aboutsummaryrefslogtreecommitdiff
path: root/examples/haarcascade_frontalface_default.xml
diff options
context:
space:
mode:
authorN.N. <sevyves@users.sourceforge.net>2009-08-15 12:57:31 +0000
committerN.N. <sevyves@users.sourceforge.net>2009-08-15 12:57:31 +0000
commit7cabbe3dcaa0ef520f0caaf4009bd9add5474011 (patch)
treecdd14992168f67d7888a30a37ef51f03ccb20a7d /examples/haarcascade_frontalface_default.xml
parent9952f0e57d7d6b18e8a83257ec89746365c5a0cd (diff)
added threshold
svn path=/trunk/externals/pix_opencv/; revision=11922
Diffstat (limited to 'examples/haarcascade_frontalface_default.xml')
-rw-r--r--examples/haarcascade_frontalface_default.xml35712
1 files changed, 0 insertions, 35712 deletions
diff --git a/examples/haarcascade_frontalface_default.xml b/examples/haarcascade_frontalface_default.xml
deleted file mode 100644
index 874b76c..0000000
--- a/examples/haarcascade_frontalface_default.xml
+++ /dev/null
@@ -1,35712 +0,0 @@
-<?xml version="1.0"?>
-<!--
- Stump-based 24x24 discrete(?) adaboost frontal face detector.
- Created by Rainer Lienhart.
-
-////////////////////////////////////////////////////////////////////////////////////////
-
- IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
-
- By downloading, copying, installing or using the software you agree to this license.
- If you do not agree to this license, do not download, install,
- copy or use the software.
-
-
- Intel License Agreement
- For Open Source Computer Vision Library
-
- Copyright (C) 2000, Intel Corporation, all rights reserved.
- Third party copyrights are property of their respective owners.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistribution's of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- * Redistribution's in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
- * The name of Intel Corporation may not be used to endorse or promote products
- derived from this software without specific prior written permission.
-
- This software is provided by the copyright holders and contributors "as is" and
- any express or implied warranties, including, but not limited to, the implied
- warranties of merchantability and fitness for a particular purpose are disclaimed.
- In no event shall the Intel Corporation or contributors be liable for any direct,
- indirect, incidental, special, exemplary, or consequential damages
- (including, but not limited to, procurement of substitute goods or services;
- loss of use, data, or profits; or business interruption) however caused
- and on any theory of liability, whether in contract, strict liability,
- or tort (including negligence or otherwise) arising in any way out of
- the use of this software, even if advised of the possibility of such damage.
--->
-<opencv_storage>
-<haarcascade_frontalface_default type_id="opencv-haar-classifier">
- <size>24 24</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 9 -1.</_>
- <_>6 7 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0315119996666908</threshold>
- <left_val>2.0875380039215088</left_val>
- <right_val>-2.2172100543975830</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 7 -1.</_>
- <_>10 4 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123960003256798</threshold>
- <left_val>-1.8633940219879150</left_val>
- <right_val>1.3272049427032471</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 18 9 -1.</_>
- <_>3 12 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219279993325472</threshold>
- <left_val>-1.5105249881744385</left_val>
- <right_val>1.0625729560852051</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 9 6 -1.</_>
- <_>8 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7529998011887074e-003</threshold>
- <left_val>-0.8746389746665955</left_val>
- <right_val>1.1760339736938477</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 4 19 -1.</_>
- <_>5 5 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150140002369881</threshold>
- <left_val>-0.7794569730758667</left_val>
- <right_val>1.2608419656753540</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 16 -1.</_>
- <_>6 13 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0993710011243820</threshold>
- <left_val>0.5575129985809326</left_val>
- <right_val>-1.8743000030517578</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 6 -1.</_>
- <_>5 11 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7340000960975885e-003</threshold>
- <left_val>-1.6911929845809937</left_val>
- <right_val>0.4400970041751862</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 4 10 -1.</_>
- <_>11 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188590008765459</threshold>
- <left_val>-1.4769539833068848</left_val>
- <right_val>0.4435009956359863</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 7 6 -1.</_>
- <_>4 3 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9739998541772366e-003</threshold>
- <left_val>-0.8590919971466065</left_val>
- <right_val>0.8525559902191162</right_val></_></_></trees>
- <stage_threshold>-5.0425500869750977</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 6 -1.</_>
- <_>6 8 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211100000888109</threshold>
- <left_val>1.2435649633407593</left_val>
- <right_val>-1.5713009834289551</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 7 -1.</_>
- <_>10 4 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203559994697571</threshold>
- <left_val>-1.6204780340194702</left_val>
- <right_val>1.1817760467529297</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 19 12 -1.</_>
- <_>1 12 19 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213089995086193</threshold>
- <left_val>-1.9415930509567261</left_val>
- <right_val>0.7006909847259522</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 3 -1.</_>
- <_>8 2 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0916600003838539</threshold>
- <left_val>-0.5567010045051575</left_val>
- <right_val>1.7284419536590576</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 15 -1.</_>
- <_>9 14 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362880006432533</threshold>
- <left_val>0.2676379978656769</left_val>
- <right_val>-2.1831810474395752</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 10 -1.</_>
- <_>5 11 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191099997609854</threshold>
- <left_val>-2.6730210781097412</left_val>
- <right_val>0.4567080140113831</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 14 9 -1.</_>
- <_>5 3 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2539999857544899e-003</threshold>
- <left_val>-1.0852910280227661</left_val>
- <right_val>0.5356420278549194</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 9 6 -1.</_>
- <_>16 11 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183550007641315</threshold>
- <left_val>-0.3520019948482513</left_val>
- <right_val>0.9333919882774353</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 10 -1.</_>
- <_>9 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0569999516010284e-003</threshold>
- <left_val>0.9278209805488586</left_val>
- <right_val>-0.6634989976882935</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 6 10 -1.</_>
- <_>12 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8770000040531158e-003</threshold>
- <left_val>1.1577470302581787</left_val>
- <right_val>-0.2977479994297028</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 4 9 -1.</_>
- <_>4 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158140007406473</threshold>
- <left_val>-0.4196060001850128</left_val>
- <right_val>1.3576040267944336</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 6 11 -1.</_>
- <_>20 0 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207000002264977</threshold>
- <left_val>1.4590020179748535</left_val>
- <right_val>-0.1973939985036850</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 13 -1.</_>
- <_>8 6 8 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1376080065965653</threshold>
- <left_val>1.1186759471893311</left_val>
- <right_val>-0.5291550159454346</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143189998343587</threshold>
- <left_val>-0.3512719869613648</left_val>
- <right_val>1.1440860033035278</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 10 6 -1.</_>
- <_>7 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102530000731349</threshold>
- <left_val>-0.6085060238838196</left_val>
- <right_val>0.7709850072860718</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 14 12 -1.</_>
- <_>5 13 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0915080010890961</threshold>
- <left_val>0.3881779909133911</left_val>
- <right_val>-1.5122940540313721</right_val></_></_></trees>
- <stage_threshold>-4.9842400550842285</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 3 -1.</_>
- <_>8 3 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0697470009326935</threshold>
- <left_val>-1.0130879878997803</left_val>
- <right_val>1.4687349796295166</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 15 6 -1.</_>
- <_>5 11 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0315029993653297</threshold>
- <left_val>-1.6463639736175537</left_val>
- <right_val>1.0000629425048828</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 5 14 -1.</_>
- <_>9 13 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142609998583794</threshold>
- <left_val>0.4648030102252960</left_val>
- <right_val>-1.5959889888763428</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 10 -1.</_>
- <_>11 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144530003890395</threshold>
- <left_val>-0.6551190018653870</left_val>
- <right_val>0.8302180171012878</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 3 12 -1.</_>
- <_>6 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0509999487549067e-003</threshold>
- <left_val>-1.3982310295104980</left_val>
- <right_val>0.4255059957504273</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>9 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0327229984104633</threshold>
- <left_val>-0.5070260167121887</left_val>
- <right_val>1.0526109933853149</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 13 6 -1.</_>
- <_>5 8 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2960001416504383e-003</threshold>
- <left_val>0.3635689914226532</left_val>
- <right_val>-1.3464889526367187</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 15 -1.</_>
- <_>18 1 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0504250004887581</threshold>
- <left_val>-0.3046140074729919</left_val>
- <right_val>1.4504129886627197</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 15 -1.</_>
- <_>4 1 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0468790009617805</threshold>
- <left_val>-0.4028620123863220</left_val>
- <right_val>1.2145609855651855</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 24 15 -1.</_>
- <_>8 8 8 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0693589970469475</threshold>
- <left_val>1.0539360046386719</left_val>
- <right_val>-0.4571970105171204</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 12 -1.</_>
- <_>5 6 7 6 2.</_>
- <_>12 12 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0490339994430542</threshold>
- <left_val>-1.6253089904785156</left_val>
- <right_val>0.1537899971008301</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 21 12 -1.</_>
- <_>2 16 21 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0848279967904091</threshold>
- <left_val>0.2840299904346466</left_val>
- <right_val>-1.5662059783935547</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 10 -1.</_>
- <_>10 1 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7229999648407102e-003</threshold>
- <left_val>-1.0147459506988525</left_val>
- <right_val>0.2329480051994324</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 20 10 -1.</_>
- <_>2 13 10 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1156219989061356</threshold>
- <left_val>-0.1673289984464645</left_val>
- <right_val>1.2804069519042969</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 13 -1.</_>
- <_>2 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0512799993157387</threshold>
- <left_val>1.5162390470504761</left_val>
- <right_val>-0.3027110099792481</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 2 4 13 -1.</_>
- <_>20 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0427069999277592</threshold>
- <left_val>1.7631920576095581</left_val>
- <right_val>-0.0518320016562939</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 22 19 -1.</_>
- <_>11 5 11 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3717809915542603</threshold>
- <left_val>-0.3138920068740845</left_val>
- <right_val>1.5357979536056519</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 6 9 -1.</_>
- <_>20 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194129999727011</threshold>
- <left_val>-0.1001759991049767</left_val>
- <right_val>0.9365540146827698</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 11 -1.</_>
- <_>2 3 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174390003085136</threshold>
- <left_val>-0.4037989974021912</left_val>
- <right_val>0.9629300236701965</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 9 -1.</_>
- <_>12 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0396389998495579</threshold>
- <left_val>0.1703909933567047</left_val>
- <right_val>-2.9602990150451660</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 19 3 -1.</_>
- <_>0 7 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1469995677471161e-003</threshold>
- <left_val>0.8878679871559143</left_val>
- <right_val>-0.4381870031356812</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 9 -1.</_>
- <_>12 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7219999572262168e-003</threshold>
- <left_val>-0.3721860051155090</left_val>
- <right_val>0.4001890122890472</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 9 -1.</_>
- <_>10 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0302310008555651</threshold>
- <left_val>0.0659240037202835</left_val>
- <right_val>-2.6469180583953857</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 14 14 -1.</_>
- <_>12 5 7 7 2.</_>
- <_>5 12 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0787959992885590</threshold>
- <left_val>-1.7491459846496582</left_val>
- <right_val>0.2847529947757721</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 2 -1.</_>
- <_>1 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1110000088810921e-003</threshold>
- <left_val>-0.9390810132026672</left_val>
- <right_val>0.2320519983768463</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 13 4 11 -1.</_>
- <_>17 13 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270910002291203</threshold>
- <left_val>-0.0526640005409718</left_val>
- <right_val>1.0756820440292358</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 6 9 -1.</_>
- <_>0 7 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0449649989604950</threshold>
- <left_val>-1.8294479846954346</left_val>
- <right_val>0.0995619967579842</right_val></_></_></trees>
- <stage_threshold>-4.6551899909973145</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 9 -1.</_>
- <_>6 7 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0657010003924370</threshold>
- <left_val>1.1558510065078735</left_val>
- <right_val>-1.0716359615325928</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 6 -1.</_>
- <_>10 5 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158399995416403</threshold>
- <left_val>-1.5634720325469971</left_val>
- <right_val>0.7687709927558899</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 5 -1.</_>
- <_>8 1 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1457089930772781</threshold>
- <left_val>-0.5745009779930115</left_val>
- <right_val>1.3808720111846924</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 18 6 -1.</_>
- <_>4 12 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1389999464154243e-003</threshold>
- <left_val>-1.4570560455322266</left_val>
- <right_val>0.5161030292510986</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 12 6 -1.</_>
- <_>2 17 6 3 2.</_>
- <_>8 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7179999314248562e-003</threshold>
- <left_val>-0.8353360295295715</left_val>
- <right_val>0.5852220058441162</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 3 4 13 -1.</_>
- <_>19 3 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0185180008411407</threshold>
- <left_val>-0.3131209909915924</left_val>
- <right_val>1.1696679592132568</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 4 13 -1.</_>
- <_>3 3 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199580006301403</threshold>
- <left_val>-0.4344260096549988</left_val>
- <right_val>0.9544690251350403</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 23 -1.</_>
- <_>8 1 8 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2775500118732452</threshold>
- <left_val>1.4906179904937744</left_val>
- <right_val>-0.1381590068340302</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 8 12 -1.</_>
- <_>1 11 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1859996318817139e-003</threshold>
- <left_val>-0.9636150002479553</left_val>
- <right_val>0.2766549885272980</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 14 -1.</_>
- <_>14 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0377379991114140</threshold>
- <left_val>-2.4464108943939209</left_val>
- <right_val>0.2361959964036942</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 16 6 -1.</_>
- <_>3 12 8 3 2.</_>
- <_>11 15 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184630006551743</threshold>
- <left_val>0.1753920018672943</left_val>
- <right_val>-1.3423130512237549</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 6 -1.</_>
- <_>6 8 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111149996519089</threshold>
- <left_val>0.4871079921722412</left_val>
- <right_val>-0.8985189795494080</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 12 -1.</_>
- <_>8 13 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0339279994368553</threshold>
- <left_val>0.1787420064210892</left_val>
- <right_val>-1.6342279911041260</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 6 -1.</_>
- <_>15 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0356490015983582</threshold>
- <left_val>-1.9607399702072144</left_val>
- <right_val>0.1810249984264374</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 18 3 -1.</_>
- <_>1 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114380000159144</threshold>
- <left_val>0.9901069998741150</left_val>
- <right_val>-0.3810319900512695</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 16 12 -1.</_>
- <_>4 10 16 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0652360022068024</threshold>
- <left_val>-2.5794160366058350</left_val>
- <right_val>0.2475360035896301</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 4 20 -1.</_>
- <_>2 1 2 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0422720015048981</threshold>
- <left_val>1.4411840438842773</left_val>
- <right_val>-0.2950829863548279</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 2 -1.</_>
- <_>3 1 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9219999667257071e-003</threshold>
- <left_val>-0.4960860013961792</left_val>
- <right_val>0.6317359805107117</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 20 14 -1.</_>
- <_>1 5 10 7 2.</_>
- <_>11 12 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1292179971933365</threshold>
- <left_val>-2.3314270973205566</left_val>
- <right_val>0.0544969998300076</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 14 12 -1.</_>
- <_>5 12 14 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0229310002177954</threshold>
- <left_val>-0.8444709777832031</left_val>
- <right_val>0.3873809874057770</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 7 9 -1.</_>
- <_>3 17 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0341200008988380</threshold>
- <left_val>-1.4431500434875488</left_val>
- <right_val>0.0984229966998100</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 9 6 -1.</_>
- <_>14 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0262230001389980</threshold>
- <left_val>0.1822309941053391</left_val>
- <right_val>-1.2586519718170166</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 9 6 -1.</_>
- <_>1 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222369991242886</threshold>
- <left_val>0.0698079988360405</left_val>
- <right_val>-2.3820950984954834</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 8 10 -1.</_>
- <_>15 6 4 5 2.</_>
- <_>11 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8240001089870930e-003</threshold>
- <left_val>0.3933250010013580</left_val>
- <right_val>-0.2754279971122742</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 14 14 -1.</_>
- <_>5 5 7 7 2.</_>
- <_>12 12 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0436530001461506</threshold>
- <left_val>0.1483269929885864</left_val>
- <right_val>-1.1368780136108398</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 5 -1.</_>
- <_>10 0 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0572669990360737</threshold>
- <left_val>0.2462809979915619</left_val>
- <right_val>-1.2687400579452515</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>9 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3409998975694180e-003</threshold>
- <left_val>-0.7544890046119690</left_val>
- <right_val>0.2716380059719086</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129960002377629</threshold>
- <left_val>-0.3639490008354187</left_val>
- <right_val>0.7095919847488403</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265170000493526</threshold>
- <left_val>-2.3221859931945801</left_val>
- <right_val>0.0357440002262592</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8400002308189869e-003</threshold>
- <left_val>0.4219430088996887</left_val>
- <right_val>-0.0481849983334541</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 9 -1.</_>
- <_>10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165689997375011</threshold>
- <left_val>1.1099940538406372</left_val>
- <right_val>-0.3484970033168793</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 18 4 -1.</_>
- <_>9 8 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0681570023298264</threshold>
- <left_val>-3.3269989490509033</left_val>
- <right_val>0.2129900008440018</right_val></_></_></trees>
- <stage_threshold>-4.4531588554382324</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 9 -1.</_>
- <_>6 3 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0399740003049374</threshold>
- <left_val>-1.2173449993133545</left_val>
- <right_val>1.0826710462570190</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 6 -1.</_>
- <_>8 0 8 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1881950050592423</threshold>
- <left_val>-0.4828940033912659</left_val>
- <right_val>1.4045250415802002</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 16 12 -1.</_>
- <_>4 11 16 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0780270025134087</threshold>
- <left_val>-1.0782150030136108</left_val>
- <right_val>0.7404029965400696</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 6 -1.</_>
- <_>11 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1899999663000926e-004</threshold>
- <left_val>-1.2019979953765869</left_val>
- <right_val>0.3774920105934143</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 24 3 -1.</_>
- <_>8 20 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0850569978356361</threshold>
- <left_val>-0.4393909871578217</left_val>
- <right_val>1.2647340297698975</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 9 -1.</_>
- <_>11 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9720003306865692e-003</threshold>
- <left_val>-0.1844049990177155</left_val>
- <right_val>0.4572640061378479</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 15 4 -1.</_>
- <_>9 13 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8120000436902046e-003</threshold>
- <left_val>0.3039669990539551</left_val>
- <right_val>-0.9599109888076782</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 9 -1.</_>
- <_>11 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235079992562532</threshold>
- <left_val>1.2487529516220093</left_val>
- <right_val>0.0462279990315437</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 9 -1.</_>
- <_>11 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0039997808635235e-003</threshold>
- <left_val>-0.5944210290908814</left_val>
- <right_val>0.5396329760551453</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 12 -1.</_>
- <_>9 18 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0338519997894764</threshold>
- <left_val>0.2849609851837158</left_val>
- <right_val>-1.4895249605178833</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 18 2 -1.</_>
- <_>1 23 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2530000898987055e-003</threshold>
- <left_val>0.4812079966068268</left_val>
- <right_val>-0.5271239876747131</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 10 -1.</_>
- <_>10 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0290970001369715</threshold>
- <left_val>0.2674390077590942</left_val>
- <right_val>-1.6007850170135498</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 8 10 -1.</_>
- <_>6 12 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4790000692009926e-003</threshold>
- <left_val>-1.3107639551162720</left_val>
- <right_val>0.1524309962987900</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 6 -1.</_>
- <_>7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107950000092387</threshold>
- <left_val>0.4561359882354736</left_val>
- <right_val>-0.7205089926719666</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 10 4 -1.</_>
- <_>0 16 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0246200002729893</threshold>
- <left_val>-1.7320619821548462</left_val>
- <right_val>0.0683630034327507</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 18 2 -1.</_>
- <_>6 19 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7380000576376915e-003</threshold>
- <left_val>-0.1930329948663712</left_val>
- <right_val>0.6824349761009216</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 22 3 -1.</_>
- <_>1 2 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122640002518892</threshold>
- <left_val>-1.6095290184020996</left_val>
- <right_val>0.0752680003643036</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8670000396668911e-003</threshold>
- <left_val>0.7428650259971619</left_val>
- <right_val>-0.2151020020246506</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 6 15 -1.</_>
- <_>5 4 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0767259970307350</threshold>
- <left_val>-0.2683509886264801</left_val>
- <right_val>1.3094140291213989</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 4 4 10 -1.</_>
- <_>20 4 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0285780001431704</threshold>
- <left_val>-0.0587930008769035</left_val>
- <right_val>1.2196329832077026</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 10 -1.</_>
- <_>2 4 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0196940004825592</threshold>
- <left_val>-0.3514289855957031</left_val>
- <right_val>0.8492699861526489</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 20 6 -1.</_>
- <_>12 16 10 3 2.</_>
- <_>2 19 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290939994156361</threshold>
- <left_val>-1.0507299900054932</left_val>
- <right_val>0.2980630099773407</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 8 9 -1.</_>
- <_>4 12 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0291440002620220</threshold>
- <left_val>0.8254780173301697</left_val>
- <right_val>-0.3268719911575317</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0197410006076097</threshold>
- <left_val>0.2045260071754456</left_val>
- <right_val>-0.8376020193099976</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 6 -1.</_>
- <_>8 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3299999088048935e-003</threshold>
- <left_val>0.2057790011167526</left_val>
- <right_val>-0.6682980060577393</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 12 6 -1.</_>
- <_>17 8 6 3 2.</_>
- <_>11 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0355009995400906</threshold>
- <left_val>-1.2969900369644165</left_val>
- <right_val>0.1389749944210053</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 12 6 -1.</_>
- <_>0 8 6 3 2.</_>
- <_>6 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161729995161295</threshold>
- <left_val>-1.3110569715499878</left_val>
- <right_val>0.0757519975304604</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221510007977486</threshold>
- <left_val>-1.0524389743804932</left_val>
- <right_val>0.1924110054969788</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227070003747940</threshold>
- <left_val>-1.3735309839248657</left_val>
- <right_val>0.0667809993028641</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 9 6 -1.</_>
- <_>8 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166079998016357</threshold>
- <left_val>-0.0371359996497631</left_val>
- <right_val>0.7784640192985535</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 9 6 -1.</_>
- <_>0 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133090000599623</threshold>
- <left_val>-0.9985070228576660</left_val>
- <right_val>0.1224810034036636</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 6 10 -1.</_>
- <_>12 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0337320007383823</threshold>
- <left_val>1.4461359977722168</left_val>
- <right_val>0.0131519995629787</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 19 12 3 -1.</_>
- <_>9 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169350001960993</threshold>
- <left_val>-0.3712129890918732</left_val>
- <right_val>0.5284219980239868</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 20 2 -1.</_>
- <_>2 11 20 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3259999472647905e-003</threshold>
- <left_val>-0.5756850242614746</left_val>
- <right_val>0.3926190137863159</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 18 12 -1.</_>
- <_>2 9 9 6 2.</_>
- <_>11 15 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0836440026760101</threshold>
- <left_val>0.0161160007119179</left_val>
- <right_val>-2.1173279285430908</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 24 -1.</_>
- <_>3 0 9 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2578519880771637</threshold>
- <left_val>-0.0816090032458305</left_val>
- <right_val>0.9878249764442444</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 10 -1.</_>
- <_>5 6 7 5 2.</_>
- <_>12 11 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0365669988095760</threshold>
- <left_val>-1.1512110233306885</left_val>
- <right_val>0.0964590013027191</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 12 -1.</_>
- <_>14 5 5 6 2.</_>
- <_>9 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164459999650717</threshold>
- <left_val>0.3731549978256226</left_val>
- <right_val>-0.1458539962768555</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 12 12 -1.</_>
- <_>4 5 6 6 2.</_>
- <_>10 11 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7519999314099550e-003</threshold>
- <left_val>0.2617929875850678</left_val>
- <right_val>-0.5815669894218445</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 18 3 -1.</_>
- <_>4 15 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3660000450909138e-003</threshold>
- <left_val>0.7547739744186401</left_val>
- <right_val>-0.1705520004034042</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 8 8 -1.</_>
- <_>6 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8499999791383743e-003</threshold>
- <left_val>0.2265399992465973</left_val>
- <right_val>-0.6387640237808228</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 18 6 -1.</_>
- <_>3 19 18 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0454940013587475</threshold>
- <left_val>-1.2640299797058105</left_val>
- <right_val>0.2526069879531860</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 6 -1.</_>
- <_>3 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239410009235144</threshold>
- <left_val>0.8706840276718140</left_val>
- <right_val>-0.2710469961166382</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 18 -1.</_>
- <_>10 6 4 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0775580033659935</threshold>
- <left_val>-1.3901610374450684</left_val>
- <right_val>0.2361229956150055</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 4 14 -1.</_>
- <_>8 1 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0236140005290508</threshold>
- <left_val>0.0661400035023689</left_val>
- <right_val>-1.2645419836044312</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 19 2 -1.</_>
- <_>3 3 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5750000495463610e-003</threshold>
- <left_val>-0.5384169816970825</left_val>
- <right_val>0.3037909865379334</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 22 13 -1.</_>
- <_>12 8 11 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1201080009341240</threshold>
- <left_val>-0.3534300029277802</left_val>
- <right_val>0.5286620259284973</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 11 4 -1.</_>
- <_>8 11 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2899999748915434e-003</threshold>
- <left_val>-0.5870199799537659</left_val>
- <right_val>0.2406100034713745</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 15 10 -1.</_>
- <_>5 12 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0697169974446297</threshold>
- <left_val>-0.3334890007972717</left_val>
- <right_val>0.5191630125045776</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 12 6 -1.</_>
- <_>16 16 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0466700010001659</threshold>
- <left_val>0.6979539990425110</left_val>
