table period = (samples/cycle)/(samples/sec) = sec/cycle = 0.011610sec for 512/44100 */ + +// if (once == 0) +// { +// ++once; +// post ("x->x_slew = %f, x->x_bw = %f, sp[0]->s_sr = %f", x->x_slew, x->x_bw, sp[0]->s_sr); +// } + dsp_add(sqosc_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); +} + +static void sqosc_ft1(t_sqosc *x, t_float f) +{ + x->x_phase = SQOSCTABSIZE * f; +} + +static void sqosc_pw(t_sqosc *x, t_float pw) +{ + if ((pw <= 0)||(pw >= 1)) return; + //post("sqosc: pulse width must be greater than 0 and less than 1");// this is an annoying message... + x->x_pw = pw * SQOSCTABSIZE; +} + +void sqosc_tilde_setup(void) +{ + sqosc_class = class_new(gensym("sqosc~"), (t_newmethod)sqosc_new, 0, + sizeof(t_sqosc), 0, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); + CLASS_MAINSIGNALIN(sqosc_class, t_sqosc, x_f);/* x_f is used when no signal is input */ + class_addmethod(sqosc_class, (t_method)sqosc_dsp, gensym("dsp"), 0); + class_addmethod(sqosc_class, (t_method)sqosc_ft1, gensym("ft1"), A_FLOAT, 0); + class_addmethod(sqosc_class, (t_method)sqosc_pw, gensym("pw"), A_FLOAT, 0); + + sqosc_maketable(); /* make the same table as cos_table */ +} + + +/* end of sqosc.c */ |