1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
# Pure Data Packet mmx routine.
# Copyright (c) by Tom Schouten <tom@zwizwa.be>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#
# TODO MOVE TO DIRECT FORM II
# y[k] = b0 * x[k] + u1[k-1]
# u1[k] = b1 * x[k] + u2[k-1] - a1 * y[k]
# u2[k] = b2 * x[k] - a2 * y[k]
# input in register:
# %mm0-mm3: input 4x4 pixels {x0 x1 x2 x3}
# %esi: coef memory (a1, a2, b0, b1, b2)
# %edi: state memory (u1, u2)
# return in register:
# %mm0-mm4: 4x4 pixels result
.biquad_4x4_pixels:
.align 16
# prescale
movq -8(%esi), %mm4
pmulhw %mm4, %mm0
pmulhw %mm4, %mm1
pmulhw %mm4, %mm2
pmulhw %mm4, %mm3
psllw $1, %mm0
psllw $1, %mm1
psllw $1, %mm2
psllw $1, %mm3
# first vector
movq 0(%edi), %mm4 # mm4 <- u[-1]
movq 8(%edi), %mm5 # mm5 <- u[-2]
movq %mm4, %mm6
movq %mm5, %mm7
pmulhw 0(%esi), %mm6 # multiply by a1
pmulhw 8(%esi), %mm7 # multiply by a2
paddsw %mm6, %mm0 # accumulate
paddsw %mm7, %mm0 # accumulate
paddsw %mm0, %mm0 # scale by 2 (since all fixed point muls are x*y/2)
movq %mm0, %mm6 # mm6 <- u[0]
movq %mm4, %mm7 # mm7 <- u[-1]
pmulhw 16(%esi), %mm0 # multiply by b0
pmulhw 24(%esi), %mm4 # multiply by b1
pmulhw 32(%esi), %mm5 # multiply by b2
paddsw %mm4, %mm0 # accumulate
paddsw %mm5, %mm0 # accumulate
# mm0 is result 0
# second vector
movq %mm6, %mm4 # mm4 <- u[0]
movq %mm7, %mm5 # mm5 <- u[-1]
pmulhw 0(%esi), %mm6 # multiply by a1
pmulhw 8(%esi), %mm7 # multiply by a2
paddsw %mm6, %mm1 # accumulate
paddsw %mm7, %mm1 # accumulate
paddsw %mm1, %mm1 # scale by 2
movq %mm1, %mm6 # mm6 <- u[1]
movq %mm4, %mm7 # mm7 <- u[0]
pmulhw 16(%esi), %mm1 # multiply by b0
pmulhw 24(%esi), %mm4 # multiply by b1
pmulhw 32(%esi), %mm5 # multiply by b2
paddsw %mm4, %mm1 # accumulate
paddsw %mm5, %mm1 # accumulate
# mm1 is result 1
# third vector
movq %mm6, %mm4 # mm4 <- u[1]
movq %mm7, %mm5 # mm5 <- u[0]
pmulhw 0(%esi), %mm6 # multiply by a1
pmulhw 8(%esi), %mm7 # multiply by a2
paddsw %mm6, %mm2 # accumulate
paddsw %mm7, %mm2 # accumulate
paddsw %mm2, %mm2 # scale by 2
movq %mm2, %mm6 # mm6 <- u[2]
movq %mm4, %mm7 # mm7 <- u[1]
pmulhw 16(%esi), %mm2 # multiply by b0
pmulhw 24(%esi), %mm4 # multiply by b1
pmulhw 32(%esi), %mm5 # multiply by b2
paddsw %mm4, %mm2 # accumulate
paddsw %mm5, %mm2 # accumulate
# mm2 is result 2
# fourth vector
movq %mm6, %mm4 # mm4 <- u[2]
movq %mm7, %mm5 # mm5 <- u[1]
pmulhw 0(%esi), %mm6 # multiply by a1
pmulhw 8(%esi), %mm7 # multiply by a2
paddsw %mm6, %mm3 # accumulate
paddsw %mm7, %mm3 # accumulate
paddsw %mm3, %mm3 # scale by 2
movq %mm3, 0(%edi) # store u[3]
movq %mm4, 8(%edi) # store u[2]