- <right_val>-0.0148959998041391</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 6 -1.</_>
- <_>4 16 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0501290000975132</threshold>
- <left_val>0.8614619970321655</left_val>
- <right_val>-0.2598600089550018</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 1 5 12 -1.</_>
- <_>19 5 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0301479995250702</threshold>
- <left_val>0.1933279931545258</left_val>
- <right_val>-0.5913109779357910</right_val></_></_></trees>
- <stage_threshold>-4.3864588737487793</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 4 -1.</_>
- <_>8 2 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0910850018262863</threshold>
- <left_val>-0.8923310041427612</left_val>
- <right_val>1.0434230566024780</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 12 4 -1.</_>
- <_>6 10 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128189995884895</threshold>
- <left_val>-1.2597670555114746</left_val>
- <right_val>0.5531709790229797</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 9 6 -1.</_>
- <_>10 5 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159319993108511</threshold>
- <left_val>-0.8625440001487732</left_val>
- <right_val>0.6373180150985718</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 6 6 -1.</_>
- <_>9 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2780001163482666e-003</threshold>
- <left_val>-0.7463920116424561</left_val>
- <right_val>0.5315560102462769</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 22 15 -1.</_>
- <_>0 12 22 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318409986793995</threshold>
- <left_val>-1.2650489807128906</left_val>
- <right_val>0.3615390062332153</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 17 9 -1.</_>
- <_>4 4 17 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6960000395774841e-003</threshold>
- <left_val>-0.9829040169715881</left_val>
- <right_val>0.3601300120353699</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 10 -1.</_>
- <_>9 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120550002902746</threshold>
- <left_val>0.6406840085983276</left_val>
- <right_val>-0.5012500286102295</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 8 -1.</_>
- <_>18 1 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213249996304512</threshold>
- <left_val>-0.2403499931097031</left_val>
- <right_val>0.8544800281524658</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 7 -1.</_>
- <_>3 1 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0304860007017851</threshold>
- <left_val>-0.3427360057830811</left_val>
- <right_val>1.1428849697113037</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 6 22 -1.</_>
- <_>18 0 3 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0450799986720085</threshold>
- <left_val>1.0976949930191040</left_val>
- <right_val>-0.1797460019588471</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 22 -1.</_>
- <_>3 0 3 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0717009976506233</threshold>
- <left_val>1.5735000371932983</left_val>
- <right_val>-0.3143349885940552</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 8 16 -1.</_>
- <_>16 7 4 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0592180006206036</threshold>
- <left_val>-0.2758240103721619</left_val>
- <right_val>1.0448570251464844</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 19 6 -1.</_>
- <_>2 12 19 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7010000348091125e-003</threshold>
- <left_val>-1.0974019765853882</left_val>
- <right_val>0.1980119943618774</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 12 -1.</_>
- <_>9 13 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0410469993948936</threshold>
- <left_val>0.3054769933223724</left_val>
- <right_val>-1.3287999629974365</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 17 6 -1.</_>
- <_>2 17 17 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5499999113380909e-004</threshold>
- <left_val>0.2580710053443909</left_val>
- <right_val>-0.7005289793014526</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 14 -1.</_>
- <_>14 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0303600002080202</threshold>
- <left_val>-1.2306419610977173</left_val>
- <right_val>0.2260939925909042</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 8 10 -1.</_>
- <_>5 6 4 5 2.</_>
- <_>9 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129300002008677</threshold>
- <left_val>0.4075860083103180</left_val>
- <right_val>-0.5123450160026550</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 9 11 -1.</_>
- <_>18 8 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373679995536804</threshold>
- <left_val>-0.0947550013661385</left_val>
- <right_val>0.6176509857177734</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 9 11 -1.</_>
- <_>3 8 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244340002536774</threshold>
- <left_val>-0.4110060036182404</left_val>
- <right_val>0.4763050079345703</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 10 18 -1.</_>
- <_>8 15 10 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0570079982280731</threshold>
- <left_val>0.2524929940700531</left_val>
- <right_val>-0.6866980195045471</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 3 14 -1.</_>
- <_>7 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163139998912811</threshold>
- <left_val>-0.9392840266227722</left_val>
- <right_val>0.1144810020923615</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 24 8 -1.</_>
- <_>8 14 8 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1764889955520630</threshold>
- <left_val>1.2451089620590210</left_val>
- <right_val>-0.0565190017223358</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 14 -1.</_>
- <_>10 10 9 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1761460006237030</threshold>
- <left_val>-0.3252820074558258</left_val>
- <right_val>0.8279150128364563</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 6 6 -1.</_>
- <_>14 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3910001665353775e-003</threshold>
- <left_val>0.3478370010852814</left_val>
- <right_val>-0.1792909950017929</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 16 -1.</_>
- <_>7 0 5 8 2.</_>
- <_>12 8 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0608909986913204</threshold>
- <left_val>0.0550980009138584</left_val>
- <right_val>-1.5480779409408569</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 9 6 -1.</_>
- <_>13 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0291230008006096</threshold>
- <left_val>-1.0255639553070068</left_val>
- <right_val>0.2410690039396286</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 16 4 -1.</_>
- <_>12 3 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0456489995121956</threshold>
- <left_val>1.0301599502563477</left_val>
- <right_val>-0.3167209923267365</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 9 6 -1.</_>
- <_>13 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373330004513264</threshold>
- <left_val>0.2162059992551804</left_val>
- <right_val>-0.8258990049362183</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 20 4 -1.</_>
- <_>1 1 10 2 2.</_>
- <_>11 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244110003113747</threshold>
- <left_val>-1.5957959890365601</left_val>
- <right_val>0.0511390008032322</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 9 6 -1.</_>
- <_>13 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0598069988191128</threshold>
- <left_val>-1.0312290191650391</left_val>
- <right_val>0.1309230029582977</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 6 -1.</_>
- <_>8 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0301060006022453</threshold>
- <left_val>-1.4781630039215088</left_val>
- <right_val>0.0372119992971420</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 10 6 -1.</_>
- <_>8 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4209999293088913e-003</threshold>
- <left_val>-0.2402410060167313</left_val>
- <right_val>0.4933399856090546</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 6 9 -1.</_>
- <_>8 3 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1909999195486307e-003</threshold>
- <left_val>0.2894150018692017</left_val>
- <right_val>-0.5725960135459900</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 12 6 -1.</_>
- <_>7 5 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0208609998226166</threshold>
- <left_val>-0.2314839959144592</left_val>
- <right_val>0.6376590132713318</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 18 3 -1.</_>
- <_>0 11 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6990000195801258e-003</threshold>
- <left_val>-1.2107750177383423</left_val>
- <right_val>0.0640180036425591</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 22 3 -1.</_>
- <_>1 11 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187580008059740</threshold>
- <left_val>0.2446130067110062</left_val>
- <right_val>-0.9978669881820679</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 8 8 -1.</_>
- <_>9 11 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443230010569096</threshold>
- <left_val>-1.3699189424514771</left_val>
- <right_val>0.0360519997775555</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 11 6 6 -1.</_>
- <_>12 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0228599999099970</threshold>
- <left_val>0.2128839939832687</left_val>
- <right_val>-1.0397620201110840</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 6 6 -1.</_>
- <_>9 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8600005730986595e-004</threshold>
- <left_val>0.3244360089302063</left_val>
- <right_val>-0.5429180264472961</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 11 6 -1.</_>
- <_>7 12 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172390006482601</threshold>
- <left_val>-0.2832390069961548</left_val>
- <right_val>0.4446820020675659</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 24 4 -1.</_>
- <_>0 13 12 2 2.</_>
- <_>12 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345310010015965</threshold>
- <left_val>-2.3107020854949951</left_val>
- <right_val>-3.1399999279528856e-003</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 22 12 -1.</_>
- <_>13 4 11 6 2.</_>
- <_>2 10 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0670069977641106</threshold>
- <left_val>0.2871569991111755</left_val>
- <right_val>-0.6448100209236145</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 20 17 -1.</_>
- <_>12 0 10 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2377689927816391</threshold>
- <left_val>-0.2717480063438416</left_val>
- <right_val>0.8021910190582275</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 2 24 -1.</_>
- <_>14 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129030002281070</threshold>
- <left_val>-1.5317620038986206</left_val>
- <right_val>0.2142360061407089</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 2 24 -1.</_>
- <_>9 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105149997398257</threshold>
- <left_val>0.0770379975438118</left_val>
- <right_val>-1.0581140518188477</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 2 22 -1.</_>
- <_>14 1 1 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169690009206533</threshold>
- <left_val>0.1430670022964478</left_val>
- <right_val>-0.8582839965820313</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 2 22 -1.</_>
- <_>9 1 1 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2460002265870571e-003</threshold>
- <left_val>-1.1020129919052124</left_val>
- <right_val>0.0649069994688034</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 6 3 18 -1.</_>
- <_>18 6 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105569995939732</threshold>
- <left_val>0.0139640001580119</left_val>
- <right_val>0.6360149979591370</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 9 6 -1.</_>
- <_>6 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1380001716315746e-003</threshold>
- <left_val>-0.3454590141773224</left_val>
- <right_val>0.5629680156707764</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 14 9 4 -1.</_>
- <_>13 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131580000743270</threshold>
- <left_val>0.1992730051279068</left_val>
- <right_val>-1.5040320158004761</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 18 3 -1.</_>
- <_>3 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1310000922530890e-003</threshold>
- <left_val>-0.4090369939804077</left_val>
- <right_val>0.3779639899730682</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 8 18 -1.</_>
- <_>13 4 4 9 2.</_>
- <_>9 13 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1092069968581200</threshold>
- <left_val>-2.2227079868316650</left_val>
- <right_val>0.1217819973826408</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1820003688335419e-003</threshold>
- <left_val>-0.2865200042724609</left_val>
- <right_val>0.6789079904556274</right_val></_></_></trees>
- <stage_threshold>-4.1299300193786621</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 12 4 -1.</_>
- <_>6 2 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313469991087914</threshold>
- <left_val>-0.8888459801673889</left_val>
- <right_val>0.9493680000305176</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 14 6 -1.</_>
- <_>6 11 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319180004298687</threshold>
- <left_val>-1.1146880388259888</left_val>
- <right_val>0.4888899922370911</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 6 -1.</_>
- <_>10 5 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5939999185502529e-003</threshold>
- <left_val>-1.0097689628601074</left_val>
- <right_val>0.4972380101680756</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 16 -1.</_>
- <_>10 13 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261480007320642</threshold>
- <left_val>0.2599129974842072</left_val>
- <right_val>-1.2537480592727661</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 9 16 -1.</_>
- <_>4 4 3 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128450002521276</threshold>
- <left_val>-0.5713859796524048</left_val>
- <right_val>0.5965949892997742</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 18 9 -1.</_>
- <_>5 3 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263449996709824</threshold>
- <left_val>-0.5520319938659668</left_val>
- <right_val>0.3021740019321442</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 5 8 -1.</_>
- <_>9 19 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150830000638962</threshold>
- <left_val>-1.2871240377426147</left_val>
- <right_val>0.2235420048236847</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 4 9 -1.</_>
- <_>20 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0388870015740395</threshold>
- <left_val>1.7425049543380737</left_val>
- <right_val>-0.0997470021247864</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 3 -1.</_>
- <_>2 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7029998861253262e-003</threshold>
- <left_val>-1.0523240566253662</left_val>
- <right_val>0.1836259961128235</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 22 19 2 -1.</_>
- <_>5 23 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4860000228509307e-003</threshold>
- <left_val>0.5678420066833496</left_val>
- <right_val>-0.4674200117588043</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 4 9 -1.</_>
- <_>2 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0284860003739595</threshold>
- <left_val>1.3082909584045410</left_val>
- <right_val>-0.2646090090274811</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 19 18 -1.</_>
- <_>5 12 19 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0662249997258186</threshold>
- <left_val>-0.4621070027351379</left_val>
- <right_val>0.4174959957599640</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 9 -1.</_>
- <_>2 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8569996878504753e-003</threshold>
- <left_val>-0.4147489964962006</left_val>
- <right_val>0.5920479893684387</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 14 12 -1.</_>
- <_>13 5 7 6 2.</_>
- <_>6 11 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113559998571873</threshold>
- <left_val>0.3610309958457947</left_val>
- <right_val>-0.4578120112419128</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 20 2 -1.</_>
- <_>0 2 20 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7679998893290758e-003</threshold>
- <left_val>-0.8923889994621277</left_val>
- <right_val>0.1419900059700012</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 22 3 -1.</_>
- <_>1 3 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112469997256994</threshold>
- <left_val>0.2935340106487274</left_val>
- <right_val>-0.9733060002326965</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 7 9 -1.</_>
- <_>2 11 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1970000863075256e-003</threshold>
- <left_val>-0.7933490276336670</left_val>
- <right_val>0.1831340044736862</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 22 4 -1.</_>
- <_>13 12 11 2 2.</_>
- <_>2 14 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0317689999938011</threshold>
- <left_val>0.1552309989929199</left_val>
- <right_val>-1.3245639801025391</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 22 4 -1.</_>
- <_>0 12 11 2 2.</_>
- <_>11 14 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0251739993691444</threshold>
- <left_val>0.0342149995267391</left_val>
- <right_val>-2.0948131084442139</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 6 11 -1.</_>
- <_>11 7 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5360001064836979e-003</threshold>
- <left_val>-0.3945060074329376</left_val>
- <right_val>0.5133399963378906</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 9 6 -1.</_>
- <_>10 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0328730009496212</threshold>
- <left_val>0.0883729979395866</left_val>
- <right_val>-1.2814120054244995</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 10 -1.</_>
- <_>11 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7379998937249184e-003</threshold>
- <left_val>0.5528650283813477</left_val>
- <right_val>-0.4638499915599823</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 12 -1.</_>
- <_>6 10 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380750000476837</threshold>
- <left_val>-1.8497270345687866</left_val>
- <right_val>0.0459440015256405</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 15 -1.</_>
- <_>18 6 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0389840006828308</threshold>
- <left_val>-0.4822370111942291</left_val>
- <right_val>0.3476060032844544</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 18 3 -1.</_>
- <_>3 16 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8029999230057001e-003</threshold>
- <left_val>-0.4515469968318939</left_val>
- <right_val>0.4280630052089691</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 6 9 -1.</_>
- <_>18 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0541459992527962</threshold>
- <left_val>-0.8452079892158508</left_val>
- <right_val>0.1667490005493164</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 16 6 -1.</_>
- <_>1 5 8 3 2.</_>
- <_>9 8 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3280000835657120e-003</threshold>
- <left_val>0.3534829914569855</left_val>
- <right_val>-0.4716320037841797</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0337780006229877</threshold>
- <left_val>0.1846310049295425</left_val>
- <right_val>-1.6686669588088989</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 24 14 -1.</_>
- <_>0 4 12 7 2.</_>
- <_>12 11 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1123809963464737</threshold>
- <left_val>-1.2521569728851318</left_val>
- <right_val>0.0359920002520084</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 13 -1.</_>
- <_>13 0 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104080000892282</threshold>
- <left_val>-0.8162040114402771</left_val>
- <right_val>0.2342859953641892</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 13 -1.</_>
- <_>9 0 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9439999274909496e-003</threshold>
- <left_val>-0.9258469939231873</left_val>
- <right_val>0.1003480032086372</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 6 9 -1.</_>
- <_>13 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3029998242855072e-003</threshold>
- <left_val>0.5649930238723755</left_val>
- <right_val>-0.1888190060853958</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 9 -1.</_>
- <_>10 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117499995976686</threshold>
- <left_val>0.8030239939689636</left_val>
- <right_val>-0.3827700018882752</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 17 9 6 -1.</_>
- <_>13 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0232170000672340</threshold>
- <left_val>-0.8492699861526489</left_val>
- <right_val>0.1967120021581650</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 14 6 -1.</_>
- <_>2 18 7 3 2.</_>
- <_>9 21 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168660003691912</threshold>
- <left_val>-0.4059189856052399</left_val>
- <right_val>0.5069530010223389</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 18 4 -1.</_>
- <_>12 18 9 2 2.</_>
- <_>3 20 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240310002118349</threshold>
- <left_val>-1.5297520160675049</left_val>
- <right_val>0.2334499955177307</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 15 4 -1.</_>
- <_>5 20 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0369459986686707</threshold>
- <left_val>0.6300770044326782</left_val>
- <right_val>-0.3178040087223053</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 15 9 -1.</_>
- <_>14 15 5 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0615639984607697</threshold>
- <left_val>0.5862789750099182</left_val>
- <right_val>-0.0121079999953508</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 16 4 -1.</_>
- <_>4 6 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216610003262758</threshold>
- <left_val>-0.2562370002269745</left_val>
- <right_val>1.0409849882125854</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 6 -1.</_>
- <_>7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6710000131279230e-003</threshold>
- <left_val>0.2917110025882721</left_val>
- <right_val>-0.8328729867935181</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 15 10 -1.</_>
- <_>5 14 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0448490008711815</threshold>
- <left_val>-0.3963319957256317</left_val>
- <right_val>0.4566200077533722</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 10 14 -1.</_>
- <_>12 9 5 7 2.</_>
- <_>7 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0571950003504753</threshold>
- <left_val>0.2102389931678772</left_val>
- <right_val>-1.5004800558090210</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 9 -1.</_>
- <_>9 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113420002162457</threshold>
- <left_val>0.4407129883766174</left_val>
- <right_val>-0.3865379989147186</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 3 -1.</_>
- <_>3 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120040001347661</threshold>
- <left_val>0.9395459890365601</left_val>
- <right_val>-0.1058949977159500</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 18 3 -1.</_>
- <_>0 11 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0225159991532564</threshold>
- <left_val>9.4480002298951149e-003</left_val>
- <right_val>-1.6799509525299072</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 18 4 -1.</_>
- <_>12 16 9 2 2.</_>
- <_>3 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198090001940727</threshold>
- <left_val>-1.0133639574050903</left_val>
- <right_val>0.2414660006761551</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 14 6 -1.</_>
- <_>4 6 7 3 2.</_>
- <_>11 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158910006284714</threshold>
- <left_val>-0.3750759959220886</left_val>
- <right_val>0.4661409854888916</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 2 18 -1.</_>
- <_>13 0 1 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1420002281665802e-003</threshold>
- <left_val>-0.8048409819602966</left_val>
- <right_val>0.1781699955463409</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 2 18 -1.</_>
- <_>10 0 1 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4740000739693642e-003</threshold>
- <left_val>-1.0562069416046143</left_val>
- <right_val>0.0733050033450127</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 15 10 -1.</_>
- <_>10 7 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1274250000715256</threshold>
- <left_val>0.2016559988260269</left_val>
- <right_val>-1.5467929840087891</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 21 4 -1.</_>
- <_>8 20 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0477030016481876</threshold>
- <left_val>-0.3793779909610748</left_val>
- <right_val>0.3788599967956543</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 5 18 -1.</_>
- <_>10 14 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0536080002784729</threshold>
- <left_val>0.2122049927711487</left_val>
- <right_val>-1.2399710416793823</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 6 -1.</_>
- <_>0 2 12 3 2.</_>
- <_>12 5 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0396809987723827</threshold>
- <left_val>-1.0257550477981567</left_val>
- <right_val>0.0512829981744289</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 22 8 -1.</_>
- <_>12 1 11 4 2.</_>
- <_>1 5 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0673270002007484</threshold>
- <left_val>-1.0304750204086304</left_val>
- <right_val>0.2300529927015305</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 15 9 -1.</_>
- <_>4 3 15 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1333760023117065</threshold>
- <left_val>-0.2086900025606155</left_val>
- <right_val>1.2272510528564453</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 19 -1.</_>
- <_>8 0 8 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2091930061578751</threshold>
- <left_val>0.8792989850044251</left_val>
- <right_val>-0.0442549996078014</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 21 18 3 -1.</_>
- <_>11 21 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0655890032649040</threshold>
- <left_val>1.0443429946899414</left_val>
- <right_val>-0.2168209999799728</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 10 4 -1.</_>
- <_>9 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0618829987943172</threshold>
- <left_val>0.1379819959402084</left_val>
- <right_val>-1.9009059667587280</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 10 4 -1.</_>
- <_>10 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255789998918772</threshold>
- <left_val>-1.6607600450515747</left_val>
- <right_val>5.8439997956156731e-003</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 8 6 16 -1.</_>
- <_>20 8 3 8 2.</_>
- <_>17 16 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0348270013928413</threshold>
- <left_val>0.7994040250778198</left_val>
- <right_val>-0.0824069976806641</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 20 4 -1.</_>
- <_>1 15 10 2 2.</_>
- <_>11 17 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0182099994271994</threshold>
- <left_val>-0.9607399702072144</left_val>
- <right_val>0.0663200020790100</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 10 6 -1.</_>
- <_>14 17 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150709999725223</threshold>
- <left_val>0.1989939957857132</left_val>
- <right_val>-0.7643300294876099</right_val></_></_></trees>
- <stage_threshold>-4.0218091011047363</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 16 9 -1.</_>
- <_>3 3 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0463249981403351</threshold>
- <left_val>-1.0362670421600342</left_val>
- <right_val>0.8220149874687195</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 7 15 -1.</_>
- <_>15 11 7 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154069997370243</threshold>
- <left_val>-1.2327589988708496</left_val>
- <right_val>0.2964769899845123</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 13 -1.</_>
- <_>11 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128089999780059</threshold>
- <left_val>-0.7585229873657227</left_val>
- <right_val>0.5798550248146057</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 2 6 14 -1.</_>
- <_>17 2 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0491509996354580</threshold>
- <left_val>-0.3898389935493469</left_val>
- <right_val>0.8968030214309692</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 12 10 -1.</_>
- <_>3 14 6 5 2.</_>
- <_>9 19 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126210004091263</threshold>
- <left_val>-0.7179930210113525</left_val>
- <right_val>0.5044090151786804</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 6 -1.</_>
- <_>7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187689997255802</threshold>
- <left_val>0.5514760017395020</left_val>
- <right_val>-0.7055540084838867</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 6 14 -1.</_>
- <_>4 2 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0419650003314018</threshold>
- <left_val>-0.4478209912776947</left_val>
- <right_val>0.7098550200462341</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 5 12 -1.</_>
- <_>10 8 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0514019988477230</threshold>
- <left_val>-1.0932120084762573</left_val>
- <right_val>0.2670190036296845</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 24 5 -1.</_>
- <_>8 17 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0709609985351563</threshold>
- <left_val>0.8361840248107910</left_val>
- <right_val>-0.3831810057163239</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 5 12 -1.</_>
- <_>15 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0167459994554520</threshold>
- <left_val>-0.2573310136795044</left_val>
- <right_val>0.2596650123596191</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 12 -1.</_>
- <_>3 1 3 6 2.</_>
- <_>6 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2400000169873238e-003</threshold>
- <left_val>0.3163149952888489</left_val>
- <right_val>-0.5879690051078796</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 6 -1.</_>
- <_>12 16 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0393979996442795</threshold>
- <left_val>-1.0491210222244263</left_val>
- <right_val>0.1682240068912506</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 6 6 -1.</_>
- <_>6 16 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.</threshold>
- <left_val>0.1614419966936112</left_val>
- <right_val>-0.8787689805030823</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 3 16 -1.</_>
- <_>14 14 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223079994320869</threshold>
- <left_val>-0.6905350089073181</left_val>
- <right_val>0.2360700070858002</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 13 6 -1.</_>
- <_>1 14 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8919999711215496e-003</threshold>
- <left_val>0.2498919963836670</left_val>
- <right_val>-0.5658329725265503</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 9 -1.</_>
- <_>13 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0730000212788582e-003</threshold>
- <left_val>-0.5041580200195313</left_val>
- <right_val>0.3837450146675110</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 6 -1.</_>
- <_>10 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0392309986054897</threshold>
- <left_val>0.0426190011203289</left_val>
- <right_val>-1.3875889778137207</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 6 9 -1.</_>
- <_>12 2 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0622380003333092</threshold>
- <left_val>0.1411940008401871</left_val>
- <right_val>-1.0688860416412354</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 6 9 -1.</_>
- <_>9 2 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1399999968707561e-003</threshold>
- <left_val>-0.8962240219116211</left_val>
- <right_val>0.1979639977216721</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 12 6 -1.</_>
- <_>6 20 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1800000518560410e-004</threshold>
- <left_val>-0.4533729851245880</left_val>
- <right_val>0.4353269934654236</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 9 -1.</_>
- <_>9 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9169998168945313e-003</threshold>
- <left_val>0.3382279872894287</left_val>
- <right_val>-0.4479300081729889</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 12 3 -1.</_>
- <_>7 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238669998943806</threshold>
- <left_val>-0.7890859842300415</left_val>
- <right_val>0.2251179963350296</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 8 21 -1.</_>
- <_>8 10 8 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1026280000805855</threshold>
- <left_val>-2.2831439971923828</left_val>
- <right_val>-5.3960001096129417e-003</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 10 12 -1.</_>
- <_>7 8 10 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5239998772740364e-003</threshold>
- <left_val>0.3934670090675354</left_val>
- <right_val>-0.5224220156669617</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 9 -1.</_>
- <_>0 4 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0398770011961460</threshold>
- <left_val>0.0327990017831326</left_val>
- <right_val>-1.5079489946365356</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 2 2 20 -1.</_>
- <_>15 2 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131449997425079</threshold>
- <left_val>-1.0839990377426147</left_val>
- <right_val>0.1848240047693253</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 9 -1.</_>
- <_>0 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0505909994244576</threshold>
- <left_val>-1.8822289705276489</left_val>
- <right_val>-2.2199999075382948e-003</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 3 2 21 -1.</_>
- <_>15 3 1 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249170009046793</threshold>
- <left_val>0.1459340006113052</left_val>
- <right_val>-2.2196519374847412</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 2 23 -1.</_>
- <_>8 0 1 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6370001770555973e-003</threshold>
- <left_val>-1.0164569616317749</left_val>
- <right_val>0.0587970018386841</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 9 4 -1.</_>
- <_>15 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0429119989275932</threshold>
- <left_val>0.1544300019741058</left_val>
- <right_val>-1.1843889951705933</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 9 4 -1.</_>
- <_>0 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3000000510364771e-004</threshold>
- <left_val>-0.7730579972267151</left_val>
- <right_val>0.1218990013003349</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 9 6 -1.</_>
- <_>8 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0929996222257614e-003</threshold>
- <left_val>-0.1145009994506836</left_val>
- <right_val>0.7109130024909973</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 9 6 -1.</_>
- <_>0 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111450003460050</threshold>
- <left_val>0.0700009986758232</left_val>
- <right_val>-1.0534820556640625</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 18 4 -1.</_>
- <_>9 10 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0524530000984669</threshold>
- <left_val>-1.7594360113143921</left_val>
- <right_val>0.1952379941940308</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 19 -1.</_>
- <_>8 0 8 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2302069962024689</threshold>
- <left_val>0.9584029912948608</left_val>
- <right_val>-0.2504569888114929</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 8 12 -1.</_>
- <_>9 7 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163659993559122</threshold>
- <left_val>0.4673190116882324</left_val>
- <right_val>-0.2110839933156967</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 10 -1.</_>
- <_>12 6 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0172080006450415</threshold>
- <left_val>0.7083569765090942</left_val>
- <right_val>-0.2801829874515533</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 10 12 -1.</_>
- <_>12 9 5 6 2.</_>
- <_>7 15 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366480015218258</threshold>
- <left_val>-1.1013339757919312</left_val>
- <right_val>0.2434110045433044</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 19 -1.</_>
- <_>6 0 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103049995377660</threshold>
- <left_val>-1.0933129787445068</left_val>
- <right_val>0.0562589988112450</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 10 -1.</_>
- <_>16 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137130003422499</threshold>
- <left_val>-0.2643809914588928</left_val>
- <right_val>0.1982100009918213</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 12 -1.</_>
- <_>2 0 3 6 2.</_>
- <_>5 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0293080005794764</threshold>
- <left_val>-0.2214239984750748</left_val>
- <right_val>1.0525950193405151</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 24 2 -1.</_>
- <_>0 12 24 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0240770000964403</threshold>
- <left_val>0.1848569959402084</left_val>
- <right_val>-1.7203969955444336</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 13 4 -1.</_>
- <_>4 11 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1280000954866409e-003</threshold>
- <left_val>-0.9272149801254273</left_val>
- <right_val>0.0587529987096787</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 6 9 -1.</_>
- <_>9 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223779994994402</threshold>
- <left_val>1.9646559953689575</left_val>
- <right_val>0.0277859997004271</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 16 4 -1.</_>
- <_>0 14 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0440000854432583e-003</threshold>
- <left_val>0.2142760008573532</left_val>
- <right_val>-0.4840759932994843</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 12 6 9 -1.</_>
- <_>18 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0406030006706715</threshold>
- <left_val>-1.1754349470138550</left_val>
- <right_val>0.1606120020151138</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 9 -1.</_>
- <_>0 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244660004973412</threshold>
- <left_val>-1.1239900588989258</left_val>
- <right_val>0.0411100015044212</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 10 4 -1.</_>
- <_>8 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5309999473392963e-003</threshold>
- <left_val>-0.1716970056295395</left_val>
- <right_val>0.3217880129814148</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 9 -1.</_>
- <_>10 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195889994502068</threshold>
- <left_val>0.8272020220756531</left_val>
- <right_val>-0.2637670040130615</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296359993517399</threshold>
- <left_val>-1.1524770259857178</left_val>
- <right_val>0.1499930024147034</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150300003588200</threshold>
- <left_val>-1.0491830110549927</left_val>
- <right_val>0.0401609987020493</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 6 15 -1.</_>
- <_>14 3 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0607150010764599</threshold>
- <left_val>-1.0903840065002441</left_val>
- <right_val>0.1533080041408539</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 6 15 -1.</_>
- <_>8 3 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127900000661612</threshold>
- <left_val>0.4224860072135925</left_val>
- <right_val>-0.4239920079708099</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 2 9 4 -1.</_>
- <_>15 4 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0202479995787144</threshold>
- <left_val>-0.9186699986457825</left_val>
- <right_val>0.1848569959402084</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 7 -1.</_>
- <_>8 10 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306839998811483</threshold>
- <left_val>-1.5958670377731323</left_val>
- <right_val>2.5760000571608543e-003</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 6 10 -1.</_>
- <_>9 19 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207180008292198</threshold>
- <left_val>-0.6629999876022339</left_val>
- <right_val>0.3103719949722290</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 5 8 -1.</_>
- <_>7 17 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7290000105276704e-003</threshold>
- <left_val>0.1918340027332306</left_val>
- <right_val>-0.6508499979972839</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 3 16 -1.</_>
- <_>14 13 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0313940010964870</threshold>
- <left_val>-0.6364300251007080</left_val>
- <right_val>0.1540839970111847</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 18 3 -1.</_>
- <_>2 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0190030001103878</threshold>
- <left_val>-0.1891939938068390</left_val>
- <right_val>1.5294510126113892</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 19 3 -1.</_>
- <_>5 19 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1769997701048851e-003</threshold>
- <left_val>-0.1059790030121803</left_val>
- <right_val>0.6485959887504578</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101659996435046</threshold>
- <left_val>-1.0802700519561768</left_val>
- <right_val>0.0371760018169880</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 3 18 -1.</_>
- <_>13 4 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4169999631121755e-003</threshold>
- <left_val>0.3415749967098236</left_val>
- <right_val>-0.0977379977703094</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 3 18 -1.</_>
- <_>10 4 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0799998678267002e-003</threshold>
- <left_val>0.4762459993362427</left_val>
- <right_val>-0.3436630070209503</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 18 9 -1.</_>
- <_>9 3 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0440969988703728</threshold>
- <left_val>0.9763429760932922</left_val>
- <right_val>-0.0191730000078678</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 14 -1.</_>
- <_>8 1 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0606699995696545</threshold>
- <left_val>-2.1752851009368896</left_val>
- <right_val>-0.0289259999990463</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 9 6 -1.</_>
- <_>12 19 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0329319983720779</threshold>
- <left_val>-0.6438310146331787</left_val>
- <right_val>0.1649409979581833</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 20 16 -1.</_>
- <_>1 3 10 8 2.</_>
- <_>11 11 10 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1472280025482178</threshold>
- <left_val>-1.4745830297470093</left_val>
- <right_val>2.5839998852461576e-003</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 6 12 -1.</_>
- <_>15 5 3 6 2.</_>
- <_>12 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119300000369549</threshold>
- <left_val>0.4244140088558197</left_val>
- <right_val>-0.1771260052919388</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 22 16 -1.</_>
- <_>1 2 11 8 2.</_>
- <_>12 10 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1451790034770966</threshold>
- <left_val>0.0254449993371964</left_val>
- <right_val>-1.2779400348663330</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 5 10 -1.</_>
- <_>10 19 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0514479987323284</threshold>
- <left_val>0.1567839980125427</left_val>
- <right_val>-1.5188430547714233</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>3 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1479999888688326e-003</threshold>
- <left_val>-0.4042440056800842</left_val>
- <right_val>0.3242970108985901</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 10 -1.</_>
- <_>12 14 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0436000004410744</threshold>
- <left_val>-1.9932260513305664</left_val>
- <right_val>0.1501860022544861</right_val></_></_></trees>
- <stage_threshold>-3.8832089900970459</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 4 -1.</_>
- <_>8 2 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1289959996938705</threshold>
- <left_val>-0.6216199994087219</left_val>
- <right_val>1.1116520166397095</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 9 -1.</_>
- <_>6 7 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0912619978189468</threshold>
- <left_val>1.0143059492111206</left_val>
- <right_val>-0.6133520007133484</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 5 -1.</_>
- <_>10 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142719997093081</threshold>
- <left_val>-1.0261659622192383</left_val>
- <right_val>0.3977999985218048</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 14 12 -1.</_>
- <_>5 12 14 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0328899994492531</threshold>
- <left_val>-1.1386079788208008</left_val>
- <right_val>0.2869080007076263</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 8 10 -1.</_>
- <_>4 14 4 5 2.</_>
- <_>8 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125900004059076</threshold>
- <left_val>-0.5664560198783875</left_val>
- <right_val>0.4517239928245544</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 5 14 -1.</_>
- <_>11 13 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146610001102090</threshold>
- <left_val>0.3050599992275238</left_val>
- <right_val>-0.6812959909439087</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 3 16 -1.</_>
- <_>7 14 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0335559993982315</threshold>
- <left_val>-1.7208939790725708</left_val>
- <right_val>0.0614390000700951</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 8 -1.</_>
- <_>9 7 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1425269991159439</threshold>
- <left_val>0.2319220006465912</left_val>
- <right_val>-1.7297149896621704</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 20 2 -1.</_>
- <_>2 4 20 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2079997733235359e-003</threshold>
- <left_val>-1.2163300514221191</left_val>
- <right_val>0.1216019988059998</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 19 6 -1.</_>
- <_>3 14 19 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181789994239807</threshold>
- <left_val>0.3255369961261749</left_val>
- <right_val>-0.8100399971008301</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 9 -1.</_>
- <_>10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250369999557734</threshold>
- <left_val>-0.3169879913330078</left_val>
- <right_val>0.6736140251159668</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 6 6 14 -1.</_>
- <_>16 6 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465609990060329</threshold>
- <left_val>-0.1108980029821396</left_val>
- <right_val>0.8408250212669373</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 6 12 -1.</_>
- <_>9 9 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9999996125698090e-003</threshold>
- <left_val>0.3957450091838837</left_val>
- <right_val>-0.4762459993362427</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 6 6 18 -1.</_>
- <_>21 6 3 9 2.</_>
- <_>18 15 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0408059991896153</threshold>
- <left_val>-1.8000000272877514e-004</left_val>
- <right_val>0.9457070231437683</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 6 18 -1.</_>
- <_>0 6 3 9 2.</_>
- <_>3 15 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0342219993472099</threshold>
- <left_val>0.7520629763603210</left_val>
- <right_val>-0.3153150081634522</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 9 -1.</_>
- <_>18 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0397160016000271</threshold>
- <left_val>-0.8313959836959839</left_val>
- <right_val>0.1774439960718155</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 15 6 -1.</_>
- <_>3 20 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5170000735670328e-003</threshold>
- <left_val>-0.5937799811363220</left_val>
- <right_val>0.2465700060129166</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 9 -1.</_>
- <_>18 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0274289995431900</threshold>
- <left_val>0.1599839925765991</left_val>
- <right_val>-0.4278199970722199</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 9 -1.</_>
- <_>0 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0349860005080700</threshold>
- <left_val>0.0350559987127781</left_val>
- <right_val>-1.5988600254058838</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 18 2 -1.</_>
- <_>5 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4970000162720680e-003</threshold>
- <left_val>-0.5203430056571960</left_val>
- <right_val>0.3782829940319061</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 6 -1.</_>
- <_>6 2 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7699999045580626e-003</threshold>
- <left_val>-0.5318260192871094</left_val>
- <right_val>0.2495100051164627</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 9 -1.</_>
- <_>12 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0351740010082722</threshold>
- <left_val>0.1998340040445328</left_val>
- <right_val>-1.4446129798889160</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 9 -1.</_>
- <_>10 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259709991514683</threshold>
- <left_val>0.0444269999861717</left_val>
- <right_val>-1.3622980117797852</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157839991152287</threshold>
- <left_val>-0.9102039933204651</left_val>
- <right_val>0.2719030082225800</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 13 6 -1.</_>
- <_>3 8 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5880000367760658e-003</threshold>
- <left_val>0.0920649990439415</left_val>
- <right_val>-0.8162890076637268</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0207540001720190</threshold>
- <left_val>0.2118570059537888</left_val>
- <right_val>-0.7472900152206421</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 6 15 -1.</_>
- <_>5 5 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0598290003836155</threshold>
- <left_val>-0.2730109989643097</left_val>
- <right_val>0.8092330098152161</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 9 6 -1.</_>
- <_>11 8 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0390390008687973</threshold>
- <left_val>-0.1043229997158051</left_val>
- <right_val>0.8622620105743408</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 14 -1.</_>
- <_>8 13 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216659996658564</threshold>
- <left_val>0.0627090036869049</left_val>
- <right_val>-0.9889429807662964</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0274969991296530</threshold>
- <left_val>-0.9269099831581116</left_val>
- <right_val>0.1558630019426346</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 10 4 -1.</_>
- <_>9 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104620000347495</threshold>
- <left_val>0.1341809928417206</left_val>
- <right_val>-0.7038639783859253</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 19 -1.</_>
- <_>13 1 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0248709991574287</threshold>
- <left_val>0.1970670074224472</left_val>
- <right_val>-0.4026330113410950</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 19 -1.</_>
- <_>9 1 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0160360001027584</threshold>
- <left_val>-1.1409829854965210</left_val>
- <right_val>0.0739979967474937</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 9 6 9 -1.</_>
- <_>18 12 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0486270003020763</threshold>
- <left_val>0.1699039936065674</left_val>
- <right_val>-0.7215219736099243</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 18 3 -1.</_>
- <_>1 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2619999470189214e-003</threshold>
- <left_val>-0.4738979935646057</left_val>
- <right_val>0.2625499963760376</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 10 9 -1.</_>
- <_>14 16 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0880350023508072</threshold>
- <left_val>-2.1606519222259521</left_val>
- <right_val>0.1455480009317398</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 22 4 -1.</_>
- <_>1 13 11 2 2.</_>
- <_>12 15 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183569993823767</threshold>
- <left_val>0.0447509996592999</left_val>
- <right_val>-1.0766370296478271</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 16 6 -1.</_>
- <_>12 6 8 3 2.</_>
- <_>4 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0352750010788441</threshold>
- <left_val>-0.0329190008342266</left_val>
- <right_val>1.2153890132904053</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 18 22 -1.</_>
- <_>1 0 9 11 2.</_>
- <_>10 11 9 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2039290070533752</threshold>
- <left_val>-1.3187999725341797</left_val>
- <right_val>0.0155039997771382</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 8 14 -1.</_>
- <_>14 7 4 7 2.</_>
- <_>10 14 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166190005838871</threshold>
- <left_val>0.3685019910335541</left_val>
- <right_val>-0.1528369933366776</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 6 20 -1.</_>
- <_>0 4 3 10 2.</_>
- <_>3 14 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0377390012145042</threshold>
- <left_val>-0.2572779953479767</left_val>
- <right_val>0.7065529823303223</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 9 -1.</_>
- <_>17 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2720000706613064e-003</threshold>
- <left_val>-0.0776029974222183</left_val>
- <right_val>0.3336780071258545</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 9 -1.</_>
- <_>5 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148029997944832</threshold>
- <left_val>-0.7852479815483093</left_val>
- <right_val>0.0769340023398399</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 6 12 -1.</_>
- <_>18 12 3 6 2.</_>
- <_>15 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0483190007507801</threshold>
- <left_val>1.7022320032119751</left_val>
- <right_val>0.0497220009565353</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 12 -1.</_>
- <_>3 12 3 6 2.</_>
- <_>6 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0295390002429485</threshold>
- <left_val>0.7767069935798645</left_val>
- <right_val>-0.2453429996967316</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0461690016090870</threshold>
- <left_val>-1.4922779798507690</left_val>
- <right_val>0.1234000027179718</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 9 6 -1.</_>
- <_>0 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0280649997293949</threshold>
- <left_val>-2.1345369815826416</left_val>
- <right_val>-0.0257970001548529</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 19 3 -1.</_>
- <_>4 15 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7339998893439770e-003</threshold>
- <left_val>0.5698260068893433</left_val>
- <right_val>-0.1205660030245781</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 19 3 -1.</_>
- <_>2 14 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101110003888607</threshold>
- <left_val>0.6791139841079712</left_val>
- <right_val>-0.2663800120353699</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 10 6 -1.</_>
- <_>14 17 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113599998876452</threshold>
- <left_val>0.2478979974985123</left_val>
- <right_val>-0.6449300050735474</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 10 12 -1.</_>
- <_>6 0 5 6 2.</_>
- <_>11 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0518090017139912</threshold>
- <left_val>0.0147160002961755</left_val>
- <right_val>-1.2395579814910889</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 6 12 -1.</_>
- <_>20 1 3 6 2.</_>
- <_>17 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0332919992506504</threshold>
- <left_val>-8.2559995353221893e-003</left_val>
- <right_val>1.0168470144271851</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 12 -1.</_>
- <_>1 1 3 6 2.</_>
- <_>4 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144940000027418</threshold>
- <left_val>0.4506680071353912</left_val>
- <right_val>-0.3625099956989288</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 14 6 9 -1.</_>
- <_>16 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0342219993472099</threshold>
- <left_val>-0.9529250264167786</left_val>
- <right_val>0.2068459987640381</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 9 12 -1.</_>
- <_>7 9 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0806540027260780</threshold>
- <left_val>-2.0139501094818115</left_val>
- <right_val>-0.0230849999934435</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 12 -1.</_>
- <_>12 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9399999706074595e-004</threshold>
- <left_val>0.3957200050354004</left_val>
- <right_val>-0.2935130000114441</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 14 8 -1.</_>
- <_>4 4 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0971620008349419</threshold>
- <left_val>-0.2498030066490173</left_val>
- <right_val>1.0859220027923584</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0366140007972717</threshold>
- <left_val>-0.0578440017998219</left_val>
- <right_val>1.2162159681320190</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 18 3 -1.</_>
- <_>8 10 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0516939982771873</threshold>
- <left_val>0.0430629998445511</left_val>
- <right_val>-1.0636160373687744</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 6 -1.</_>
- <_>15 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245570000261068</threshold>
- <left_val>-0.4894680082798004</left_val>
- <right_val>0.1718290001153946</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 21 23 -1.</_>
- <_>7 1 7 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3273679912090302</threshold>
- <left_val>-0.2968859970569611</left_val>
- <right_val>0.5179830193519592</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 17 4 -1.</_>
- <_>6 11 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6959999278187752e-003</threshold>
- <left_val>-0.5980589985847473</left_val>
- <right_val>0.2480320036411285</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 11 18 -1.</_>
- <_>1 6 11 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1617220044136047</threshold>
- <left_val>-0.0296139996498823</left_val>
- <right_val>-2.3162529468536377</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 13 6 -1.</_>
- <_>6 17 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7889999113976955e-003</threshold>
- <left_val>0.3745790123939514</left_val>
- <right_val>-0.3277919888496399</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 6 -1.</_>
- <_>0 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184029992669821</threshold>
- <left_val>-0.9969270229339600</left_val>
- <right_val>0.0729480013251305</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 15 4 -1.</_>
- <_>13 7 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0776650011539459</threshold>
- <left_val>0.1417569965124130</left_val>
- <right_val>-1.7238730192184448</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 9 -1.</_>
- <_>9 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189210008829832</threshold>
- <left_val>-0.2127310037612915</left_val>
- <right_val>1.0165189504623413</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 18 3 -1.</_>
- <_>12 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0793979987502098</threshold>
- <left_val>-1.3164349794387817</left_val>
- <right_val>0.1498199999332428</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 24 4 -1.</_>
- <_>8 14 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0680370032787323</threshold>
- <left_val>0.4942199885845184</left_val>
- <right_val>-0.2909100055694580</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 10 3 12 -1.</_>
- <_>16 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1010001227259636e-003</threshold>
- <left_val>0.4243049919605255</left_val>
- <right_val>-0.3389930129051209</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 3 -1.</_>
- <_>0 4 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319270007312298</threshold>
- <left_val>-0.0310469996184111</left_val>
- <right_val>-2.3459999561309814</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 17 10 6 -1.</_>
- <_>14 19 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0298439990729094</threshold>
- <left_val>-0.7898960113525391</left_val>
- <right_val>0.1541769951581955</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 18 3 -1.</_>
- <_>7 13 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0805419981479645</threshold>
- <left_val>-2.2509229183197021</left_val>
- <right_val>-0.0309069994837046</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 18 9 -1.</_>
- <_>5 3 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8109999150037766e-003</threshold>
- <left_val>-0.2557730078697205</left_val>
- <right_val>0.2378550022840500</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 16 9 -1.</_>
- <_>4 6 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336470007896423</threshold>
- <left_val>-0.2254139930009842</left_val>
- <right_val>0.9230740070343018</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 3 12 -1.</_>
- <_>16 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2809999585151672e-003</threshold>
- <left_val>-0.2889620065689087</left_val>
- <right_val>0.3104619979858398</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 18 4 -1.</_>
- <_>6 7 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1010439991950989</threshold>
- <left_val>-0.0348640009760857</left_val>
- <right_val>-2.7102620601654053</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100090000778437</threshold>
- <left_val>0.5971540212631226</left_val>
- <right_val>-0.0338310003280640</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 6 10 -1.</_>
- <_>11 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1919998154044151e-003</threshold>
- <left_val>-0.4773800075054169</left_val>
- <right_val>0.2268600016832352</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 6 9 -1.</_>
- <_>11 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249690003693104</threshold>
- <left_val>0.2287770062685013</left_val>
- <right_val>-1.0435529947280884</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 21 -1.</_>
- <_>12 1 9 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2790800034999847</threshold>
- <left_val>-0.2581810057163239</left_val>
- <right_val>0.7678049802780151</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 12 7 -1.</_>
- <_>6 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0442130006849766</threshold>
- <left_val>-0.5979800224304199</left_val>
- <right_val>0.2803989946842194</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 9 -1.</_>
- <_>10 5 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141369998455048</threshold>
- <left_val>0.7098730206489563</left_val>
- <right_val>-0.2564519941806793</right_val></_></_></trees>
- <stage_threshold>-3.8424909114837646</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 4 -1.</_>
- <_>8 2 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1377120018005371</threshold>
- <left_val>-0.5587059855461121</left_val>
- <right_val>1.0953769683837891</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 5 12 -1.</_>
- <_>14 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0344609990715981</threshold>
- <left_val>-0.7117189764976502</left_val>
- <right_val>0.5289959907531738</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 5 12 -1.</_>
- <_>5 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0185800008475780</threshold>
- <left_val>-1.1157519817352295</left_val>
- <right_val>0.4059399962425232</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250419992953539</threshold>
- <left_val>-0.4089249968528748</left_val>
- <right_val>0.7412999868392944</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 17 -1.</_>
- <_>3 1 3 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0571790002286434</threshold>
- <left_val>-0.3805429935455322</left_val>
- <right_val>0.7364770174026489</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 19 9 -1.</_>
- <_>3 4 19 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149320000782609</threshold>
- <left_val>-0.6994550228118897</left_val>
- <right_val>0.3795099854469299</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 12 6 -1.</_>
- <_>3 18 6 3 2.</_>
- <_>9 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8900001719594002e-003</threshold>
- <left_val>-0.5455859899520874</left_val>
- <right_val>0.3633249998092651</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 4 4 19 -1.</_>
- <_>20 4 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0304359998553991</threshold>
- <left_val>-0.1012459993362427</left_val>
- <right_val>0.7958589792251587</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 10 7 -1.</_>
- <_>5 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441600009799004</threshold>
- <left_val>0.8441089987754822</left_val>
- <right_val>-0.3297640085220337</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 10 12 -1.</_>
- <_>13 7 5 6 2.</_>
- <_>8 13 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184610001742840</threshold>
- <left_val>0.2632659971714020</left_val>
- <right_val>-0.9673650264739990</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 10 12 -1.</_>
- <_>6 7 5 6 2.</_>
- <_>11 13 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106149995699525</threshold>
- <left_val>0.1525190025568008</left_val>
- <right_val>-1.0589870214462280</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 9 6 -1.</_>
- <_>12 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459740012884140</threshold>
- <left_val>-1.9918340444564819</left_val>
- <right_val>0.1362909972667694</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 21 4 -1.</_>
- <_>8 20 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0829000025987625</threshold>
- <left_val>-0.3203719854354858</left_val>
- <right_val>0.6030420064926148</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 9 6 -1.</_>
- <_>9 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9130001142621040e-003</threshold>
- <left_val>0.5958660244941711</left_val>
- <right_val>-0.2113959938287735</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 9 6 -1.</_>
- <_>10 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0428140014410019</threshold>
- <left_val>0.0229250006377697</left_val>
- <right_val>-1.4679330587387085</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 14 -1.</_>
- <_>13 0 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7139997631311417e-003</threshold>
- <left_val>-0.4398950040340424</left_val>
- <right_val>0.2043969929218292</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 14 -1.</_>
- <_>9 0 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3390002101659775e-003</threshold>
- <left_val>-0.8906679749488831</left_val>
- <right_val>0.1046999990940094</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 9 6 -1.</_>