pmulhw 16(%esi), %mm3 # multiply by b0
pmulhw 24(%esi), %mm4 # multiply by b1
pmulhw 32(%esi), %mm5 # multiply by b2
paddsw %mm4, %mm3 # accumulate
paddsw %mm5, %mm3 # accumulate
# mm3 is result 3
ret
# in order to use the 4 line parallel biquad routine on horizontal
# lines, we need to reorder (rotate or transpose) the matrix, since
# images are scanline encoded, and we want to work in parallell
# on 4 lines.
#
# since the 4 lines are independent, it doesnt matter in which order
# the the vector elements are present.
#
# this allows us to use the same routine for left->right and right->left
# processing.
#
# some comments on the non-abelean group of square isometries consisting of
# (I) identity
# (H) horizontal axis mirror
# (V) vertical axis mirror
# (T) transpose (diagonal axis mirror)
# (A) antitranspose (antidiagonal axis mirror)
# (R1) 90deg anticlockwize rotation
# (R2) 180deg rotation
# (R3) 90deg clockwize rotation
#
#
# we basicly have two options: (R1,R3) or (T,A)
# we opt for T and A because they are self inverting, which improves locality
#
# use antitranspose for right to left an transpose
# for left to right (little endian)
# antitranspose 4x4
# input
# %mm3 == {d0 d1 d2 d3}
# %mm2 == {c0 c1 c2 c3}
# %mm1 == {b0 b1 b2 b3}
# %mm0 == {a0 a1 a2 a3}
# output
# %mm3 == {a3 b3 c3 d3}
# %mm2 == {a2 b2 c2 d2}
# %mm1 == {a1 b1 c1 d1}
# %mm0 == {a0 b0 c0 d0}
.antitranspose_4x4:
.align 16
movq %mm3, %mm4
punpcklwd %mm1, %mm4 # mm4 <- {b2 d2 b3 d3}
movq %mm3, %mm5
punpckhwd %mm1, %mm5 # mm5 <- {b0 d0 b1 d1}
movq %mm2, %mm6
punpcklwd %mm0, %mm6 # mm6 <- {a2 c2 a3 c3}
movq %mm2, %mm7
punpckhwd %mm0, %mm7 # mm7 <- {a0 c0 a1 c1}
movq %mm4, %mm3
punpcklwd %mm6, %mm3 # mm3 <- {a3 b3 c3 d3}
movq %mm4, %mm2
punpckhwd %mm6, %mm2 # mm2 <- {a2 b2 c2 d2}
movq %mm5, %mm1
punpcklwd %mm7, %mm1 # mm1 <- {a1 b1 c1 d1}
movq %mm5, %mm0
punpckhwd %mm7, %mm0 # mm0 <- {a0 b0 c0 d0}
ret
# transpose 4x4
# input
# %mm3 == {d3 d2 d1 d0}
# %mm2 == {c3 c2 c1 c0}
# %mm1 == {b3 b2 b1 b0}
# %mm0 == {a3 a2 a1 a0}
# output
# %mm3 == {d3 c3 b3 a3}
# %mm2 == {d2 c2 b2 a2}
# %mm1 == {d1 c1 b1 a1}
# %mm0 == {d0 c0 b0 a0}
.transpose_4x4:
.align 16
movq %mm0, %mm4
punpcklwd %mm2, %mm4 # mm4 <- {c1 a1 c0 a0}
movq %mm0, %mm5
punpckhwd %mm2, %mm5 # mm5 <- {c3 a3 c2 a2}
movq %mm1, %mm6
punpcklwd %mm3, %mm6 # mm6 <- {d1 b1 d0 b0}
movq %mm1, %mm7
punpckhwd %mm3, %mm7 # mm7 <- {d3 b3 d2 b2}
movq %mm4, %mm0
punpcklwd %mm6, %mm0 # mm0 <- {d0 c0 b0 a0}
movq %mm4, %mm1
punpckhwd %mm6, %mm1 # mm1 <- {d1 c1 b1 a1}
movq %mm5, %mm2
punpcklwd %mm7, %mm2 # mm2 <- {d2 c2 b2 a2}
movq %mm5, %mm3
punpckhwd %mm7, %mm3 # mm3 <- {d3 c3 b3 a3}
ret
.globl pixel_biquad_vertb_s16
.type pixel_biquad_vertb_s16,@function
# pixel_biquad_vertbr_s16(char *pixel_array, int nb_rows, int linewidth, short int coef[20], short int state[8])
pixel_biquad_vertb_s16:
pushl %ebp
movl %esp, %ebp
push %ebx
push %esi
push %edi
movl 8(%ebp), %ebx # pixel array offset
movl 12(%ebp), %ecx # nb of 4x4 pixblocks
movl 16(%ebp), %edx # line with
movl 20(%ebp), %esi # coefs
movl 24(%ebp), %edi # state
shll $1, %edx # short int addressing
movl %edx, %eax
shll $1, %eax
addl %edx, %eax # eax = 3 * edx
.align 16
.biquad_vertb_line_loop:
movq (%ebx), %mm0
movq (%ebx,%edx,1), %mm1
movq (%ebx,%edx,2), %mm2
movq (%ebx,%eax,1), %mm3
call .biquad_4x4_pixels
movq %mm0, (%ebx)
movq %mm1, (%ebx,%edx,1)
movq %mm2, (%ebx,%edx,2)
movq %mm3, (%ebx,%eax,1)
addl %edx, %ebx
addl %eax, %ebx
decl %ecx
jnz .biquad_vertb_line_loop
emms
pop %edi
pop %esi
pop %ebx
leave
ret
.globl pixel_biquad_horlr_s16
.type pixel_biquad_horlr_s16,@function
# pixel_biquad_hor_s16(char *pixel_array, int nb_rows, int linewidth, short int coef[20], short int state[8])
pixel_biquad_horlr_s16:
pushl %ebp
movl %esp, %ebp
push %ebx
push %esi
push %edi
movl 8(%ebp), %ebx # pixel array offset
movl 12(%ebp), %ecx # nb of 4x4 pixblocks
movl 16(%ebp), %edx # line with
movl 20(%ebp), %esi # coefs
movl 24(%ebp), %edi # state
shll $1, %edx # short int addressing
movl %edx, %eax
shll $1, %eax
addl %edx, %eax # eax = 3 * edx
.align 16
.biquad_horlr_line_loop:
movq (%ebx), %mm0
movq (%ebx,%edx,1), %mm1
movq (%ebx,%edx,2), %mm2
movq (%ebx,%eax,1), %mm3
call .transpose_4x4
call .biquad_4x4_pixels
call .transpose_4x4
movq %mm0, (%ebx)
movq %mm1, (%ebx,%edx,1)
movq %mm2, (%ebx,%edx,2)
movq %mm3, (%ebx,%eax,1)
addl $8, %ebx
decl %ecx
jnz .biquad_horlr_line_loop
emms
pop %edi
pop %esi
pop %ebx
leave
ret
|