- <_>14 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0749997869133949e-003</threshold>
- <left_val>0.2116419970989227</left_val>
- <right_val>-0.4023160040378571</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 18 5 -1.</_>
- <_>8 8 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0967390015721321</threshold>
- <left_val>0.0133199999108911</left_val>
- <right_val>-1.6085360050201416</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 3 6 11 -1.</_>
- <_>20 3 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305369999259710</threshold>
- <left_val>1.0063740015029907</left_val>
- <right_val>-0.1341329962015152</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 11 14 -1.</_>
- <_>6 12 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0608559995889664</threshold>
- <left_val>-1.4689979553222656</left_val>
- <right_val>9.4240000471472740e-003</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 6 9 -1.</_>
- <_>18 7 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0381620004773140</threshold>
- <left_val>-0.8163639903068543</left_val>
- <right_val>0.2617120146751404</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 9 6 -1.</_>
- <_>7 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6960002556443214e-003</threshold>
- <left_val>0.1156169995665550</left_val>
- <right_val>-0.7169319987297058</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 6 9 -1.</_>
- <_>18 7 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0489029996097088</threshold>
- <left_val>0.1305049955844879</left_val>
- <right_val>-1.6448370218276978</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 6 9 -1.</_>
- <_>0 7 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416119992733002</threshold>
- <left_val>-1.1795840263366699</left_val>
- <right_val>0.0250170007348061</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 9 4 -1.</_>
- <_>9 6 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201880000531673</threshold>
- <left_val>0.6318820118904114</left_val>
- <right_val>-0.1049040034413338</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 19 2 -1.</_>
- <_>0 23 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7900000400841236e-004</threshold>
- <left_val>0.1850779950618744</left_val>
- <right_val>-0.5356590151786804</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 14 6 9 -1.</_>
- <_>17 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0336220003664494</threshold>
- <left_val>-0.9312760233879089</left_val>
- <right_val>0.2007150053977966</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 6 9 -1.</_>
- <_>1 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194559991359711</threshold>
- <left_val>0.0380290001630783</left_val>
- <right_val>-1.0112210512161255</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 11 4 9 -1.</_>
- <_>14 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1800000579096377e-004</threshold>
- <left_val>0.3645769953727722</left_val>
- <right_val>-0.2761090099811554</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 4 9 -1.</_>
- <_>8 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8899999344721437e-004</threshold>
- <left_val>0.1966589987277985</left_val>
- <right_val>-0.5341050028800964</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 18 7 -1.</_>
- <_>9 9 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0934960022568703</threshold>
- <left_val>-1.6772350072860718</left_val>
- <right_val>0.2072709947824478</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 10 -1.</_>
- <_>9 17 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0778779983520508</threshold>
- <left_val>-3.0760629177093506</left_val>
- <right_val>-0.0358039997518063</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169479995965958</threshold>
- <left_val>0.2144739925861359</left_val>
- <right_val>-0.7137629985809326</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0214590001851320</threshold>
- <left_val>-1.1468060016632080</left_val>
- <right_val>0.0158559996634722</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 18 3 -1.</_>
- <_>6 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128659997135401</threshold>
- <left_val>0.8381239771842957</left_val>
- <right_val>-0.0659440010786057</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 18 3 -1.</_>
- <_>1 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8220004215836525e-003</threshold>
- <left_val>-0.2802680134773254</left_val>
- <right_val>0.7937690019607544</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 11 12 -1.</_>
- <_>10 12 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1029440015554428</threshold>
- <left_val>0.1783230006694794</left_val>
- <right_val>-0.6841220259666443</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 6 -1.</_>
- <_>5 6 7 3 2.</_>
- <_>12 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0374879986047745</threshold>
- <left_val>0.9618999958038330</left_val>
- <right_val>-0.2173559963703156</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 15 4 -1.</_>
- <_>5 6 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0255059991031885</threshold>
- <left_val>0.0101039996370673</left_val>
- <right_val>1.2461110353469849</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 2 -1.</_>
- <_>0 1 22 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6700001480057836e-004</threshold>
- <left_val>-0.5348820090293884</left_val>
- <right_val>0.1474629938602448</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 24 -1.</_>
- <_>8 0 8 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2886790037155151</threshold>
- <left_val>0.8217279911041260</left_val>
- <right_val>-0.0149480002000928</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 18 4 -1.</_>
- <_>10 15 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0912949964404106</threshold>
- <left_val>-0.1960539966821671</left_val>
- <right_val>1.0803170204162598</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 12 9 -1.</_>
- <_>6 11 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1205660030245781</threshold>
- <left_val>-0.0238489992916584</left_val>
- <right_val>1.1392610073089600</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 7 12 -1.</_>
- <_>4 16 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0737750008702278</threshold>
- <left_val>-1.3583840131759644</left_val>
- <right_val>-4.2039998807013035e-003</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 22 6 -1.</_>
- <_>12 2 11 3 2.</_>
- <_>1 5 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331280007958412</threshold>
- <left_val>-0.6448320150375366</left_val>
- <right_val>0.2414219975471497</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 14 3 -1.</_>
- <_>12 20 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0439370013773441</threshold>
- <left_val>0.8428540229797363</left_val>
- <right_val>-0.2062480002641678</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 16 -1.</_>
- <_>12 0 12 8 2.</_>
- <_>0 8 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1811019927263260</threshold>
- <left_val>0.1921209990978241</left_val>
- <right_val>-1.2222139835357666</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 18 4 -1.</_>
- <_>3 13 9 2 2.</_>
- <_>12 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118509996682405</threshold>
- <left_val>-0.7267739772796631</left_val>
- <right_val>0.0526879988610744</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 22 2 -1.</_>
- <_>2 11 22 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5920000411570072e-003</threshold>
- <left_val>-0.3630520105361939</left_val>
- <right_val>0.2922379970550537</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 11 8 -1.</_>
- <_>6 7 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0620002225041389e-003</threshold>
- <left_val>0.0581160001456738</left_val>
- <right_val>-0.6716160178184509</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 6 -1.</_>
- <_>14 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237150005996227</threshold>
- <left_val>0.4714210033416748</left_val>
- <right_val>0.0185800008475780</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 24 6 -1.</_>
- <_>0 9 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0671719983220100</threshold>
- <left_val>-1.1331889629364014</left_val>
- <right_val>0.0237809997051954</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 10 10 -1.</_>
- <_>19 0 5 5 2.</_>
- <_>14 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0653100013732910</threshold>
- <left_val>0.9825350046157837</left_val>
- <right_val>0.0283620003610849</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 10 -1.</_>
- <_>0 0 5 5 2.</_>
- <_>5 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227910000830889</threshold>
- <left_val>-0.2821370065212250</left_val>
- <right_val>0.5899339914321899</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 4 -1.</_>
- <_>12 1 12 2 2.</_>
- <_>0 3 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190379992127419</threshold>
- <left_val>-0.6371150016784668</left_val>
- <right_val>0.2651459872722626</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8689999170601368e-003</threshold>
- <left_val>0.3748730123043060</left_val>
- <right_val>-0.3323209881782532</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 16 6 -1.</_>
- <_>13 15 8 3 2.</_>
- <_>5 18 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0401460006833076</threshold>
- <left_val>-1.3048729896545410</left_val>
- <right_val>0.1572429984807968</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 16 6 -1.</_>
- <_>3 15 8 3 2.</_>
- <_>11 18 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0405309982597828</threshold>
- <left_val>-2.0458049774169922</left_val>
- <right_val>-0.0269259996712208</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122539997100830</threshold>
- <left_val>0.7764940261840820</left_val>
- <right_val>-0.0429710000753403</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 21 10 -1.</_>
- <_>0 18 21 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272199995815754</threshold>
- <left_val>0.1742440015077591</left_val>
- <right_val>-0.4460090100765228</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 24 -1.</_>
- <_>15 0 2 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0883660018444061</threshold>
- <left_val>-1.5036419630050659</left_val>
- <right_val>0.1428990066051483</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 11 -1.</_>
- <_>9 4 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9159997403621674e-003</threshold>
- <left_val>0.2866669893264771</left_val>
- <right_val>-0.3792369961738586</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 9 6 -1.</_>
- <_>12 5 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0419600009918213</threshold>
- <left_val>1.3846950531005859</left_val>
- <right_val>0.0650269985198975</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 2 20 -1.</_>
- <_>1 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0456629991531372</threshold>
- <left_val>-0.2245229929685593</left_val>
- <right_val>0.7952100038528442</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 24 -1.</_>
- <_>15 0 2 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1409060060977936</threshold>
- <left_val>-1.5879319906234741</left_val>
- <right_val>0.1135900020599365</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 24 -1.</_>
- <_>7 0 2 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0592160001397133</threshold>
- <left_val>-1.1945960521697998</left_val>
- <right_val>-7.1640000678598881e-003</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 6 14 -1.</_>
- <_>19 7 3 7 2.</_>
- <_>16 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3390002101659775e-003</threshold>
- <left_val>-0.1552869975566864</left_val>
- <right_val>0.4066449999809265</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 4 12 -1.</_>
- <_>6 7 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0369999110698700e-003</threshold>
- <left_val>0.2592790126800537</left_val>
- <right_val>-0.3836829960346222</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 24 14 -1.</_>
- <_>8 5 8 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2751649916172028</threshold>
- <left_val>-0.0884979963302612</left_val>
- <right_val>0.7678750157356262</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 10 6 -1.</_>
- <_>5 15 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0266019999980927</threshold>
- <left_val>0.7502449750900269</left_val>
- <right_val>-0.2262199968099594</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0409060008823872</threshold>
- <left_val>0.1215860024094582</left_val>
- <right_val>-1.4566910266876221</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 6 14 -1.</_>
- <_>2 7 3 7 2.</_>
- <_>5 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5320002138614655e-003</threshold>
- <left_val>-0.3661150038242340</left_val>
- <right_val>0.2596859931945801</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 2 9 15 -1.</_>
- <_>18 2 3 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318790003657341</threshold>
- <left_val>-0.0750190019607544</left_val>
- <right_val>0.4848479926586151</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 9 -1.</_>
- <_>2 2 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414820015430450</threshold>
- <left_val>0.7822039723396301</left_val>
- <right_val>-0.2199220061302185</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 10 14 -1.</_>
- <_>17 2 5 7 2.</_>
- <_>12 9 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0961309969425201</threshold>
- <left_val>-0.8945630192756653</left_val>
- <right_val>0.1468070000410080</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 2 18 -1.</_>
- <_>12 6 1 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115689998492599</threshold>
- <left_val>0.8271409869194031</left_val>
- <right_val>-0.2027560025453568</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 15 6 -1.</_>
- <_>14 5 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183129999786615</threshold>
- <left_val>0.0163679998368025</left_val>
- <right_val>0.2730680108070374</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 10 -1.</_>
- <_>10 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0341660007834435</threshold>
- <left_val>1.1307320594787598</left_val>
- <right_val>-0.1881089955568314</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244769994169474</threshold>
- <left_val>-0.5779129862785339</left_val>
- <right_val>0.1581249982118607</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 9 7 -1.</_>
- <_>6 3 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0489570014178753</threshold>
- <left_val>-0.0225649997591972</left_val>
- <right_val>-1.6373280286788940</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 14 3 -1.</_>
- <_>6 7 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207029990851879</threshold>
- <left_val>-0.5451210141181946</left_val>
- <right_val>0.2408699989318848</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 8 6 -1.</_>
- <_>11 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0230020005255938</threshold>
- <left_val>-1.2236540317535400</left_val>
- <right_val>-7.3440000414848328e-003</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 7 12 -1.</_>
- <_>12 13 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0645850002765656</threshold>
- <left_val>0.1469559967517853</left_val>
- <right_val>-0.4496749937534332</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>10 6 2 9 2.</_>
- <_>12 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126660000532866</threshold>
- <left_val>-0.2787390053272247</left_val>
- <right_val>0.4387660026550293</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 14 6 9 -1.</_>
- <_>16 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120029998943210</threshold>
- <left_val>-0.2428909987211227</left_val>
- <right_val>0.2535009980201721</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 13 -1.</_>
- <_>6 0 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264439992606640</threshold>
- <left_val>-0.8586480021476746</left_val>
- <right_val>0.0260259993374348</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 21 3 -1.</_>
- <_>9 2 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255479998886585</threshold>
- <left_val>0.6928790211677551</left_val>
- <right_val>-2.1160000469535589e-003</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 5 12 -1.</_>
- <_>5 8 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0391150005161762</threshold>
- <left_val>-0.1658910065889359</left_val>
- <right_val>1.5209139585494995</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 4 10 -1.</_>
- <_>10 8 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0330000706017017e-003</threshold>
- <left_val>0.4385690093040466</left_val>
- <right_val>-0.2161370068788528</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 5 8 -1.</_>
- <_>8 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0339369997382164</threshold>
- <left_val>-0.9799839854240418</left_val>
- <right_val>0.0221330001950264</right_val></_></_></trees>
- <stage_threshold>-3.6478610038757324</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 11 9 -1.</_>
- <_>6 3 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0406729988753796</threshold>
- <left_val>-0.9047470092773438</left_val>
- <right_val>0.6441059708595276</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 5 -1.</_>
- <_>10 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0256099998950958</threshold>
- <left_val>-0.7921699881553650</left_val>
- <right_val>0.5748999714851379</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 5 -1.</_>
- <_>8 0 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1995950043201447</threshold>
- <left_val>-0.3009960055351257</left_val>
- <right_val>1.3143850564956665</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 23 6 -1.</_>
- <_>1 12 23 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124049996957183</threshold>
- <left_val>-0.8988299965858460</left_val>
- <right_val>0.2920579910278320</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>9 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0392079986631870</threshold>
- <left_val>-0.4195519983768463</left_val>
- <right_val>0.5346329808235169</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 21 6 -1.</_>
- <_>3 8 21 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0308439992368221</threshold>
- <left_val>0.4579339921474457</left_val>
- <right_val>-0.4462909996509552</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 6 12 -1.</_>
- <_>2 5 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0355230011045933</threshold>
- <left_val>0.9131050109863281</left_val>
- <right_val>-0.2737320065498352</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0616500005125999</threshold>
- <left_val>-1.4697799682617187</left_val>
- <right_val>0.2036409974098206</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 8 10 -1.</_>
- <_>8 12 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117399999871850</threshold>
- <left_val>-1.0482879877090454</left_val>
- <right_val>0.0678019970655441</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 15 12 -1.</_>
- <_>10 7 5 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0669339969754219</threshold>
- <left_val>0.2927449941635132</left_val>
- <right_val>-0.5228289961814880</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 10 6 -1.</_>
- <_>0 19 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206310003995895</threshold>
- <left_val>-1.2855139970779419</left_val>
- <right_val>0.0445509999990463</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 18 9 6 -1.</_>
- <_>14 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223570000380278</threshold>
- <left_val>-0.8575379848480225</left_val>
- <right_val>0.1843400001525879</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 16 -1.</_>
- <_>9 14 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1500000255182385e-003</threshold>
- <left_val>0.1640550047159195</left_val>
- <right_val>-0.6912500262260437</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 18 9 6 -1.</_>
- <_>14 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358729995787144</threshold>
- <left_val>0.1575649976730347</left_val>
- <right_val>-0.8426259756088257</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 9 6 -1.</_>
- <_>1 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0306599996984005</threshold>
- <left_val>0.0216370001435280</left_val>
- <right_val>-1.3634690046310425</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 9 9 6 -1.</_>
- <_>15 11 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5559999309480190e-003</threshold>
- <left_val>-0.1673700064420700</left_val>
- <right_val>0.2588840126991272</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 9 6 -1.</_>
- <_>0 11 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1160000041127205e-003</threshold>
- <left_val>-0.9727180004119873</left_val>
- <right_val>0.0661000013351440</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 3 6 9 -1.</_>
- <_>19 3 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0303169991821051</threshold>
- <left_val>0.9847419857978821</left_val>
- <right_val>-0.0164480004459620</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 18 3 -1.</_>
- <_>2 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7200004383921623e-003</threshold>
- <left_val>0.4760470092296600</left_val>
- <right_val>-0.3251670002937317</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 21 6 -1.</_>
- <_>3 17 21 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0571269989013672</threshold>
- <left_val>-0.9592069983482361</left_val>
- <right_val>0.1993820071220398</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 6 6 -1.</_>
- <_>9 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0059997700154781e-003</threshold>
- <left_val>-0.5261250138282776</left_val>
- <right_val>0.2242870032787323</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 3 6 9 -1.</_>
- <_>18 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0337340012192726</threshold>
- <left_val>0.1707009971141815</left_val>
- <right_val>-1.0737580060958862</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 9 -1.</_>
- <_>0 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346419997513294</threshold>
- <left_val>-1.1343129873275757</left_val>
- <right_val>0.0365400016307831</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 16 10 -1.</_>
- <_>12 0 8 5 2.</_>
- <_>4 5 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0469230003654957</threshold>
- <left_val>0.2583230137825012</left_val>
- <right_val>-0.7153580188751221</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 10 16 -1.</_>
- <_>2 0 5 8 2.</_>
- <_>7 8 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7660001590847969e-003</threshold>
- <left_val>0.1964090019464493</left_val>
- <right_val>-0.5335509777069092</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 10 5 -1.</_>
- <_>14 0 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0656279996037483</threshold>
- <left_val>-0.0511949993669987</left_val>
- <right_val>0.9761070013046265</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 5 -1.</_>
- <_>5 0 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441650003194809</threshold>
- <left_val>1.0631920099258423</left_val>
- <right_val>-0.2346259951591492</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 3 6 10 -1.</_>
- <_>18 3 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0173049997538328</threshold>
- <left_val>-0.1858289986848831</left_val>
- <right_val>0.4588989913463593</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 12 6 -1.</_>
- <_>5 11 6 3 2.</_>
- <_>11 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0331359989941120</threshold>
- <left_val>-0.0293819997459650</left_val>
- <right_val>-2.6651329994201660</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>21 0 3 18 -1.</_>
- <_>22 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210299994796515</threshold>
- <left_val>0.9997990131378174</left_val>
- <right_val>0.0249370001256466</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297839995473623</threshold>
- <left_val>-0.0296059995889664</left_val>
- <right_val>-2.1695868968963623</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 9 7 -1.</_>
- <_>11 8 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0552919991314411</threshold>
- <left_val>-7.5599999399855733e-004</left_val>
- <right_val>0.7465199828147888</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 8 10 -1.</_>
- <_>7 12 4 5 2.</_>
- <_>11 17 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0335979983210564</threshold>
- <left_val>-1.5274159908294678</left_val>
- <right_val>0.0110600003972650</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>21 0 3 18 -1.</_>
- <_>22 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0196029990911484</threshold>
- <left_val>0.0335749983787537</left_val>
- <right_val>0.9952620267868042</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>12 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207870006561279</threshold>
- <left_val>0.7661290168762207</left_val>
- <right_val>-0.2467080056667328</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 9 6 -1.</_>
- <_>15 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0325360000133514</threshold>
- <left_val>0.1626340001821518</left_val>
- <right_val>-0.6113430261611939</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 3 -1.</_>
- <_>0 3 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107880001887679</threshold>
- <left_val>-0.9783970117568970</left_val>
- <right_val>0.0289699994027615</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 6 9 -1.</_>
- <_>13 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9560003727674484e-003</threshold>
- <left_val>0.4614579975605011</left_val>
- <right_val>-0.1351049989461899</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 10 -1.</_>
- <_>9 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7489999085664749e-003</threshold>
- <left_val>0.2545819878578186</left_val>
- <right_val>-0.5195559859275818</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 6 12 -1.</_>
- <_>14 1 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417799986898899</threshold>
- <left_val>-0.8056510090827942</left_val>
- <right_val>0.1520850062370300</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 12 -1.</_>
- <_>6 10 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0342210009694099</threshold>
- <left_val>-1.3137799501419067</left_val>
- <right_val>-3.5800000187009573e-003</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 2 21 -1.</_>
- <_>14 3 1 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101300003007054</threshold>
- <left_val>0.2017579972743988</left_val>
- <right_val>-0.6133959889411926</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 8 -1.</_>
- <_>6 5 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0898490026593208</threshold>
- <left_val>0.9763280153274536</left_val>
- <right_val>-0.2088479995727539</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 8 -1.</_>
- <_>3 4 18 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0260979998856783</threshold>
- <left_val>-0.1880799978971481</left_val>
- <right_val>0.4770579934120178</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 3 -1.</_>
- <_>3 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7539999466389418e-003</threshold>
- <left_val>-0.6798040270805359</left_val>
- <right_val>0.1128880009055138</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 24 4 -1.</_>
- <_>12 13 12 2 2.</_>
- <_>0 15 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319730006158352</threshold>
- <left_val>0.1895170062780380</left_val>
- <right_val>-1.4967479705810547</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 9 -1.</_>
- <_>12 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0193329993635416</threshold>
- <left_val>-0.2360990047454834</left_val>
- <right_val>0.8132050037384033</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 6 9 -1.</_>
- <_>13 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9490000559017062e-003</threshold>
- <left_val>0.2483039945363998</left_val>
- <right_val>-0.0692119970917702</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 6 22 -1.</_>
- <_>8 2 2 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441469997167587</threshold>
- <left_val>-1.0418920516967773</left_val>
- <right_val>0.0480530001223087</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 10 8 14 -1.</_>
- <_>20 10 4 7 2.</_>
- <_>16 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446819998323917</threshold>
- <left_val>0.5134630203247070</left_val>
- <right_val>-7.3799998499453068e-003</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 16 15 -1.</_>
- <_>3 9 16 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1075749993324280</threshold>
- <left_val>1.6202019453048706</left_val>
- <right_val>-0.1866759955883026</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 10 8 14 -1.</_>
- <_>20 10 4 7 2.</_>
- <_>16 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1284680068492889</threshold>
- <left_val>2.9869480133056641</left_val>
- <right_val>0.0954279974102974</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 8 14 -1.</_>
- <_>0 10 4 7 2.</_>
- <_>4 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0447579994797707</threshold>
- <left_val>0.6040530204772949</left_val>
- <right_val>-0.2705869972705841</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 11 6 -1.</_>
- <_>10 17 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0439909994602203</threshold>
- <left_val>-0.6179050207138062</left_val>
- <right_val>0.1599719971418381</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 24 9 -1.</_>
- <_>8 7 8 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1226899996399880</threshold>
- <left_val>0.6632720232009888</left_val>
- <right_val>-0.2363699972629547</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 16 -1.</_>
- <_>13 1 2 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199829991906881</threshold>
- <left_val>-1.1228660345077515</left_val>
- <right_val>0.1961670070886612</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 16 -1.</_>
- <_>9 1 2 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155279999598861</threshold>
- <left_val>-1.0770269632339478</left_val>
- <right_val>0.0206930004060268</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 16 8 -1.</_>
- <_>13 5 8 4 2.</_>
- <_>5 9 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0489710010588169</threshold>
- <left_val>0.8116829991340637</left_val>
- <right_val>-0.0172520000487566</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 6 9 -1.</_>
- <_>0 12 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0559759996831417</threshold>
- <left_val>-0.0225290004163980</left_val>
- <right_val>-1.7356760501861572</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8580000922083855e-003</threshold>
- <left_val>0.6788139939308167</left_val>
- <right_val>-0.0581800006330013</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 9 -1.</_>
- <_>3 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134810004383326</threshold>
- <left_val>0.0578479990363121</left_val>
- <right_val>-0.7725530266761780</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 9 6 -1.</_>
- <_>8 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5609999001026154e-003</threshold>
- <left_val>-0.1314689964056015</left_val>
- <right_val>0.6705579757690430</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 8 10 -1.</_>
- <_>2 13 4 5 2.</_>
- <_>6 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1149999275803566e-003</threshold>
- <left_val>-0.3788059949874878</left_val>
- <right_val>0.3097899854183197</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 3 18 -1.</_>
- <_>15 11 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8159998841583729e-003</threshold>
- <left_val>-0.5847039818763733</left_val>
- <right_val>0.2560209929943085</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 18 3 -1.</_>
- <_>3 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5319999381899834e-003</threshold>
- <left_val>-0.3021700084209442</left_val>
- <right_val>0.4125329852104187</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 5 6 11 -1.</_>
- <_>19 5 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0274749994277954</threshold>
- <left_val>0.5915470123291016</left_val>
- <right_val>0.0179639998823404</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 6 11 -1.</_>
- <_>3 5 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0395199991762638</threshold>
- <left_val>0.9691349864006043</left_val>
- <right_val>-0.2102030068635941</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 1 4 9 -1.</_>
- <_>19 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306589994579554</threshold>
- <left_val>0.9115589857101440</left_val>
- <right_val>0.0405500009655952</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 4 9 -1.</_>
- <_>3 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4680000022053719e-003</threshold>
- <left_val>-0.6048979759216309</left_val>
- <right_val>0.1696089953184128</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 18 9 -1.</_>
- <_>4 15 9 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1907760053873062</threshold>
- <left_val>0.0435150004923344</left_val>
- <right_val>0.8189290165901184</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 12 4 -1.</_>
- <_>6 11 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1790000870823860e-003</threshold>
- <left_val>-0.9361730217933655</left_val>
- <right_val>0.0249370001256466</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 2 9 6 -1.</_>
- <_>15 4 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0241260007023811</threshold>
- <left_val>0.1817550063133240</left_val>
- <right_val>-0.3418590128421783</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 9 6 -1.</_>
- <_>0 4 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0263839997351170</threshold>
- <left_val>-1.2912579774856567</left_val>
- <right_val>-3.4280000254511833e-003</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 17 -1.</_>
- <_>17 0 2 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4139997810125351e-003</threshold>
- <left_val>-0.0462919995188713</left_val>
- <right_val>0.2526960074901581</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 17 -1.</_>
- <_>5 0 2 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0542160011827946</threshold>
- <left_val>-0.0128480000421405</left_val>
- <right_val>-1.4304540157318115</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 17 9 4 -1.</_>
- <_>8 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3799999326001853e-004</threshold>
- <left_val>-0.2667669951915741</left_val>
- <right_val>0.3358829915523529</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 3 18 -1.</_>
- <_>6 11 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152169996872544</threshold>
- <left_val>-0.5136730074882507</left_val>
- <right_val>0.1300510019063950</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 14 12 -1.</_>
- <_>5 8 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170079991221428</threshold>
- <left_val>0.4157589972019196</left_val>
- <right_val>-0.3124119937419891</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 3 12 -1.</_>
- <_>10 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0304969996213913</threshold>
- <left_val>-0.2482099980115891</left_val>
- <right_val>0.7082849740982056</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 14 15 -1.</_>
- <_>10 12 14 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5430002287030220e-003</threshold>
- <left_val>-0.2263700067996979</left_val>
- <right_val>0.1918459981679916</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 14 15 -1.</_>
- <_>0 12 14 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1416399925947189</threshold>
- <left_val>0.0652270019054413</left_val>
- <right_val>-0.8880950212478638</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 9 6 -1.</_>
- <_>15 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0193380005657673</threshold>
- <left_val>0.1889120042324066</left_val>
- <right_val>-0.2739770114421845</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 9 6 -1.</_>
- <_>0 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173240005970001</threshold>
- <left_val>-0.9486669898033142</left_val>
- <right_val>0.0241969991475344</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 14 -1.</_>
- <_>14 6 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2069999985396862e-003</threshold>
- <left_val>0.3693839907646179</left_val>
- <right_val>-0.1749490052461624</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 6 9 -1.</_>
- <_>11 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161090008914471</threshold>
- <left_val>0.9615949988365173</left_val>
- <right_val>-0.2000530064105988</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 15 -1.</_>
- <_>14 6 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1012250036001205</threshold>
- <left_val>-3.0699110031127930</left_val>
- <right_val>0.1136379987001419</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 15 -1.</_>
- <_>8 6 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5509999878704548e-003</threshold>
- <left_val>0.2292100042104721</left_val>
- <right_val>-0.4564509987831116</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 3 8 9 -1.</_>
- <_>15 3 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0442479997873306</threshold>
- <left_val>-3.1599999056197703e-004</left_val>
- <right_val>0.3922530114650726</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 9 21 -1.</_>
- <_>3 0 3 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1163600012660027</threshold>
- <left_val>0.9523370265960693</left_val>
- <right_val>-0.2020159959793091</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 8 12 -1.</_>
- <_>11 13 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7360002063214779e-003</threshold>
- <left_val>-0.0991770029067993</left_val>
- <right_val>0.2037049978971481</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 10 12 -1.</_>
- <_>6 7 5 6 2.</_>
- <_>11 13 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224590003490448</threshold>
- <left_val>8.7280003353953362e-003</left_val>
- <right_val>-1.0217070579528809</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>12 6 2 9 2.</_>
- <_>10 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0121090002357960</threshold>
- <left_val>0.6481260061264038</left_val>
- <right_val>-0.0901490002870560</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 9 -1.</_>
- <_>0 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0561200007796288</threshold>
- <left_val>-0.0367599986493587</left_val>
- <right_val>-1.9275590181350708</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 18 3 -1.</_>
- <_>3 15 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7379999458789825e-003</threshold>
- <left_val>0.6926130056381226</left_val>
- <right_val>-0.0683749988675117</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 8 10 -1.</_>
- <_>3 14 4 5 2.</_>
- <_>7 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6399998031556606e-003</threshold>
- <left_val>-0.4056980013847351</left_val>
- <right_val>0.1862570047378540</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 24 4 -1.</_>
- <_>12 12 12 2 2.</_>
- <_>0 14 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181319992989302</threshold>
- <left_val>-0.6451820135116577</left_val>
- <right_val>0.2197639942169190</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 3 20 -1.</_>
- <_>1 2 1 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227189995348454</threshold>
- <left_val>0.9777619838714600</left_val>
- <right_val>-0.1865430027246475</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 10 8 -1.</_>
- <_>17 16 5 4 2.</_>
- <_>12 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127050001174212</threshold>
- <left_val>-0.1054660007357597</left_val>
- <right_val>0.3740409910678864</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 10 8 -1.</_>
- <_>2 16 5 4 2.</_>
- <_>7 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136829996481538</threshold>
- <left_val>0.6106410026550293</left_val>
- <right_val>-0.2688109874725342</right_val></_></_></trees>
- <stage_threshold>-3.8700489997863770</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 9 -1.</_>
- <_>7 3 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313579998910427</threshold>
- <left_val>-1.0183910131454468</left_val>
- <right_val>0.5752859711647034</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 3 -1.</_>
- <_>8 0 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0930500030517578</threshold>
- <left_val>-0.4129750132560730</left_val>
- <right_val>1.0091199874877930</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 15 4 -1.</_>
- <_>3 10 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259499996900558</threshold>
- <left_val>-0.5858790278434753</left_val>
- <right_val>0.5660619735717773</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 6 -1.</_>
- <_>10 5 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164720006287098</threshold>
- <left_val>-0.9285749793052673</left_val>
- <right_val>0.3092449903488159</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 14 6 -1.</_>
- <_>5 16 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8779999809339643e-003</threshold>
- <left_val>0.1195100024342537</left_val>
- <right_val>-1.1180130243301392</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 4 10 -1.</_>
- <_>11 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0129999443888664e-003</threshold>
- <left_val>-0.5784950256347656</left_val>
- <right_val>0.3315440118312836</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 6 7 -1.</_>
- <_>3 6 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0225479993969202</threshold>
- <left_val>-0.3832510113716126</left_val>
- <right_val>0.5246220231056213</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 6 6 -1.</_>
- <_>18 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0377800017595291</threshold>
- <left_val>1.1790670156478882</left_val>
- <right_val>-0.0341669991612434</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 3 -1.</_>
- <_>3 2 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3799999877810478e-003</threshold>
- <left_val>-0.8626589775085449</left_val>
- <right_val>0.1186790019273758</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 14 18 -1.</_>
- <_>9 12 14 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238930005580187</threshold>
- <left_val>-0.7495059967041016</left_val>
- <right_val>0.2101140022277832</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 6 -1.</_>
- <_>3 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265219993889332</threshold>
- <left_val>0.9212859869003296</left_val>
- <right_val>-0.2825280129909515</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 6 -1.</_>
- <_>13 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122800003737211</threshold>
- <left_val>0.2666279971599579</left_val>
- <right_val>-0.7001360058784485</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 24 3 -1.</_>
- <_>8 20 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0965949967503548</threshold>
- <left_val>-0.2845399975776672</left_val>
- <right_val>0.7316899895668030</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 7 -1.</_>
- <_>13 11 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0274149999022484</threshold>
- <left_val>-0.6149269938468933</left_val>
- <right_val>0.1557620018720627</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 10 6 -1.</_>
- <_>4 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157670006155968</threshold>
- <left_val>0.5755119919776917</left_val>
- <right_val>-0.3436219990253449</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 6 -1.</_>
- <_>13 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1100000012665987e-003</threshold>
- <left_val>0.3259969949722290</left_val>
- <right_val>-0.1300829946994782</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 7 -1.</_>
- <_>8 11 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120069999247789</threshold>
- <left_val>0.0893229991197586</left_val>
- <right_val>-0.9602559804916382</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 11 12 -1.</_>
- <_>7 8 11 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154219996184111</threshold>
- <left_val>0.3444949984550476</left_val>
- <right_val>-0.4671199917793274</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 10 4 -1.</_>
- <_>6 17 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1579999960958958e-003</threshold>
- <left_val>0.2369630038738251</left_val>
- <right_val>-0.5256329774856567</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 9 -1.</_>
- <_>16 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211859997361898</threshold>
- <left_val>-0.7426769733428955</left_val>
- <right_val>0.2170200049877167</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 9 -1.</_>
- <_>6 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170770008116961</threshold>
- <left_val>-0.9047179818153381</left_val>
- <right_val>0.0660120025277138</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 15 -1.</_>
- <_>11 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0408499985933304</threshold>
- <left_val>-0.3444660007953644</left_val>
- <right_val>0.2150370031595230</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 20 3 -1.</_>
- <_>0 1 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1930002197623253e-003</threshold>
- <left_val>-0.9338859915733337</left_val>
- <right_val>0.0504710003733635</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 18 10 6 -1.</_>
- <_>13 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192380007356405</threshold>
- <left_val>-0.5320370197296143</left_val>
- <right_val>0.1724060028791428</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 6 11 -1.</_>
- <_>5 7 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441920012235641</threshold>
- <left_val>0.9207500219345093</left_val>
- <right_val>-0.2214850038290024</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 10 9 -1.</_>
- <_>10 17 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0623920001089573</threshold>
- <left_val>-0.7105380296707153</left_val>
- <right_val>0.1832389980554581</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 9 -1.</_>
- <_>10 2 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0079999919980764e-003</threshold>
- <left_val>-0.8706309795379639</left_val>
- <right_val>0.0553300008177757</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 10 4 -1.</_>
- <_>14 3 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238700006157160</threshold>
- <left_val>-0.2285420000553131</left_val>
- <right_val>0.5241559743881226</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 6 -1.</_>
- <_>6 6 6 3 2.</_>
- <_>12 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213910005986691</threshold>
- <left_val>-0.3032589852809906</left_val>
- <right_val>0.5586060285568237</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 8 10 -1.</_>
- <_>12 8 4 5 2.</_>
- <_>8 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202549993991852</threshold>
- <left_val>0.2690150141716003</left_val>
- <right_val>-0.7026180028915405</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 16 -1.</_>
- <_>7 12 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0287720002233982</threshold>
- <left_val>-1.1835030317306519</left_val>
- <right_val>0.0465120002627373</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 9 4 -1.</_>
- <_>8 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4199999645352364e-003</threshold>
- <left_val>-0.5465210080146790</left_val>
- <right_val>0.2596249878406525</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 14 9 -1.</_>
- <_>5 5 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0569830015301704</threshold>
- <left_val>-0.2698290050029755</left_val>
- <right_val>0.5817070007324219</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 19 8 -1.</_>
- <_>3 20 19 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0938920006155968</threshold>
- <left_val>-0.9104639887809753</left_val>
- <right_val>0.1967770010232925</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 8 -1.</_>
- <_>5 0 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176999997347593</threshold>
- <left_val>-0.4400329887866974</left_val>
- <right_val>0.2134950011968613</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 16 18 -1.</_>
- <_>5 2 8 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2284419983625412</threshold>
- <left_val>0.0236050002276897</left_val>
- <right_val>0.7717159986495972</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 24 11 -1.</_>
- <_>8 11 8 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1828750073909760</threshold>
- <left_val>0.7922859787940979</left_val>
- <right_val>-0.2464479953050613</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 18 5 -1.</_>
- <_>3 3 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0698919966816902</threshold>
- <left_val>0.8026779890060425</left_val>
- <right_val>-0.0360720008611679</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 18 3 -1.</_>
- <_>1 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152970002964139</threshold>
- <left_val>-0.2007230073213577</left_val>
- <right_val>1.1030600070953369</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 18 3 -1.</_>
- <_>5 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7500001750886440e-003</threshold>
- <left_val>-0.0459679998457432</left_val>
- <right_val>0.7209450006484985</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 9 6 -1.</_>
- <_>1 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0159830003976822</threshold>
- <left_val>-0.9035720229148865</left_val>
- <right_val>0.0449879989027977</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 23 10 -1.</_>
- <_>1 14 23 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130880000069737</threshold>
- <left_val>0.3529709875583649</left_val>
- <right_val>-0.3771060109138489</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 3 -1.</_>
- <_>3 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130610000342131</threshold>
- <left_val>-0.1958359926939011</left_val>
- <right_val>1.1198940277099609</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 12 3 -1.</_>
- <_>6 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0399070009589195</threshold>
- <left_val>-1.3998429775238037</left_val>
- <right_val>0.1914509981870651</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 3 22 -1.</_>
- <_>7 2 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150269996374846</threshold>
- <left_val>2.3600000422447920e-003</left_val>
- <right_val>-1.1611249446868896</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 17 10 6 -1.</_>
- <_>14 19 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205179993063211</threshold>
- <left_val>-0.4890809953212738</left_val>
- <right_val>0.1674340069293976</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 10 6 -1.</_>
- <_>1 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223590005189180</threshold>
- <left_val>-1.2202980518341064</left_val>
- <right_val>-0.0119759999215603</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 6 12 -1.</_>
- <_>13 3 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9150004312396049e-003</threshold>
- <left_val>0.3722809851169586</left_val>
- <right_val>-0.0850630030035973</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>12 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152580002322793</threshold>
- <left_val>-0.2941260039806366</left_val>
- <right_val>0.5940639972686768</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0316659994423389</threshold>
- <left_val>-1.4395569562911987</left_val>
- <right_val>0.1357879936695099</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0307739991694689</threshold>
- <left_val>-2.2545371055603027</left_val>
- <right_val>-0.0339710004627705</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 9 6 -1.</_>
- <_>15 10 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154830003157258</threshold>
- <left_val>0.3770070075988770</left_val>
- <right_val>0.0158479996025562</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 6 9 -1.</_>
- <_>5 11 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0351670011878014</threshold>
- <left_val>-0.2944610118865967</left_val>
- <right_val>0.5315909981727600</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 3 19 -1.</_>
- <_>15 5 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179060008376837</threshold>
- <left_val>-0.9978820085525513</left_val>
- <right_val>0.1623599976301193</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 9 6 -1.</_>
- <_>6 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1799999997019768e-003</threshold>
- <left_val>0.0476570017635822</left_val>
- <right_val>-0.7524989843368530</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 3 19 -1.</_>
- <_>15 5 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157200004905462</threshold>
- <left_val>0.1487379968166351</left_val>
- <right_val>-0.6537539958953857</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 9 -1.</_>
- <_>0 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0298640001565218</threshold>
- <left_val>-0.0149520002305508</left_val>
- <right_val>-1.2275190353393555</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 18 3 -1.</_>
- <_>5 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9899999499320984e-003</threshold>
- <left_val>-0.1426369994878769</left_val>
- <right_val>0.4327279925346375</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 4 -1.</_>
- <_>7 10 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0847499966621399</threshold>
- <left_val>-0.0192809998989105</left_val>
- <right_val>-1.1946409940719604</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 8 10 -1.</_>
- <_>17 4 4 5 2.</_>
- <_>13 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0587249994277954</threshold>
- <left_val>-1.7328219413757324</left_val>
- <right_val>0.1437470018863678</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 9 6 -1.</_>
- <_>10 8 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0447559989988804</threshold>
- <left_val>-0.2414059937000275</left_val>
- <right_val>0.5401999950408936</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 9 8 -1.</_>
- <_>15 9 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0403690002858639</threshold>
- <left_val>5.7680001482367516e-003</left_val>
- <right_val>0.5657809972763062</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 5 12 -1.</_>
- <_>0 10 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0377359986305237</threshold>
- <left_val>0.0381809994578362</left_val>
- <right_val>-0.7937039732933044</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 14 6 -1.</_>
- <_>14 6 7 3 2.</_>
- <_>7 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0607529990375042</threshold>
- <left_val>0.0764530003070831</left_val>
- <right_val>1.4813209772109985</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 3 19 -1.</_>
- <_>8 5 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198320001363754</threshold>
- <left_val>-1.6971720457077026</left_val>
- <right_val>-0.0273700002580881</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 15 20 -1.</_>
- <_>13 4 5 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1659269928932190</threshold>
- <left_val>0.6297600269317627</left_val>
- <right_val>0.0317629985511303</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 15 20 -1.</_>
- <_>6 4 5 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0690149962902069</threshold>
- <left_val>-0.3346320092678070</left_val>
- <right_val>0.3007670044898987</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 6 -1.</_>
- <_>13 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113580003380775</threshold>
- <left_val>0.2274149954319000</left_val>
- <right_val>-0.3822470009326935</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 6 -1.</_>
- <_>8 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7000000225380063e-003</threshold>
- <left_val>0.1922380030155182</left_val>
- <right_val>-0.5273510217666626</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 6 14 -1.</_>
- <_>17 2 3 7 2.</_>
- <_>14 9 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0797690004110336</threshold>
- <left_val>0.0914919972419739</left_val>
- <right_val>2.1049048900604248</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 14 -1.</_>
- <_>4 2 3 7 2.</_>
- <_>7 9 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0571440011262894</threshold>
- <left_val>-1.7452130317687988</left_val>
- <right_val>-0.0409100018441677</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 6 7 -1.</_>
- <_>12 4 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3830001056194305e-003</threshold>
- <left_val>-0.2421479970216751</left_val>
- <right_val>0.3557780086994171</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 6 9 -1.</_>
- <_>11 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0180409997701645</threshold>
- <left_val>1.1779999732971191</left_val>
- <right_val>-0.1767670065164566</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 8 10 -1.</_>
- <_>11 4 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0945030003786087</threshold>
- <left_val>0.1393609941005707</left_val>
- <right_val>-1.2993700504302979</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 8 10 -1.</_>
- <_>9 4 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4210000671446323e-003</threshold>
- <left_val>-0.5460860133171082</left_val>
- <right_val>0.1391640007495880</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 10 6 -1.</_>
- <_>8 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0290002040565014e-003</threshold>
- <left_val>-0.2159720063209534</left_val>
- <right_val>0.3925809860229492</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 21 6 -1.</_>
- <_>1 20 21 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0345159992575645</threshold>
- <left_val>0.0631889998912811</left_val>
- <right_val>-0.7210810184478760</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 12 6 -1.</_>
- <_>9 2 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0519249998033047</threshold>
- <left_val>0.6866760253906250</left_val>
- <right_val>0.0632729977369308</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 12 6 -1.</_>
- <_>9 2 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0691620036959648</threshold>
- <left_val>1.7411810159683228</left_val>
- <right_val>-0.1661929935216904</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 12 6 -1.</_>
- <_>18 5 6 3 2.</_>
- <_>12 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5229999125003815e-003</threshold>
- <left_val>0.3069469928741455</left_val>
- <right_val>-0.1666290014982224</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 6 9 -1.</_>
- <_>8 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0685999989509583</threshold>
- <left_val>-0.2140540033578873</left_val>
- <right_val>0.7318500280380249</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 20 6 -1.</_>
- <_>2 9 20 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0670389980077744</threshold>
- <left_val>-0.7936059832572937</left_val>
- <right_val>0.2052579969167709</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 12 6 -1.</_>
- <_>0 5 6 3 2.</_>
- <_>6 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210050009191036</threshold>
- <left_val>0.3734439909458160</left_val>
- <right_val>-0.2961860001087189</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 8 10 -1.</_>
- <_>18 14 4 5 2.</_>
- <_>14 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202789995819330</threshold>
- <left_val>-0.0152000002563000</left_val>
- <right_val>0.4055530130863190</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 8 10 -1.</_>
- <_>2 14 4 5 2.</_>
- <_>6 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0471079982817173</threshold>
- <left_val>1.2116849422454834</left_val>
- <right_val>-0.1746429949998856</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 20 13 -1.</_>
- <_>2 11 10 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1876849979162216</threshold>
- <left_val>-0.0229090005159378</left_val>
- <right_val>0.6964579820632935</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 12 5 -1.</_>
- <_>12 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0432289987802505</threshold>
- <left_val>-1.0602480173110962</left_val>
- <right_val>-5.5599998449906707e-004</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 16 6 -1.</_>
- <_>13 6 8 3 2.</_>
- <_>5 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200040005147457</threshold>
- <left_val>-0.0327510014176369</left_val>
- <right_val>0.5380510091781616</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 9 4 -1.</_>
- <_>1 21 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0880001187324524e-003</threshold>
- <left_val>0.0375480018556118</left_val>
- <right_val>-0.7476890087127686</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 12 5 -1.</_>
- <_>11 5 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0271010007709265</threshold>
- <left_val>-0.0817900002002716</left_val>
- <right_val>0.3338710069656372</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 14 12 -1.</_>
- <_>3 5 7 6 2.</_>
- <_>10 11 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0917460024356842</threshold>
- <left_val>-1.9213509559631348</left_val>
- <right_val>-0.0389529988169670</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 9 6 -1.</_>
- <_>12 4 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124549996107817</threshold>
- <left_val>0.4836060106754303</left_val>
- <right_val>0.0181680005043745</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 19 3 -1.</_>
- <_>2 7 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146490000188351</threshold>
- <left_val>-0.1990669965744019</left_val>
- <right_val>0.7281540036201477</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 10 6 9 -1.</_>
- <_>18 13 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291019994765520</threshold>
- <left_val>0.1987109929323196</left_val>
- <right_val>-0.4921680092811585</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 2 -1.</_>
- <_>3 8 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7799998000264168e-003</threshold>
- <left_val>-0.1949959993362427</left_val>
- <right_val>0.7731739878654480</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 2 4 18 -1.</_>
- <_>22 2 2 9 2.</_>
- <_>20 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0547400005161762</threshold>
- <left_val>1.8087190389633179</left_val>
- <right_val>0.0683230012655258</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 20 3 -1.</_>
- <_>2 19 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147980004549026</threshold>
- <left_val>0.7806490063667297</left_val>
- <right_val>-0.1870959997177124</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 22 3 -1.</_>
- <_>1 10 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250129997730255</threshold>
- <left_val>0.1528529971837997</left_val>
- <right_val>-1.6021020412445068</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 4 18 -1.</_>
- <_>0 2 2 9 2.</_>
- <_>2 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465480014681816</threshold>
- <left_val>-0.1673820018768311</left_val>
- <right_val>1.1902060508728027</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 0 4 23 -1.</_>
- <_>19 0 2 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176240000873804</threshold>
- <left_val>-0.1028549969196320</left_val>
- <right_val>0.3917590081691742</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 19 -1.</_>
- <_>3 3 3 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1631959974765778</threshold>
- <left_val>-0.0356240011751652</left_val>
- <right_val>-1.6098170280456543</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 9 -1.</_>
- <_>20 2 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131379999220371</threshold>
- <left_val>-0.0563590005040169</left_val>
- <right_val>0.5415890216827393</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 10 6 -1.</_>
- <_>0 7 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156650003045797</threshold>
- <left_val>0.2806310057640076</left_val>
- <right_val>-0.3170860111713409</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 12 -1.</_>
- <_>13 0 6 6 2.</_>
- <_>7 6 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0805540010333061</threshold>
- <left_val>0.1264040023088455</left_val>
- <right_val>-1.0297529697418213</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 6 -1.</_>
- <_>0 3 12 3 2.</_>
- <_>12 6 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0353639982640743</threshold>
- <left_val>0.0207529999315739</left_val>
- <right_val>-0.7910559773445129</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 4 10 -1.</_>
- <_>10 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0329869985580444</threshold>
- <left_val>0.1905709952116013</left_val>
- <right_val>-0.8383989930152893</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 4 15 -1.</_>
- <_>8 14 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121950004249811</threshold>
- <left_val>0.0737290009856224</left_val>
- <right_val>-0.6278070211410523</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 17 6 -1.</_>
- <_>4 14 17 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0430659987032413</threshold>
- <left_val>0.0473849996924400</left_val>
- <right_val>1.5712939500808716</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 18 8 -1.</_>
- <_>2 5 9 4 2.</_>
- <_>11 9 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303269997239113</threshold>
- <left_val>-0.2731460034847260</left_val>
- <right_val>0.3857200145721436</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 14 6 -1.</_>
- <_>14 6 7 3 2.</_>
- <_>7 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0354930013418198</threshold>
- <left_val>0.0545939989387989</left_val>
- <right_val>0.5258340239524841</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 14 6 -1.</_>
- <_>3 6 7 3 2.</_>
- <_>10 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145969996228814</threshold>
- <left_val>0.3815259933471680</left_val>
- <right_val>-0.2833240032196045</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 3 18 -1.</_>
- <_>17 5 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126069998368621</threshold>
- <left_val>0.1545509994029999</left_val>
- <right_val>-0.3050149977207184</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 3 18 -1.</_>
- <_>6 5 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101720001548529</threshold>
- <left_val>0.0236370004713535</left_val>
- <right_val>-0.8721789717674255</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 14 4 -1.</_>
- <_>10 12 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288430005311966</threshold>
- <left_val>0.1609099954366684</left_val>
- <right_val>-0.2027759999036789</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 9 4 -1.</_>
- <_>4 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5100000463426113e-004</threshold>
- <left_val>-0.6154540181159973</left_val>
- <right_val>0.0809359997510910</right_val></_></_></trees>
- <stage_threshold>-3.7160909175872803</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 18 9 -1.</_>
- <_>2 3 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0483440011739731</threshold>
- <left_val>-0.8490459918975830</left_val>
- <right_val>0.5697439908981323</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 12 8 -1.</_>
- <_>10 3 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0324600003659725</threshold>
- <left_val>-0.8141729831695557</left_val>
- <right_val>0.4478169977664948</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 8 5 -1.</_>
- <_>5 1 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0333399996161461</threshold>
- <left_val>-0.3642379939556122</left_val>
- <right_val>0.6793739795684815</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 7 8 -1.</_>
- <_>12 11 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4019998535513878e-003</threshold>
- <left_val>-1.1885459423065186</left_val>
- <right_val>0.1923869997262955</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 22 4 -1.</_>
- <_>0 14 22 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6889997795224190e-003</threshold>
- <left_val>0.3308529853820801</left_val>
- <right_val>-0.7133409976959229</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 4 15 -1.</_>
- <_>15 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126980002969503</threshold>
- <left_val>-0.5099080204963684</left_val>
- <right_val>0.1137629970908165</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 7 8 -1.</_>
- <_>5 11 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0549997724592686e-003</threshold>
- <left_val>-1.0470550060272217</left_val>
- <right_val>0.2022259980440140</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 9 4 -1.</_>
- <_>8 20 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6420000940561295e-003</threshold>
- <left_val>-0.5055940151214600</left_val>
- <right_val>0.3644120097160339</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 22 4 -1.</_>
- <_>1 4 22 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0169259998947382</threshold>
- <left_val>-0.9954190254211426</left_val>
- <right_val>0.1260219961404800</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 3 6 17 -1.</_>
- <_>19 3 2 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0282359998673201</threshold>
- <left_val>-0.0941379964351654</left_val>
- <right_val>0.5778040289878845</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 8 18 -1.</_>
- <_>8 11 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104289995506406</threshold>
- <left_val>0.2327290028333664</left_val>
- <right_val>-0.5256969928741455</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 6 12 -1.</_>
- <_>20 0 3 6 2.</_>
- <_>17 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8860003054141998e-003</threshold>
- <left_val>-0.1031629964709282</left_val>
- <right_val>0.4765760004520416</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0260150004178286</threshold>
- <left_val>-1.0920000495389104e-003</left_val>
- <right_val>-1.5581729412078857</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 9 12 -1.</_>
- <_>15 11 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255379993468523</threshold>
- <left_val>-0.6545140147209168</left_val>
- <right_val>0.1884319931268692</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 18 2 -1.</_>
- <_>2 23 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5310001112520695e-003</threshold>
- <left_val>0.2814059853553772</left_val>
- <right_val>-0.4457530081272125</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 12 6 -1.</_>
- <_>16 10 6 3 2.</_>
- <_>10 13 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2449998483061790e-003</threshold>
- <left_val>0.1561200022697449</left_val>
- <right_val>-0.2137099951505661</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 4 11 -1.</_>
- <_>2 1 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210309997200966</threshold>
- <left_val>-0.2917029857635498</left_val>
- <right_val>0.5223410129547119</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 4 10 -1.</_>
- <_>20 0 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0510630011558533</threshold>
- <left_val>1.3661290407180786</left_val>
- <right_val>0.0304659996181726</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 17 -1.</_>
- <_>3 3 2 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0623300001025200</threshold>
- <left_val>1.2207020521163940</left_val>
- <right_val>-0.2243440002202988</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 6 -1.</_>
- <_>15 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0329630002379417</threshold>
- <left_val>-0.8201680183410645</left_val>
- <right_val>0.1453189998865128</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 8 9 -1.</_>
- <_>0 16 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0374180004000664</threshold>
- <left_val>-1.2218099832534790</left_val>
- <right_val>0.0194489993155003</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 6 12 -1.</_>
- <_>16 12 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1240279972553253</threshold>
- <left_val>0.1208230033516884</left_val>
- <right_val>-0.9872930049896240</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 6 12 -1.</_>
- <_>2 12 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9229997247457504e-003</threshold>
- <left_val>-1.1688489913940430</left_val>
- <right_val>0.0211050007492304</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0598799996078014</threshold>
- <left_val>-1.0689330101013184</left_val>
- <right_val>0.1986020058393478</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 19 3 -1.</_>
- <_>1 6 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2620001845061779e-003</threshold>
- <left_val>-0.3622959852218628</left_val>
- <right_val>0.3800080120563507</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 9 7 -1.</_>
- <_>14 8 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176730006933212</threshold>
- <left_val>0.4909409880638123</left_val>
- <right_val>-0.1460669934749603</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 12 9 -1.</_>
- <_>3 11 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175790004432201</threshold>
- <left_val>0.5872809886932373</left_val>
- <right_val>-0.2777439951896668</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 3 -1.</_>
- <_>3 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1560001447796822e-003</threshold>
- <left_val>-0.0751949995756149</left_val>
- <right_val>0.6019309759140015</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 4 12 -1.</_>
- <_>10 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105999996885657</threshold>
- <left_val>0.2763740122318268</left_val>
- <right_val>-0.3779430091381073</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 18 14 -1.</_>
- <_>3 9 9 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2088409960269928</threshold>
- <left_val>-5.3599998354911804e-003</left_val>
- <right_val>1.0317809581756592</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 4 9 -1.</_>
- <_>2 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264129992574453</threshold>
- <left_val>0.8233640193939209</left_val>
- <right_val>-0.2248059958219528</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 4 18 -1.</_>
- <_>12 5 2 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0588920004665852</threshold>
- <left_val>0.1309829950332642</left_val>
- <right_val>-1.1853699684143066</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 4 18 -1.</_>
- <_>10 5 2 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115790003910661</threshold>
- <left_val>-0.9066780209541321</left_val>
- <right_val>0.0441269986331463</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 10 -1.</_>
- <_>12 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0459880009293556</threshold>
- <left_val>0.0101439999416471</left_val>
- <right_val>1.0740900039672852</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 4 11 -1.</_>
- <_>11 4 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228380002081394</threshold>
- <left_val>1.7791990041732788</left_val>
- <right_val>-0.1731549948453903</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 18 3 -1.</_>
- <_>4 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1709995865821838e-003</threshold>
- <left_val>0.5738630294799805</left_val>
- <right_val>-0.0741060003638268</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 20 3 -1.</_>
- <_>0 17 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5359999164938927e-003</threshold>
- <left_val>-0.3207289874553680</left_val>
- <right_val>0.4018250107765198</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 12 -1.</_>
- <_>9 13 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0494449995458126</threshold>
- <left_val>0.1928800046443939</left_val>
- <right_val>-1.2166700363159180</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 8 8 -1.</_>
- <_>8 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5139999818056822e-003</threshold>
- <left_val>0.0695680007338524</left_val>
- <right_val>-0.7132369875907898</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 3 12 -1.</_>
- <_>13 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0309960003942251</threshold>
- <left_val>-0.3886219859123230</left_val>
- <right_val>0.1809879988431931</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 14 14 -1.</_>
- <_>5 9 7 7 2.</_>
- <_>12 16 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0864529982209206</threshold>
- <left_val>-0.0257929991930723</left_val>
- <right_val>-1.5453219413757324</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 10 -1.</_>
- <_>12 0 12 5 2.</_>
- <_>0 5 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1365260034799576</threshold>
- <left_val>-1.9199420213699341</left_val>
- <right_val>0.1661330014467239</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 18 2 -1.</_>
- <_>1 12 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7689999230206013e-003</threshold>
- <left_val>-1.2822589874267578</left_val>
- <right_val>-0.0159079991281033</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 5 5 12 -1.</_>
- <_>19 9 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178999993950129</threshold>
- <left_val>-0.4040989875793457</left_val>
- <right_val>0.2359160035848618</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 5 12 -1.</_>
- <_>0 9 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199699997901917</threshold>
- <left_val>-0.7289190292358398</left_val>
- <right_val>0.0562350004911423</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 6 8 18 -1.</_>
- <_>20 6 4 9 2.</_>
- <_>16 15 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0574930012226105</threshold>
- <left_val>0.5783079862594605</left_val>
- <right_val>-0.0157960001379251</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 8 18 -1.</_>
- <_>0 6 4 9 2.</_>
- <_>4 15 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0830560028553009</threshold>
- <left_val>0.9151160120964050</left_val>
- <right_val>-0.2112140059471130</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 12 12 -1.</_>
- <_>18 5 6 6 2.</_>
- <_>12 11 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0537710003554821</threshold>
- <left_val>-0.5193129777908325</left_val>
- <right_val>0.1857600063085556</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 9 -1.</_>
- <_>9 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3670001477003098e-003</threshold>
- <left_val>0.2410970032215118</left_val>
- <right_val>-0.3964860141277313</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 6 11 -1.</_>
- <_>11 13 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0554069988429546</threshold>
- <left_val>0.1677120029926300</left_val>
- <right_val>-2.5664970874786377</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 12 12 -1.</_>
- <_>0 5 6 6 2.</_>
- <_>6 11 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0671809986233711</threshold>
- <left_val>-1.3658570051193237</left_val>
- <right_val>-0.0142320003360510</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 23 3 -1.</_>
- <_>1 3 23 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239000003784895</threshold>
- <left_val>-1.7084569931030273</left_val>
- <right_val>0.1650779992341995</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 19 3 -1.</_>
- <_>1 16 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5949999950826168e-003</threshold>
- <left_val>-0.3137399852275848</left_val>
- <right_val>0.3283790051937103</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 17 11 4 -1.</_>
- <_>13 19 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212949998676777</threshold>
- <left_val>0.1495340019464493</left_val>
- <right_val>-0.4857980012893677</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 8 5 -1.</_>
- <_>4 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0246130004525185</threshold>
- <left_val>0.7434639930725098</left_val>
- <right_val>-0.2230519950389862</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 10 4 -1.</_>
- <_>12 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0196260008960962</threshold>
- <left_val>-0.4091829955577850</left_val>
- <right_val>0.1889320015907288</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 9 9 -1.</_>
- <_>4 9 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0532660000026226</threshold>
- <left_val>0.8138160109519959</left_val>
- <right_val>-0.2085369974374771</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 14 9 6 -1.</_>
- <_>15 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1290000341832638e-003</threshold>
- <left_val>0.3299610018730164</left_val>
- <right_val>-0.5993739962577820</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 9 6 -1.</_>
- <_>1 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0224869996309280</threshold>
- <left_val>-1.2551610469818115</left_val>
- <right_val>-0.0204130001366138</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 20 8 -1.</_>
- <_>13 10 10 4 2.</_>
- <_>3 14 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0823109969496727</threshold>
- <left_val>1.3821430206298828</left_val>
- <right_val>0.0593089982867241</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 9 18 -1.</_>
- <_>5 0 3 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1309700012207031</threshold>
- <left_val>-0.0358439981937408</left_val>
- <right_val>-1.5396369695663452</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 9 10 -1.</_>
- <_>16 11 3 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142930001020432</threshold>
- <left_val>-0.1847520023584366</left_val>
- <right_val>0.3745500147342682</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 8 5 -1.</_>
- <_>5 2 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3479999080300331e-003</threshold>
- <left_val>-0.4490109980106354</left_val>
- <right_val>0.1387699991464615</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 21 6 -1.</_>
- <_>10 4 7 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0460550002753735</threshold>
- <left_val>0.6783260107040405</left_val>
- <right_val>-0.0170719996094704</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 14 -1.</_>
- <_>7 0 5 7 2.</_>
- <_>12 7 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0576939992606640</threshold>
- <left_val>-0.0119559997692704</left_val>
- <right_val>-1.2261159420013428</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 12 4 -1.</_>
- <_>12 19 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0609998181462288e-003</threshold>
- <left_val>0.3395859897136688</left_val>
- <right_val>6.2800000887364149e-004</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 23 4 -1.</_>
- <_>0 8 23 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0521630011498928</threshold>
- <left_val>-1.0621069669723511</left_val>
- <right_val>-0.0137799996882677</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 8 10 -1.</_>
- <_>17 10 4 5 2.</_>
- <_>13 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465729981660843</threshold>
- <left_val>0.1453880071640015</left_val>
- <right_val>-1.2384550571441650</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 3 -1.</_>
- <_>0 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5309998355805874e-003</threshold>
- <left_val>-0.2446770071983337</left_val>
- <right_val>0.5137709975242615</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 16 9 4 -1.</_>
- <_>15 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216150004416704</threshold>
- <left_val>0.1307259947061539</left_val>
- <right_val>-0.7099679708480835</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 9 4 -1.</_>
- <_>0 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178640000522137</threshold>
- <left_val>-1.0474660396575928</left_val>
- <right_val>4.9599999329075217e-004</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 6 -1.</_>
- <_>13 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0371950007975101</threshold>
- <left_val>-1.5126730203628540</left_val>
- <right_val>0.1480139940977097</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 6 -1.</_>
- <_>8 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1100001069717109e-004</threshold>
- <left_val>0.1397150009870529</left_val>
- <right_val>-0.4686749875545502</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 6 -1.</_>
- <_>12 3 12 3 2.</_>
- <_>0 6 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250429995357990</threshold>
- <left_val>0.2863200008869171</left_val>
- <right_val>-0.4179469943046570</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 18 3 -1.</_>
- <_>2 5 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3449996784329414e-003</threshold>
- <left_val>-0.2733620107173920</left_val>
- <right_val>0.4344469904899597</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 4 -1.</_>
- <_>12 0 12 2 2.</_>
- <_>0 2 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0323639996349812</threshold>
- <left_val>0.1843889951705933</left_val>
- <right_val>-0.9501929879188538</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 18 3 -1.</_>
- <_>1 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2299999408423901e-003</threshold>
- <left_val>0.3258199989795685</left_val>
- <right_val>-0.3081560134887695</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 6 -1.</_>
- <_>15 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0514889992773533</threshold>
- <left_val>0.1141600012779236</left_val>
- <right_val>-1.9795479774475098</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 6 -1.</_>
- <_>0 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264490004628897</threshold>
- <left_val>-1.1067299842834473</left_val>
- <right_val>-8.5519999265670776e-003</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 18 3 -1.</_>
- <_>6 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154200000688434</threshold>
- <left_val>0.8013870120048523</left_val>
- <right_val>-0.0320350006222725</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 6 10 -1.</_>
- <_>10 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194569993764162</threshold>
- <left_val>-0.2644949853420258</left_val>
- <right_val>0.3875389993190765</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336209982633591</threshold>
- <left_val>0.0160520002245903</left_val>
- <right_val>0.5884090065956116</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 5 8 -1.</_>
- <_>8 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289060007780790</threshold>
- <left_val>0.0152160003781319</left_val>
- <right_val>-0.9472360014915466</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 6 8 -1.</_>
- <_>12 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0300000323913991e-004</threshold>
- <left_val>-0.3076600134372711</left_val>
- <right_val>0.2123589962720871</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 6 11 -1.</_>
- <_>8 5 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491419993340969</threshold>
- <left_val>-1.6058609485626221</left_val>
- <right_val>-0.0310949999839067</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 8 9 -1.</_>
- <_>13 9 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0764259994029999</threshold>
- <left_val>0.0747589990496635</left_val>
- <right_val>1.1639410257339478</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 21 6 -1.</_>
- <_>1 9 21 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238979998975992</threshold>
- <left_val>-6.4320000819861889e-003</left_val>
- <right_val>-1.1150749921798706</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 3 12 -1.</_>
- <_>15 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8970001041889191e-003</threshold>
- <left_val>-0.2410569936037064</left_val>
- <right_val>0.2085890024900436</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 11 12 -1.</_>
- <_>6 13 11 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0894450023770332</threshold>
- <left_val>1.9157789945602417</left_val>
- <right_val>-0.1572110056877136</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 10 8 -1.</_>
- <_>18 8 5 4 2.</_>
- <_>13 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150089999660850</threshold>
- <left_val>-0.2517409920692444</left_val>
- <right_val>0.1817989945411682</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 3 -1.</_>
- <_>11 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111459996551275</threshold>
- <left_val>-0.6934949755668640</left_val>
- <right_val>0.0449279993772507</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 18 4 -1.</_>
- <_>12 11 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0945789963006973</threshold>
- <left_val>0.1810210049152374</left_val>
- <right_val>-0.7497860193252564</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 22 -1.</_>
- <_>0 11 22 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5503889918327332</threshold>
- <left_val>-0.0309740006923676</left_val>
- <right_val>-1.6746139526367188</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 6 8 -1.</_>
- <_>11 6 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0413810014724731</threshold>
- <left_val>0.0639100000262260</left_val>
- <right_val>0.7656120061874390</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247719995677471</threshold>
- <left_val>0.0113800000399351</left_val>
- <right_val>-0.8855940103530884</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 9 -1.</_>
- <_>12 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0509990006685257</threshold>
- <left_val>0.1489029973745346</left_val>
- <right_val>-2.4634211063385010</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 14 -1.</_>
- <_>8 3 3 7 2.</_>
- <_>11 10 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168939996510744</threshold>
- <left_val>0.3887099921703339</left_val>
- <right_val>-0.2988030016422272</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 18 8 -1.</_>
- <_>9 10 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1216230019927025</threshold>
- <left_val>-1.5542800426483154</left_val>
- <right_val>0.1630080044269562</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 3 14 -1.</_>
- <_>10 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6049999762326479e-003</threshold>
- <left_val>0.2184280008077622</left_val>
- <right_val>-0.3731209933757782</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 16 20 -1.</_>
- <_>4 13 16 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1157540008425713</threshold>
- <left_val>-0.0470610000193119</left_val>
- <right_val>0.5940369963645935</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 6 10 -1.</_>
- <_>11 4 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0369039997458458</threshold>
- <left_val>-0.2550860047340393</left_val>
- <right_val>0.5539730191230774</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 16 4 -1.</_>
- <_>5 2 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114839999005198</threshold>
- <left_val>-0.1812949925661087</left_val>
- <right_val>0.4068279862403870</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 18 4 -1.</_>
- <_>8 5 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0202339999377728</threshold>
- <left_val>0.5431119799613953</left_val>
- <right_val>-0.2382239997386932</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 9 -1.</_>
- <_>15 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0287650004029274</threshold>
- <left_val>-0.6917229890823364</left_val>
- <right_val>0.1594330072402954</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 8 5 -1.</_>
- <_>12 4 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8320001699030399e-003</threshold>
- <left_val>0.2944779992103577</left_val>
- <right_val>-0.3400599956512451</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 10 4 -1.</_>
- <_>12 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0554689988493919</threshold>
- <left_val>0.9220079779624939</left_val>
- <right_val>0.0940930023789406</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 10 4 -1.</_>
- <_>7 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148010002449155</threshold>
- <left_val>-0.7953969836235046</left_val>
- <right_val>0.0315219983458519</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 12 5 -1.</_>
- <_>11 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0940000005066395e-003</threshold>
- <left_val>0.3309600055217743</left_val>
- <right_val>-0.0508869998157024</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 8 10 -1.</_>
- <_>3 10 4 5 2.</_>
- <_>7 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0451240018010139</threshold>
- <left_val>-1.3719749450683594</left_val>
- <right_val>-0.0214089993387461</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 9 8 -1.</_>
- <_>14 12 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0643770024180412</threshold>
- <left_val>0.0639019981026649</left_val>
- <right_val>0.9147830009460449</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 24 3 -1.</_>
- <_>8 21 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147270001471043</threshold>
- <left_val>0.3605059981346130</left_val>
- <right_val>-0.2861450016498566</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 18 4 -1.</_>
- <_>9 20 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0450070016086102</threshold>
- <left_val>-0.1561969965696335</left_val>
- <right_val>0.5316029787063599</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 9 6 -1.</_>
- <_>1 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1330000124871731e-003</threshold>
- <left_val>0.1342290043830872</left_val>
- <right_val>-0.4435890018939972</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 17 10 4 -1.</_>
- <_>11 19 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0494510009884834</threshold>
- <left_val>0.1057180017232895</left_val>
- <right_val>-2.5589139461517334</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 4 12 -1.</_>
- <_>9 18 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291029997169971</threshold>
- <left_val>-0.0100880004465580</left_val>
- <right_val>-1.1073939800262451</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 9 6 -1.</_>
- <_>12 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0347860008478165</threshold>
- <left_val>-2.7719999197870493e-003</left_val>
- <right_val>0.5670099854469299</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 6 9 -1.</_>
- <_>1 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1309998854994774e-003</threshold>
- <left_val>-0.4688940048217773</left_val>
- <right_val>0.1263639926910400</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 12 4 -1.</_>
- <_>6 18 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155250001698732</threshold>
- <left_val>-8.4279999136924744e-003</left_val>
- <right_val>0.8746920228004456</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 20 3 -1.</_>
- <_>1 6 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9249999206513166e-003</threshold>
- <left_val>-0.3443430066108704</left_val>
- <right_val>0.2085160017013550</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 9 9 -1.</_>
- <_>8 4 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0535710006952286</threshold>
- <left_val>1.4982949495315552</left_val>
- <right_val>0.0573280006647110</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 9 4 -1.</_>
- <_>2 21 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192179996520281</threshold>
- <left_val>-0.9923409819602966</left_val>
- <right_val>-9.3919998034834862e-003</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 18 -1.</_>
- <_>11 7 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0552829988300800</threshold>
- <left_val>-0.5768229961395264</left_val>
- <right_val>0.1686059981584549</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 8 12 -1.</_>
- <_>7 2 4 6 2.</_>
- <_>11 8 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0563360005617142</threshold>
- <left_val>-0.0337750017642975</left_val>
- <right_val>-1.3889650106430054</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 10 9 8 -1.</_>
- <_>14 10 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238240007311106</threshold>
- <left_val>0.4018209874629974</left_val>
- <right_val>1.8360000103712082e-003</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 12 5 -1.</_>
- <_>9 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7810000572353601e-003</threshold>
- <left_val>0.1814599931240082</left_val>
- <right_val>-0.4174340069293976</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 9 6 -1.</_>
- <_>14 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376890003681183</threshold>
- <left_val>0.5468310117721558</left_val>
- <right_val>0.0182199999690056</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 9 -1.</_>
- <_>7 10 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241449996829033</threshold>
- <left_val>0.6835209727287293</left_val>
- <right_val>-0.1965020000934601</right_val></_></_></trees>
- <stage_threshold>-3.5645289421081543</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 5 12 -1.</_>
- <_>4 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0274449996650219</threshold>
- <left_val>-0.8998420238494873</left_val>
- <right_val>0.5187649726867676</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 21 6 -1.</_>
- <_>9 0 7 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1155410036444664</threshold>
- <left_val>-0.5652440190315247</left_val>
- <right_val>0.7055130004882813</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 6 -1.</_>
- <_>7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0222970005124807</threshold>
- <left_val>0.3607999980449677</left_val>
- <right_val>-0.6686459779739380</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 15 -1.</_>
- <_>11 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133250001817942</threshold>
- <left_val>-0.5557339787483215</left_val>
- <right_val>0.3578999936580658</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 18 2 -1.</_>
- <_>2 3 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8060001097619534e-003</threshold>
- <left_val>-1.0713000297546387</left_val>
- <right_val>0.1885000020265579</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 17 8 6 -1.</_>
- <_>8 20 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6819999329745770e-003</threshold>
- <left_val>-0.7158430218696594</left_val>
- <right_val>0.2634449899196625</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 2 -1.</_>
- <_>3 1 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3819999080151320e-003</threshold>
- <left_val>-0.4693079888820648</left_val>
- <right_val>0.2665840089321137</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 6 -1.</_>
- <_>11 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0376430004835129</threshold>
- <left_val>0.2109870016574860</left_val>
- <right_val>-1.0804339647293091</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138619998469949</threshold>
- <left_val>0.6691200137138367</left_val>
- <right_val>-0.2794280052185059</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 5 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7350001037120819e-003</threshold>
- <left_val>-0.9533230066299439</left_val>
- <right_val>0.2405129969120026</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 9 -1.</_>
- <_>2 3 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383369997143745</threshold>
- <left_val>0.8143280148506165</left_val>
- <right_val>-0.2491939961910248</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 2 4 9 -1.</_>
- <_>20 2 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346979983150959</threshold>
- <left_val>1.2330100536346436</left_val>
- <right_val>6.8600000813603401e-003</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 4 9 -1.</_>
- <_>2 2 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233609993010759</threshold>
- <left_val>-0.3079470098018646</left_val>
- <right_val>0.7071449756622315</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 4 -1.</_>
- <_>12 1 12 2 2.</_>
- <_>0 3 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0350579991936684</threshold>
- <left_val>0.2120590060949326</left_val>
- <right_val>-1.4399830102920532</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 9 6 -1.</_>
- <_>0 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132569996640086</threshold>
- <left_val>-0.9026070237159729</left_val>
- <right_val>0.0486100018024445</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 9 6 -1.</_>
- <_>14 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127400001510978</threshold>
- <left_val>0.2265519946813583</left_val>
- <right_val>-0.4464380145072937</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 19 3 -1.</_>
- <_>0 16 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6400000099092722e-003</threshold>
- <left_val>-0.3981789946556091</left_val>
- <right_val>0.3466539978981018</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 22 12 -1.</_>
- <_>12 5 11 6 2.</_>
- <_>1 11 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1006470024585724</threshold>
- <left_val>0.1838359981775284</left_val>
- <right_val>-1.3410769701004028</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 6 6 -1.</_>
- <_>8 13 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.</threshold>
- <left_val>0.1553640067577362</left_val>
- <right_val>-0.5158249735832214</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 20 3 -1.</_>
- <_>4 3 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117089999839664</threshold>
- <left_val>0.2165140062570572</left_val>
- <right_val>-0.7270519733428955</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 6 10 -1.</_>
- <_>10 14 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0359649993479252</threshold>
- <left_val>-1.4789500236511230</left_val>
- <right_val>-0.0243170000612736</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 16 6 -1.</_>
- <_>14 12 8 3 2.</_>
- <_>6 15 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0212360005825758</threshold>
- <left_val>-0.1684409976005554</left_val>
- <right_val>0.1952659934759140</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 8 9 -1.</_>
- <_>2 16 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148740001022816</threshold>
- <left_val>0.0373359993100166</left_val>
- <right_val>-0.8755729794502258</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 6 14 -1.</_>
- <_>14 8 3 7 2.</_>
- <_>11 15 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1409997977316380e-003</threshold>
- <left_val>0.3346650004386902</left_val>
- <right_val>-0.2410970032215118</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 16 6 -1.</_>
- <_>2 12 8 3 2.</_>
- <_>10 15 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234500002115965</threshold>
- <left_val>5.5320002138614655e-003</left_val>
- <right_val>-1.2509720325469971</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 16 8 -1.</_>
- <_>5 20 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250620003789663</threshold>
- <left_val>0.4521239995956421</left_val>
- <right_val>-0.0844699963927269</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 12 -1.</_>
- <_>9 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7400001464411616e-004</threshold>
- <left_val>0.1524990051984787</left_val>
- <right_val>-0.4848650097846985</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 8 10 -1.</_>
- <_>12 2 4 5 2.</_>
- <_>8 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0404839999973774</threshold>
- <left_val>-1.3024920225143433</left_val>
- <right_val>0.1798350065946579</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 6 -1.</_>
- <_>6 6 6 3 2.</_>
- <_>12 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0281709991395473</threshold>
- <left_val>-0.2441090047359467</left_val>
- <right_val>0.6227110028266907</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 6 9 -1.</_>
- <_>12 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0456929989159107</threshold>
- <left_val>0.0281220003962517</left_val>
- <right_val>0.9239439964294434</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 12 -1.</_>
- <_>0 0 4 6 2.</_>
- <_>4 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0397070012986660</threshold>
- <left_val>-0.2233279943466187</left_val>
- <right_val>0.7767400145530701</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 8 6 9 -1.</_>
- <_>18 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0505170002579689</threshold>
- <left_val>0.2031999975442886</left_val>
- <right_val>-1.0895930528640747</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 6 6 -1.</_>
- <_>5 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0172669999301434</threshold>
- <left_val>0.6859840154647827</left_val>
- <right_val>-0.2330449968576431</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 21 3 -1.</_>
- <_>10 21 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0801860019564629</threshold>
- <left_val>-0.0102920001372695</left_val>
- <right_val>0.6188110113143921</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 16 6 -1.</_>
- <_>2 3 16 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0976760014891624</threshold>
- <left_val>-0.2007029950618744</left_val>
- <right_val>1.0088349580764771</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 7 6 -1.</_>
- <_>13 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155720002949238</threshold>
- <left_val>0.4761529862880707</left_val>
- <right_val>0.0456239990890026</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 14 -1.</_>
- <_>6 11 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153050003573298</threshold>
- <left_val>-1.1077369451522827</left_val>
- <right_val>4.5239999890327454e-003</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 6 9 -1.</_>
- <_>11 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164850000292063</threshold>
- <left_val>1.0152939558029175</left_val>
- <right_val>0.0163279995322227</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 6 14 -1.</_>
- <_>7 8 3 7 2.</_>
- <_>10 15 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261419992893934</threshold>
- <left_val>0.4172329902648926</left_val>
- <right_val>-0.2864550054073334</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 8 4 16 -1.</_>
- <_>18 16 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8679995387792587e-003</threshold>
- <left_val>0.2140499949455261</left_val>
- <right_val>-0.1677280068397522</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 6 10 -1.</_>
- <_>11 14 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0268869996070862</threshold>
- <left_val>-1.1564220190048218</left_val>
- <right_val>-0.0103240003809333</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 12 5 -1.</_>
- <_>10 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7789998613297939e-003</threshold>
- <left_val>0.3535949885845184</left_val>
- <right_val>-0.2961130142211914</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 23 3 -1.</_>
- <_>0 13 23 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0159740000963211</threshold>
- <left_val>-1.5374109745025635</left_val>
- <right_val>-0.0299580004066229</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 12 -1.</_>
- <_>15 0 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0208669994026423</threshold>
- <left_val>0.2024410068988800</left_val>
- <right_val>-0.7127019762992859</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 12 5 -1.</_>
- <_>4 10 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0854820013046265</threshold>
- <left_val>-0.0259329993277788</left_val>
- <right_val>-1.5156569480895996</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 10 4 -1.</_>
- <_>13 4 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238729994744062</threshold>
- <left_val>0.1680340021848679</left_val>
- <right_val>-0.3880620002746582</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 12 -1.</_>
- <_>7 0 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391050018370152</threshold>
- <left_val>-1.1958349943161011</left_val>
- <right_val>-0.0203610006719828</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 9 6 -1.</_>
- <_>14 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0779469981789589</threshold>
- <left_val>-1.0898950099945068</left_val>
- <right_val>0.1453029960393906</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 9 6 -1.</_>
- <_>7 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168760009109974</threshold>
- <left_val>0.2804970145225525</left_val>
- <right_val>-0.4133630096912384</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 18 13 -1.</_>
- <_>12 11 6 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1187560036778450</threshold>
- <left_val>-0.0434909984469414</left_val>
- <right_val>0.4126369953155518</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 18 13 -1.</_>
- <_>6 11 6 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1562419980764389</threshold>
- <left_val>-0.2642959952354431</left_val>
- <right_val>0.5512779951095581</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 12 6 -1.</_>
- <_>16 16 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459080003201962</threshold>
- <left_val>0.6018919944763184</left_val>
- <right_val>0.0189210008829832</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 21 3 -1.</_>
- <_>0 7 21 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103099998086691</threshold>
- <left_val>0.3815299868583679</left_val>
- <right_val>-0.2950789928436279</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 12 6 -1.</_>
- <_>16 16 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0957690030336380</threshold>
- <left_val>0.1324650049209595</left_val>
- <right_val>-0.4626680016517639</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 6 14 -1.</_>
- <_>5 14 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0136869996786118</threshold>
- <left_val>0.1173869967460632</left_val>
- <right_val>-0.5166410207748413</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 19 2 -1.</_>
- <_>5 11 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3990001063793898e-003</threshold>
- <left_val>-0.3400759994983673</left_val>
- <right_val>0.2095350027084351</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 14 4 -1.</_>
- <_>5 6 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0332649983465672</threshold>
- <left_val>-0.1705279946327210</left_val>
- <right_val>1.4366799592971802</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 18 4 -1.</_>
- <_>9 18 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0332060009241104</threshold>
- <left_val>0.6129570007324219</left_val>
- <right_val>-0.0415499992668629</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 9 -1.</_>
- <_>9 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7979998849332333e-003</threshold>
- <left_val>-0.4855430126190186</left_val>
- <right_val>0.1337269991636276</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 11 4 -1.</_>
- <_>13 5 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0657920017838478</threshold>
- <left_val>-4.0257668495178223</left_val>
- <right_val>0.1087670028209686</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 9 6 -1.</_>
- <_>5 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1430000197142363e-003</threshold>
- <left_val>-0.3917999863624573</left_val>
- <right_val>0.2242709994316101</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 1 4 23 -1.</_>
- <_>19 1 2 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223639998584986</threshold>
- <left_val>-0.0864299982786179</left_val>
- <right_val>0.3778519928455353</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 4 23 -1.</_>
- <_>3 1 2 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0574100017547607</threshold>
- <left_val>1.1454069614410400</left_val>
- <right_val>-0.1973659992218018</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 18 3 -1.</_>
- <_>5 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6550001502037048e-003</threshold>
- <left_val>-0.0211050007492304</left_val>
- <right_val>0.5845339894294739</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 11 4 -1.</_>
- <_>0 5 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123269995674491</threshold>
- <left_val>0.0378170013427734</left_val>
- <right_val>-0.6698700189590454</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 20 3 -1.</_>
- <_>2 17 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1869997084140778e-003</threshold>
- <left_val>0.5636600255966187</left_val>
- <right_val>-0.0768779963254929</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 13 4 -1.</_>
- <_>5 5 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0366810001432896</threshold>
- <left_val>-0.1734330058097839</left_val>
- <right_val>1.1670149564743042</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 22 15 -1.</_>
- <_>1 9 11 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4022040069103241</threshold>
- <left_val>1.2640819549560547</left_val>
- <right_val>0.0433989986777306</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 14 3 -1.</_>
- <_>10 4 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221260003745556</threshold>
- <left_val>0.6697810292243958</left_val>
- <right_val>-0.2160529941320419</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 10 4 -1.</_>
- <_>8 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131569998338819</threshold>
- <left_val>-0.4119859933853149</left_val>
- <right_val>0.2021500021219254</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 10 4 -1.</_>
- <_>11 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128600001335144</threshold>
- <left_val>-0.9158269762992859</left_val>
- <right_val>0.0392329990863800</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 6 9 -1.</_>
- <_>12 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216279998421669</threshold>
- <left_val>3.8719999138265848e-003</left_val>
- <right_val>0.3566820025444031</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 9 6 -1.</_>
- <_>4 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118960002437234</threshold>
- <left_val>-0.3730390071868897</left_val>
- <right_val>0.1923509985208511</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 8 10 -1.</_>
- <_>12 3 4 5 2.</_>
- <_>8 8 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195489991456270</threshold>
- <left_val>-0.4237489998340607</left_val>
- <right_val>0.2442959994077683</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 16 6 -1.</_>
- <_>3 6 8 3 2.</_>
- <_>11 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0644449964165688</threshold>
- <left_val>-0.1655890047550201</left_val>
- <right_val>1.2697030305862427</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 6 -1.</_>
- <_>5 9 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1089849993586540</threshold>
- <left_val>0.1489430069923401</left_val>
- <right_val>-2.1534640789031982</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 9 6 -1.</_>
- <_>4 5 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0340779982507229</threshold>
- <left_val>1.3779460191726685</left_val>
- <right_val>-0.1619849950075150</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 18 2 -1.</_>
- <_>6 4 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7489999085664749e-003</threshold>
- <left_val>-0.3382860124111176</left_val>
- <right_val>0.2115290015935898</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 9 6 -1.</_>
- <_>10 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109719997271895</threshold>
- <left_val>0.7651789784431458</left_val>
- <right_val>-0.1969259977340698</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 3 -1.</_>
- <_>0 2 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114850001409650</threshold>
- <left_val>-0.6927120089530945</left_val>
- <right_val>0.2165710031986237</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 10 6 -1.</_>
- <_>0 19 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259840004146099</threshold>
- <left_val>-0.0119839999824762</left_val>
- <right_val>-0.9969729781150818</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 18 3 -1.</_>
- <_>3 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2159999720752239e-003</threshold>
- <left_val>-0.1020570024847984</left_val>
- <right_val>0.4888440072536469</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 6 16 -1.</_>
- <_>2 5 3 8 2.</_>
- <_>5 13 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0476970002055168</threshold>
- <left_val>1.0666010379791260</left_val>
- <right_val>-0.1757629960775375</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 11 6 -1.</_>
- <_>7 8 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0300001273863018e-004</threshold>
- <left_val>0.1852480024099350</left_val>
- <right_val>-0.7479000091552734</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 22 -1.</_>
- <_>5 13 12 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1153960004448891</threshold>
- <left_val>-0.2201970070600510</left_val>
- <right_val>0.5450999736785889</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 10 -1.</_>
- <_>10 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160210002213717</threshold>
- <left_val>0.2548750042915344</left_val>
- <right_val>-0.5074009895324707</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 4 18 -1.</_>
- <_>9 6 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0566320009529591</threshold>
- <left_val>-0.0112560000270605</left_val>
- <right_val>-0.9596809744834900</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 8 6 9 -1.</_>
- <_>18 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107260001823306</threshold>
- <left_val>-0.2854470014572144</left_val>
- <right_val>0.1699479967355728</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 15 10 -1.</_>
- <_>9 7 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1242000013589859</threshold>
- <left_val>-0.0361399985849857</left_val>
- <right_val>-1.3132710456848145</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 9 -1.</_>
- <_>12 5 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3799999877810478e-003</threshold>
- <left_val>0.3309270143508911</left_val>
- <right_val>0.0133079998195171</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 10 -1.</_>
- <_>11 9 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119080003350973</threshold>
- <left_val>-0.3483029901981354</left_val>
- <right_val>0.2404190003871918</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 10 -1.</_>
- <_>13 14 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0430079996585846</threshold>
- <left_val>-1.4390469789505005</left_val>
- <right_val>0.1559959948062897</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 6 10 -1.</_>
- <_>9 14 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331499986350536</threshold>
- <left_val>-1.1805850267410278</left_val>
- <right_val>-0.0123479999601841</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 16 9 -1.</_>
- <_>4 11 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0213419999927282</threshold>
- <left_val>2.2119441032409668</left_val>
- <right_val>0.0627370029687881</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 20 3 -1.</_>
- <_>2 12 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122189996764064</threshold>
- <left_val>-1.8709750175476074</left_val>
- <right_val>-0.0454999990761280</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 13 -1.</_>
- <_>13 0 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168609991669655</threshold>
- <left_val>-0.7691270112991333</left_val>
- <right_val>0.1533000022172928</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 13 -1.</_>
- <_>9 0 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4999999441206455e-003</threshold>
- <left_val>-0.6298739910125732</left_val>
- <right_val>0.0516000017523766</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 7 -1.</_>
- <_>9 1 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0450379997491837</threshold>
- <left_val>0.8542889952659607</left_val>
- <right_val>6.2600001692771912e-003</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 6 9 -1.</_>
- <_>1 14 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0390579998493195</threshold>
- <left_val>-0.0324589982628822</left_val>
- <right_val>-1.3325669765472412</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 9 6 -1.</_>
- <_>8 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6720000468194485e-003</threshold>
- <left_val>-0.1942359954118729</left_val>
- <right_val>0.3732869923114777</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 15 6 -1.</_>
- <_>3 11 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163610000163317</threshold>
- <left_val>2.0605869293212891</left_val>
- <right_val>-0.1504269987344742</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 19 2 -1.</_>
- <_>5 11 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1719999648630619e-003</threshold>
- <left_val>-0.1161099970340729</left_val>
- <right_val>0.2545540034770966</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 7 16 -1.</_>
- <_>8 14 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0457220003008842</threshold>
- <left_val>-0.0163400005549192</left_val>
- <right_val>-1.0449140071868896</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 9 6 -1.</_>
- <_>9 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1209999471902847e-003</threshold>
- <left_val>-0.0419979989528656</left_val>
- <right_val>0.3968099951744080</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 8 12 -1.</_>
- <_>0 11 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7800000205170363e-004</threshold>
- <left_val>-0.6642259955406189</left_val>
- <right_val>0.0334430001676083</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 18 3 -1.</_>
- <_>6 5 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1109998971223831e-003</threshold>
- <left_val>-0.0582319982349873</left_val>
- <right_val>0.3785730004310608</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 6 -1.</_>
- <_>4 16 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0498640015721321</threshold>
- <left_val>0.6101940274238586</left_val>
- <right_val>-0.2100570052862167</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 13 9 4 -1.</_>
- <_>13 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250119995325804</threshold>
- <left_val>-0.5710009932518005</left_val>
- <right_val>0.1784839928150177</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 14 14 -1.</_>
- <_>5 8 7 7 2.</_>
- <_>12 15 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309399999678135</threshold>
- <left_val>0.0563630014657974</left_val>
- <right_val>-0.6473100185394287</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 22 6 -1.</_>
- <_>12 16 11 3 2.</_>
- <_>1 19 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0462710000574589</threshold>
- <left_val>0.1748239994049072</left_val>
- <right_val>-0.9890940189361572</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1870000530034304e-003</threshold>
- <left_val>-0.6680480241775513</left_val>
- <right_val>0.0322670005261898</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 10 -1.</_>
- <_>14 5 5 5 2.</_>
- <_>9 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0243519991636276</threshold>
- <left_val>0.2944490015506744</left_val>
- <right_val>-1.3599999947473407e-003</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 10 10 -1.</_>
- <_>5 5 5 5 2.</_>
- <_>10 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119740003719926</threshold>
- <left_val>-0.2834509909152985</left_val>
- <right_val>0.4717119932174683</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 16 6 -1.</_>
- <_>12 6 8 3 2.</_>
- <_>4 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130700003355742</threshold>
- <left_val>-0.1083460003137589</left_val>
- <right_val>0.5719329714775085</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 6 9 -1.</_>
- <_>0 10 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0591630004346371</threshold>
- <left_val>-0.0509390011429787</left_val>
- <right_val>-1.9059720039367676</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 10 8 14 -1.</_>
- <_>20 10 4 7 2.</_>
- <_>16 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0410949997603893</threshold>
- <left_val>0.4510459899902344</left_val>
- <right_val>-9.7599998116493225e-003</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 12 -1.</_>
- <_>9 18 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0839890018105507</threshold>
- <left_val>-2.0349199771881104</left_val>
- <right_val>-0.0510190017521381</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 8 12 -1.</_>
- <_>12 10 4 6 2.</_>
- <_>8 16 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0446190014481544</threshold>
- <left_val>0.1704110056161881</left_val>
- <right_val>-1.2278720140457153</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 9 -1.</_>
- <_>10 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244190003722906</threshold>
- <left_val>-0.0217969994992018</left_val>
- <right_val>-1.0822949409484863</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 8 16 -1.</_>
- <_>14 4 4 8 2.</_>
- <_>10 12 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3870001100003719e-003</threshold>
- <left_val>0.3046669960021973</left_val>
- <right_val>-0.3706659972667694</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 10 6 -1.</_>
- <_>7 12 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0246079992502928</threshold>
- <left_val>-0.3116950094699860</left_val>
- <right_val>0.2365729957818985</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 14 -1.</_>
- <_>12 6 7 7 2.</_>
- <_>5 13 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0851820036768913</threshold>
- <left_val>-1.7982350587844849</left_val>
- <right_val>0.1525429934263229</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 20 2 -1.</_>
- <_>2 12 20 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0218449998646975</threshold>
- <left_val>-0.0518880002200603</left_val>
- <right_val>-1.9017189741134644</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 8 4 16 -1.</_>
- <_>18 16 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168290007859468</threshold>
- <left_val>0.2102590054273605</left_val>
- <right_val>0.0216569993644953</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 12 10 -1.</_>
- <_>1 11 6 5 2.</_>
- <_>7 16 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0325479991734028</threshold>
- <left_val>-0.2029259949922562</left_val>
- <right_val>0.6094400286674500</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 12 4 -1.</_>
- <_>6 11 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4709999561309814e-003</threshold>
- <left_val>-0.9537119865417481</left_val>
- <right_val>0.1856839954853058</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 7 -1.</_>
- <_>12 12 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0554159991443157</threshold>
- <left_val>-0.1440529972314835</left_val>
- <right_val>2.1506340503692627</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 8 16 -1.</_>
- <_>14 4 4 8 2.</_>
- <_>10 12 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1063549965620041</threshold>
- <left_val>-1.0911970138549805</left_val>
- <right_val>0.1322800070047379</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 8 16 -1.</_>
- <_>6 4 4 8 2.</_>
- <_>10 12 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9889995977282524e-003</threshold>
- <left_val>0.1025340035557747</left_val>
- <right_val>-0.5174490213394165</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 9 6 -1.</_>
- <_>11 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0755679979920387</threshold>
- <left_val>0.0589650012552738</left_val>
- <right_val>1.2354209423065186</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 16 12 -1.</_>
- <_>1 5 8 6 2.</_>
- <_>9 11 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0928059965372086</threshold>
- <left_val>-1.3431650400161743</left_val>
- <right_val>-0.0344629995524883</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 8 -1.</_>
- <_>9 9 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0494319982826710</threshold>
- <left_val>0.0496019981801510</left_val>
- <right_val>1.6054730415344238</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 3 18 -1.</_>
- <_>7 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117729995399714</threshold>
- <left_val>-1.0261050462722778</left_val>
- <right_val>-4.1559999808669090e-003</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 9 5 14 -1.</_>
- <_>17 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0858860015869141</threshold>
- <left_val>0.0846429988741875</left_val>
- <right_val>0.9522079825401306</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 5 14 -1.</_>
- <_>2 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0810310021042824</threshold>
- <left_val>-0.1468710005283356</left_val>
- <right_val>1.9359990358352661</right_val></_></_></trees>
- <stage_threshold>-3.7025990486145020</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 10 6 -1.</_>
- <_>7 7 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338409990072250</threshold>
- <left_val>0.6588950157165527</left_val>
- <right_val>-0.6975529789924622</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 23 18 -1.</_>
- <_>1 9 23 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154100004583597</threshold>
- <left_val>-0.9072840213775635</left_val>
- <right_val>0.3047859966754913</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 21 3 -1.</_>
- <_>8 1 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0549059994518757</threshold>
- <left_val>-0.4977479875087738</left_val>
- <right_val>0.5713260173797607</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213900003582239</threshold>
- <left_val>-0.4256519973278046</left_val>
- <right_val>0.5809680223464966</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 12 6 -1.</_>
- <_>3 18 6 3 2.</_>
- <_>9 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8849997371435165e-003</threshold>
- <left_val>-0.4790599942207336</left_val>
- <right_val>0.4301649928092957</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 8 16 -1.</_>
- <_>20 8 4 8 2.</_>
- <_>16 16 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0375449992716312</threshold>
- <left_val>0.5086159706115723</left_val>
- <right_val>-0.1998589932918549</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 24 4 -1.</_>
- <_>8 19 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1592579931020737</threshold>
- <left_val>-0.2326360046863556</left_val>
- <right_val>1.0993319749832153</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 8 16 -1.</_>
- <_>20 8 4 8 2.</_>
- <_>16 16 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0689399987459183</threshold>
- <left_val>0.4056900143623352</left_val>
- <right_val>0.0568550005555153</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 8 16 -1.</_>
- <_>0 8 4 8 2.</_>
- <_>4 16 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0336950011551380</threshold>
- <left_val>0.4513280093669891</left_val>
- <right_val>-0.3333280086517334</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 8 10 -1.</_>
- <_>8 17 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0633149966597557</threshold>
- <left_val>-0.8501570224761963</left_val>
- <right_val>0.2234169989824295</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 5 8 -1.</_>
- <_>5 11 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3699997738003731e-003</threshold>
- <left_val>-0.9308220148086548</left_val>
- <right_val>0.0592169985175133</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 19 2 -1.</_>
- <_>4 2 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5969997346401215e-003</threshold>
- <left_val>-1.2794899940490723</left_val>
- <right_val>0.1844729930162430</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 24 9 -1.</_>
- <_>8 12 8 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1306799948215485</threshold>
- <left_val>0.5842689871788025</left_val>
- <right_val>-0.2600719928741455</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 13 8 -1.</_>
- <_>6 4 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0574029982089996</threshold>
- <left_val>-0.0537890009582043</left_val>
- <right_val>0.7117559909820557</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 3 -1.</_>
- <_>0 1 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2340001352131367e-003</threshold>
- <left_val>-0.8696219921112061</left_val>
- <right_val>0.0752149969339371</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 3 4 11 -1.</_>
- <_>20 3 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0310989990830421</threshold>
- <left_val>-0.0750069990754128</left_val>
- <right_val>0.9078159928321838</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 9 -1.</_>
- <_>10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358540005981922</threshold>
- <left_val>-0.2479549944400787</left_val>
- <right_val>0.7227209806442261</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 12 8 -1.</_>
- <_>12 11 6 4 2.</_>
- <_>6 15 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0315349996089935</threshold>
- <left_val>-1.1238329410552979</left_val>
- <right_val>0.2098830044269562</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 12 6 -1.</_>
- <_>0 8 6 3 2.</_>
- <_>6 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194370001554489</threshold>
- <left_val>-1.4499390125274658</left_val>
- <right_val>-0.0151000004261732</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 18 3 -1.</_>
- <_>6 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2420001961290836e-003</threshold>
- <left_val>0.5386490225791931</left_val>
- <right_val>-0.1137539967894554</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 9 6 -1.</_>
- <_>0 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1639997661113739e-003</threshold>
- <left_val>0.0668890029191971</left_val>
- <right_val>-0.7687289714813232</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 3 4 9 -1.</_>
- <_>20 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0436530001461506</threshold>
- <left_val>1.1413530111312866</left_val>
- <right_val>0.0402170009911060</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 4 9 -1.</_>
- <_>2 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0265699997544289</threshold>
- <left_val>-0.2471909970045090</left_val>
- <right_val>0.5929509997367859</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 9 19 -1.</_>
- <_>18 0 3 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0322169996798038</threshold>
- <left_val>-0.0400249995291233</left_val>
- <right_val>0.3268800079822540</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 9 19 -1.</_>
- <_>3 0 3 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0722360014915466</threshold>
- <left_val>0.5872939825057983</left_val>
- <right_val>-0.2539600133895874</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 8 -1.</_>
- <_>13 11 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0314249992370605</threshold>
- <left_val>0.1531510055065155</left_val>
- <right_val>-0.5604209899902344</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 8 -1.</_>
- <_>8 11 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7699999413453043e-004</threshold>
- <left_val>0.1695889979600906</left_val>
- <right_val>-0.5262669920921326</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 19 3 -1.</_>
- <_>5 12 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7189999818801880e-003</threshold>
- <left_val>-0.1494459956884384</left_val>
- <right_val>0.2965869903564453</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 18 4 -1.</_>
- <_>9 20 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0328750014305115</threshold>
- <left_val>-0.3994350135326386</left_val>
- <right_val>0.2515659928321838</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 16 6 -1.</_>
- <_>6 8 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145530002191663</threshold>
- <left_val>0.2797259986400604</left_val>
- <right_val>-0.4720380008220673</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 9 6 -1.</_>
- <_>9 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0380179993808270</threshold>
- <left_val>-2.9200001154094934e-003</left_val>
- <right_val>-1.1300059556961060</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 4 14 -1.</_>
- <_>10 10 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8659999370574951e-003</threshold>
- <left_val>0.4111180007457733</left_val>
- <right_val>-0.2622080147266388</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 15 12 -1.</_>
- <_>1 11 15 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416069999337196</threshold>
- <left_val>-1.4293819665908813</left_val>
- <right_val>-0.0191329997032881</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 8 5 -1.</_>
- <_>11 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248029995709658</threshold>
- <left_val>-0.2501359879970551</left_val>
- <right_val>0.1597869992256165</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 9 -1.</_>
- <_>7 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100980000570416</threshold>
- <left_val>0.0437389984726906</left_val>
- <right_val>-0.6998609900474548</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209470000118017</threshold>
- <left_val>-0.9413779973983765</left_val>
- <right_val>0.2320400029420853</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 8 -1.</_>
- <_>5 5 6 4 2.</_>
- <_>11 9 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224580001085997</threshold>
- <left_val>-0.2718580067157745</left_val>
- <right_val>0.4531919956207275</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 11 6 -1.</_>
- <_>13 14 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0371109992265701</threshold>
- <left_val>-1.0314660072326660</left_val>
- <right_val>0.1442179977893829</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 21 3 -1.</_>
- <_>0 14 21 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106480000540614</threshold>
- <left_val>0.6310700178146362</left_val>
- <right_val>-0.2552079856395721</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 8 12 -1.</_>
- <_>12 1 4 6 2.</_>
- <_>8 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0554229989647865</threshold>
- <left_val>0.1620659977197647</left_val>
- <right_val>-1.7722640037536621</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 12 -1.</_>
- <_>1 0 3 6 2.</_>
- <_>4 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216019991785288</threshold>
- <left_val>-0.2501609921455383</left_val>
- <right_val>0.5411980152130127</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 21 2 -1.</_>
- <_>2 3 21 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7000000348780304e-005</threshold>
- <left_val>-0.2900890111923218</left_val>
- <right_val>0.3350799977779388</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 19 3 -1.</_>
- <_>2 3 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144060002639890</threshold>
- <left_val>-7.8840004280209541e-003</left_val>
- <right_val>-1.1677219867706299</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 10 6 14 -1.</_>
- <_>20 10 3 7 2.</_>
- <_>17 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1077739968895912</threshold>
- <left_val>0.1129200011491776</left_val>
- <right_val>-2.4940319061279297</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 6 14 -1.</_>
- <_>1 10 3 7 2.</_>
- <_>4 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0359439998865128</threshold>
- <left_val>-0.1948059946298599</left_val>
- <right_val>0.9575750231742859</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 14 14 -1.</_>
- <_>14 6 7 7 2.</_>
- <_>7 13 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9510000497102737e-003</threshold>
- <left_val>0.3092780113220215</left_val>
- <right_val>-0.2553020119667053</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 9 6 -1.</_>
- <_>0 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209420006722212</threshold>
- <left_val>-7.6319999061524868e-003</left_val>
- <right_val>-1.0086350440979004</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 14 8 9 -1.</_>
- <_>15 17 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0298779997974634</threshold>
- <left_val>-0.4602769911289215</left_val>
- <right_val>0.1950719952583313</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 22 4 -1.</_>
- <_>1 1 11 2 2.</_>
- <_>12 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259719993919134</threshold>
- <left_val>-0.0121879996731877</left_val>
- <right_val>-1.0035500526428223</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 9 6 -1.</_>
- <_>9 13 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106030004099011</threshold>
- <left_val>-0.0759690031409264</left_val>
- <right_val>0.4166989922523499</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 18 3 -1.</_>
- <_>0 16 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5819996893405914e-003</threshold>
- <left_val>-0.2664859890937805</left_val>
- <right_val>0.3911150097846985</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 14 7 9 -1.</_>
- <_>16 17 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212709996849298</threshold>
- <left_val>0.1827390044927597</left_val>
- <right_val>-0.3605229854583740</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 16 4 -1.</_>
- <_>12 3 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0745180025696754</threshold>
- <left_val>-0.1893839985132217</left_val>
- <right_val>0.9265800118446350</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 12 5 -1.</_>
- <_>7 6 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6569998376071453e-003</threshold>
- <left_val>-0.1450619995594025</left_val>
- <right_val>0.3329460024833679</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 9 -1.</_>
- <_>11 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7119999974966049e-003</threshold>
- <left_val>-0.5246400237083435</left_val>
- <right_val>0.0898799970746040</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 10 -1.</_>
- <_>12 1 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8500004969537258e-004</threshold>
- <left_val>-0.3838199973106384</left_val>
- <right_val>0.2439299970865250</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 10 -1.</_>
- <_>10 1 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0282339993864298</threshold>
- <left_val>-5.7879998348653316e-003</left_val>
- <right_val>-1.2617139816284180</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 6 9 -1.</_>
- <_>15 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0326780006289482</threshold>
- <left_val>-0.5795329809188843</left_val>
- <right_val>0.1695529967546463</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 6 9 -1.</_>
- <_>3 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0225360002368689</threshold>
- <left_val>0.0222810003906488</left_val>
- <right_val>-0.8786960244178772</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 3 19 -1.</_>
- <_>16 1 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216579996049404</threshold>
- <left_val>-0.6510850191116333</left_val>
- <right_val>0.1296689957380295</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 9 -1.</_>
- <_>3 3 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6799998059868813e-003</threshold>
- <left_val>-0.3396520018577576</left_val>
- <right_val>0.2201330065727234</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 3 19 -1.</_>
- <_>16 0 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145920002833009</threshold>
- <left_val>0.1507730036973953</left_val>
- <right_val>-0.5045239925384522</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 12 4 -1.</_>
- <_>12 3 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0278680007904768</threshold>
- <left_val>-0.2504529953002930</left_val>
- <right_val>0.4574199914932251</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 9 -1.</_>
- <_>10 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6940000504255295e-003</threshold>
- <left_val>-0.1094850003719330</left_val>
- <right_val>0.5575780272483826</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 3 19 -1.</_>
- <_>7 0 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100029995664954</threshold>
- <left_val>-0.9736629724502564</left_val>
- <right_val>0.0184679999947548</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 3 12 -1.</_>
- <_>11 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0719998069107533e-003</threshold>
- <left_val>0.3822219967842102</left_val>
- <right_val>-0.1692110002040863</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 10 5 -1.</_>
- <_>11 7 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225939992815256</threshold>
- <left_val>-1.0391089916229248</left_val>
- <right_val>5.1839998923242092e-003</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 18 -1.</_>
- <_>12 3 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0395799987018108</threshold>
- <left_val>-5.5109229087829590</left_val>
- <right_val>0.1116399988532066</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 6 12 -1.</_>
- <_>11 3 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0175379998981953</threshold>
- <left_val>0.9548580050468445</left_val>
- <right_val>-0.1858450025320053</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 19 3 -1.</_>
- <_>3 8 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0300003066658974e-003</threshold>
- <left_val>0.0104360003024340</left_val>
- <right_val>0.8211479783058167</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 18 3 -1.</_>
- <_>2 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9539995640516281e-003</threshold>
- <left_val>0.2263289988040924</left_val>
- <right_val>-0.3456819951534271</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 18 4 -1.</_>
- <_>12 13 9 2 2.</_>
- <_>3 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270910002291203</threshold>
- <left_val>0.1643009930849075</left_val>
- <right_val>-1.3926379680633545</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 9 -1.</_>
- <_>5 5 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206259991973639</threshold>
- <left_val>-0.8636609911918640</left_val>
- <right_val>2.3880000226199627e-003</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 20 4 -1.</_>
- <_>14 1 10 2 2.</_>
- <_>4 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0719899982213974</threshold>
- <left_val>-2.8192629814147949</left_val>
- <right_val>0.1157049983739853</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 20 4 -1.</_>
- <_>0 1 10 2 2.</_>
- <_>10 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0269649997353554</threshold>
- <left_val>-1.2946130037307739</left_val>
- <right_val>-0.0246610008180141</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 6 6 -1.</_>
- <_>10 15 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0473779998719692</threshold>
- <left_val>-0.8130639791488648</left_val>
- <right_val>0.1183139979839325</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 8 -1.</_>
- <_>8 2 8 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1089560016989708</threshold>
- <left_val>0.6593790054321289</left_val>
- <right_val>-0.2084390074014664</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 18 3 -1.</_>
- <_>5 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135740004479885</threshold>
- <left_val>7.4240001849830151e-003</left_val>
- <right_val>0.5315219759941101</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 6 6 -1.</_>
- <_>11 15 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6920001991093159e-003</threshold>
- <left_val>0.3065580129623413</left_val>
- <right_val>-0.3108429908752441</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 8 5 -1.</_>
- <_>11 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9070001803338528e-003</threshold>
- <left_val>0.2557649910449982</left_val>
- <right_val>-0.0529320016503334</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 8 5 -1.</_>
- <_>9 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376130007207394</threshold>
- <left_val>-1.4350049495697021</left_val>
- <right_val>-0.0154480002820492</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 14 6 -1.</_>
- <_>5 2 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6329998448491096e-003</threshold>
- <left_val>-0.1688439995050430</left_val>
- <right_val>0.4212490022182465</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0320970006287098</threshold>
- <left_val>-0.6497939825057983</left_val>
- <right_val>0.0411100015044212</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 5 12 -1.</_>
- <_>10 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0584959983825684</threshold>
- <left_val>-0.0529639981687069</left_val>
- <right_val>0.6336830258369446</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 8 14 -1.</_>
- <_>7 9 4 7 2.</_>
- <_>11 16 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0409019999206066</threshold>
- <left_val>-0.9210109710693359</left_val>
- <right_val>9.0640000998973846e-003</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 22 6 -1.</_>
- <_>12 5 11 3 2.</_>
- <_>1 8 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199250001460314</threshold>
- <left_val>0.5375999808311462</left_val>
- <right_val>-0.0629969984292984</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 6 6 -1.</_>
- <_>0 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6020001173019409e-003</threshold>
- <left_val>-0.5433350205421448</left_val>
- <right_val>0.0841049998998642</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 9 4 -1.</_>
- <_>12 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168249998241663</threshold>
- <left_val>0.1556369960308075</left_val>
- <right_val>-0.4017120003700256</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 19 3 -1.</_>
- <_>2 19 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4790002331137657e-003</threshold>
- <left_val>-0.2424529939889908</left_val>
- <right_val>0.5150949954986572</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 9 4 -1.</_>
- <_>12 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195349995046854</threshold>
- <left_val>-0.5111839771270752</left_val>
- <right_val>0.1383199989795685</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 18 3 -1.</_>
- <_>1 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107460003346205</threshold>
- <left_val>-0.2185499966144562</left_val>
- <right_val>0.6282870173454285</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 9 4 -1.</_>
- <_>12 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0379270017147064</threshold>
- <left_val>0.1164029985666275</left_val>
- <right_val>-2.7301959991455078</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 3 -1.</_>
- <_>0 1 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0163909997791052</threshold>
- <left_val>-0.0146359996870160</left_val>
- <right_val>-1.0797250270843506</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 14 4 -1.</_>
- <_>5 2 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197850000113249</threshold>
- <left_val>1.2166420221328735</left_val>
- <right_val>0.0332750007510185</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 9 6 -1.</_>
- <_>6 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110670002177358</threshold>
- <left_val>-0.2538830041885376</left_val>
- <right_val>0.4403859972953796</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 9 -1.</_>
- <_>14 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2479999139904976e-003</threshold>
- <left_val>0.2249680012464523</left_val>
- <right_val>-0.2421649992465973</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 13 4 -1.</_>
- <_>5 22 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111419996246696</threshold>
- <left_val>0.2501809895038605</left_val>
- <right_val>-0.3081150054931641</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 12 -1.</_>
- <_>9 13 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106669999659061</threshold>
- <left_val>-0.3272910118103027</left_val>
- <right_val>0.2616829872131348</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 21 3 -1.</_>
- <_>8 10 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1054529994726181</threshold>
- <left_val>-0.0557500012218952</left_val>
- <right_val>-1.9605729579925537</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 9 6 -1.</_>
- <_>11 8 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0548279993236065</threshold>
- <left_val>-1.9519999623298645e-003</left_val>
- <right_val>0.7386609911918640</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 9 7 -1.</_>
- <_>6 10 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177609995007515</threshold>
- <left_val>-0.3064720034599304</left_val>
- <right_val>0.2634699940681458</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 10 8 -1.</_>
- <_>17 10 5 4 2.</_>
- <_>12 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311859995126724</threshold>
- <left_val>-0.2460090070962906</left_val>
- <right_val>0.1708219945430756</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 24 3 -1.</_>
- <_>8 15 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0572960004210472</threshold>
- <left_val>0.4703350067138672</left_val>
- <right_val>-0.2604829967021942</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 9 6 -1.</_>
- <_>8 7 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113120004534721</threshold>
- <left_val>0.3862890005111694</left_val>
- <right_val>-0.2881700098514557</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 9 -1.</_>
- <_>4 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0305920001119375</threshold>
- <left_val>-0.0488260015845299</left_val>
- <right_val>-1.7638969421386719</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 9 4 -1.</_>
- <_>12 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8489999929443002e-003</threshold>
- <left_val>0.2109989970922470</left_val>
- <right_val>-0.0259409993886948</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 6 -1.</_>
- <_>9 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114190001040697</threshold>
- <left_val>-0.1682959944009781</left_val>
- <right_val>1.0278660058975220</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 14 10 -1.</_>
- <_>16 9 7 5 2.</_>
- <_>9 14 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0814030021429062</threshold>
- <left_val>0.1153199970722199</left_val>
- <right_val>-1.2482399940490723</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 14 10 -1.</_>
- <_>1 9 7 5 2.</_>
- <_>8 14 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0534959994256496</threshold>
- <left_val>-0.0463039986789227</left_val>
- <right_val>-1.7165969610214233</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 9 17 -1.</_>
- <_>11 7 3 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239480007439852</threshold>
- <left_val>-0.4024659991264343</left_val>
- <right_val>0.2056210041046143</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 20 -1.</_>
- <_>3 4 3 10 2.</_>
- <_>6 14 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7690000869333744e-003</threshold>
- <left_val>-0.3315230011940002</left_val>
- <right_val>0.2068340033292770</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 4 -1.</_>
- <_>7 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323439985513687</threshold>
- <left_val>-0.7263280153274536</left_val>
- <right_val>0.2007350027561188</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 9 -1.</_>
- <_>12 7 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378630012273788</threshold>
- <left_val>-0.1563100069761276</left_val>
- <right_val>1.6697460412979126</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 6 9 -1.</_>
- <_>12 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154400002211332</threshold>
- <left_val>0.1948740035295487</left_val>
- <right_val>-0.3538419902324677</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 6 16 -1.</_>
- <_>3 8 3 8 2.</_>
- <_>6 16 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443760007619858</threshold>
- <left_val>0.8209360241889954</left_val>
- <right_val>-0.1819359958171845</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 9 4 -1.</_>
- <_>12 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231020003557205</threshold>
- <left_val>-0.4304409921169281</left_val>
- <right_val>0.1237540021538734</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 9 4 -1.</_>
- <_>3 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194000005722046</threshold>
- <left_val>-0.0297260005027056</left_val>
- <right_val>-1.1597590446472168</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 9 6 -1.</_>
- <_>13 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1038570031523705</threshold>
- <left_val>0.1114989966154099</left_val>
- <right_val>-4.6835222244262695</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 4 10 -1.</_>
- <_>5 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189640000462532</threshold>
- <left_val>2.1773819923400879</left_val>
- <right_val>-0.1454440057277679</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 12 6 -1.</_>
- <_>11 5 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0387509986758232</threshold>
- <left_val>-0.0494460016489029</left_val>
- <right_val>0.3401829898357391</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 9 8 -1.</_>
- <_>9 4 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227669999003410</threshold>
- <left_val>-0.3280299901962280</left_val>
- <right_val>0.3053140044212341</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 10 8 -1.</_>
- <_>17 16 5 4 2.</_>
- <_>12 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0313570015132427</threshold>
- <left_val>1.1520819664001465</left_val>
- <right_val>0.0273059997707605</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 10 8 -1.</_>
- <_>2 16 5 4 2.</_>
- <_>7 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6909999847412109e-003</threshold>
- <left_val>-0.3879950046539307</left_val>
- <right_val>0.2151259928941727</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 4 -1.</_>
- <_>12 0 12 2 2.</_>
- <_>0 2 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0492849983274937</threshold>
- <left_val>-1.6774909496307373</left_val>
- <right_val>0.1577419936656952</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 9 6 -1.</_>
- <_>0 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0395109988749027</threshold>
- <left_val>-0.9764789938926697</left_val>
- <right_val>-0.0105520002543926</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 24 6 -1.</_>
- <_>12 4 12 3 2.</_>
- <_>0 7 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0479979999363422</threshold>
- <left_val>0.2084390074014664</left_val>
- <right_val>-0.6899279952049255</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 11 4 -1.</_>
- <_>5 2 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0514229983091354</threshold>
- <left_val>-0.1666530072689056</left_val>
- <right_val>1.2149239778518677</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 22 4 -1.</_>
- <_>12 1 11 2 2.</_>
- <_>1 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142799997702241</threshold>
- <left_val>0.2362769991159439</left_val>
- <right_val>-0.4139679968357086</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 18 -1.</_>
- <_>9 15 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0916119962930679</threshold>
- <left_val>-0.9283090233802795</left_val>
- <right_val>-0.0183450002223253</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 20 4 -1.</_>
- <_>2 11 20 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5080001950263977e-003</threshold>
- <left_val>-0.7364720106124878</left_val>
- <right_val>0.1949709951877594</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 14 14 -1.</_>
- <_>5 9 14 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0357230007648468</threshold>
- <left_val>0.1419779956340790</left_val>
- <right_val>-0.4208930134773254</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 16 6 -1.</_>
- <_>4 5 16 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0506380014121532</threshold>
- <left_val>0.0116440001875162</left_val>
- <right_val>0.7848659753799439</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 19 3 -1.</_>
- <_>2 4 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0146139999851584</threshold>
- <left_val>-1.1909500360488892</left_val>
- <right_val>-0.0351280011236668</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 10 4 -1.</_>
- <_>7 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0386629998683929</threshold>
- <left_val>2.4314730167388916</left_val>
- <right_val>0.0656479969620705</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 4 15 -1.</_>
- <_>0 14 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0403469987213612</threshold>
- <left_val>0.7175530195236206</left_val>
- <right_val>-0.1910829991102219</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 21 3 -1.</_>
- <_>2 11 21 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239020008593798</threshold>
- <left_val>0.1564619988203049</left_val>
- <right_val>-0.7929480075836182</right_val></_></_></trees>
- <stage_threshold>-3.4265899658203125</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 6 -1.</_>
- <_>6 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5640000179409981e-003</threshold>
- <left_val>-0.8145070075988770</left_val>
- <right_val>0.5887529850006104</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 14 9 -1.</_>
- <_>6 7 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1329260021448135</threshold>
- <left_val>0.9321339726448059</left_val>
- <right_val>-0.2936730086803436</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 9 -1.</_>
- <_>11 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8400004208087921e-003</threshold>
- <left_val>-0.5646290183067322</left_val>
- <right_val>0.4164769947528839</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 9 9 -1.</_>
- <_>15 11 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0889998674392700e-003</threshold>
- <left_val>-0.7923280000686646</left_val>
- <right_val>0.1697500050067902</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 21 -1.</_>
- <_>8 7 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0610390007495880</threshold>
- <left_val>-1.4169000387191772</left_val>
- <right_val>0.0250209998339415</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 22 19 2 -1.</_>
- <_>3 23 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6599999768659472e-004</threshold>
- <left_val>0.3798249959945679</left_val>
- <right_val>-0.4156709909439087</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 20 3 -1.</_>
- <_>2 16 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3889999613165855e-003</threshold>
- <left_val>-0.4076859951019287</left_val>
- <right_val>0.3554849922657013</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 0 4 13 -1.</_>
- <_>19 0 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210069995373487</threshold>
- <left_val>-0.2408010065555573</left_val>
- <right_val>0.8611270189285278</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 8 8 -1.</_>
- <_>1 11 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5559997931122780e-003</threshold>
- <left_val>-0.8746719956398010</left_val>
- <right_val>0.0985720008611679</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 6 9 -1.</_>
- <_>14 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247799996286631</threshold>
- <left_val>0.1556620001792908</left_val>
- <right_val>-0.6922979950904846</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 9 -1.</_>
- <_>4 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0356200002133846</threshold>
- <left_val>-1.1472270488739014</left_val>
- <right_val>0.0363599993288517</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 4 10 -1.</_>
- <_>14 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198100004345179</threshold>
- <left_val>0.1551620066165924</left_val>
- <right_val>-0.6952009797096252</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 4 10 -1.</_>
- <_>8 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150199998170137</threshold>
- <left_val>0.0419900007545948</left_val>
- <right_val>-0.9662280082702637</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 6 -1.</_>
- <_>14 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231379996985197</threshold>
- <left_val>0.4339689910411835</left_val>
- <right_val>2.4160000029951334e-003</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 6 -1.</_>
- <_>4 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187430009245873</threshold>
- <left_val>0.4348109960556030</left_val>
- <right_val>-0.3252249956130981</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 21 -1.</_>
- <_>8 2 8 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4508000016212463</threshold>
- <left_val>-0.0945739969611168</left_val>
- <right_val>0.7242130041122437</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 6 13 -1.</_>
- <_>3 2 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118549996986985</threshold>
- <left_val>-0.3813309967517853</left_val>
- <right_val>0.3009839951992035</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 0 4 21 -1.</_>
- <_>20 0 2 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248300004750490</threshold>
- <left_val>0.8930060267448425</left_val>
- <right_val>-0.1029589995741844</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 20 -1.</_>
- <_>2 4 2 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0447430014610291</threshold>
- <left_val>0.8628029823303223</left_val>
- <right_val>-0.2171649932861328</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 16 9 6 -1.</_>
- <_>8 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0146000003442168</threshold>
- <left_val>0.6006940007209778</left_val>
- <right_val>-0.1590629965066910</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245270002633333</threshold>
- <left_val>-1.5872869491577148</left_val>
- <right_val>-0.0218170005828142</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 12 7 9 -1.</_>
- <_>16 15 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0230240002274513</threshold>
- <left_val>0.1685339957475662</left_val>
- <right_val>-0.3810690045356751</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 3 -1.</_>
- <_>12 21 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0249170009046793</threshold>
- <left_val>0.5081089735031128</left_val>
- <right_val>-0.2727989852428436</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 6 9 -1.</_>
- <_>11 5 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0130000300705433e-003</threshold>
- <left_val>-0.4313879907131195</left_val>
- <right_val>0.2643809914588928</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 10 -1.</_>
- <_>12 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156030002981424</threshold>
- <left_val>-0.3162420094013214</left_val>
- <right_val>0.5571590065956116</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0266859997063875</threshold>
- <left_val>1.0553920269012451</left_val>
- <right_val>0.0290740001946688</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 9 -1.</_>
- <_>10 5 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3940000208094716e-003</threshold>
- <left_val>-0.7187380194664002</left_val>
- <right_val>0.0653909966349602</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 10 4 -1.</_>
- <_>14 16 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4799998654052615e-004</threshold>
- <left_val>0.2488439977169037</left_val>
- <right_val>-0.2097820043563843</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 14 14 -1.</_>
- <_>5 5 7 7 2.</_>
- <_>12 12 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0318880006670952</threshold>
- <left_val>-0.6884449720382690</left_val>
- <right_val>0.0635899975895882</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 12 6 -1.</_>
- <_>18 8 6 3 2.</_>
- <_>12 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9290000461041927e-003</threshold>
- <left_val>-0.5915250182151794</left_val>
- <right_val>0.2794359922409058</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 12 -1.</_>
- <_>6 6 6 6 2.</_>
- <_>12 12 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0311680007725954</threshold>
- <left_val>0.0452239997684956</left_val>
- <right_val>-0.8863919973373413</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 13 6 10 -1.</_>
- <_>13 13 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0336630009114742</threshold>
- <left_val>-0.6159020066261292</left_val>
- <right_val>0.1574929952621460</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 20 8 -1.</_>
- <_>1 10 10 4 2.</_>
- <_>11 14 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119669996201992</threshold>
- <left_val>-0.3060669898986816</left_val>
- <right_val>0.4229330122470856</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 13 9 6 -1.</_>
- <_>15 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346800014376640</threshold>
- <left_val>-1.3734940290451050</left_val>
- <right_val>0.1590870022773743</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>9 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9290004000067711e-003</threshold>
- <left_val>-0.5586019754409790</left_val>
- <right_val>0.1211920008063316</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 5 14 -1.</_>
- <_>10 8 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0595749989151955</threshold>
- <left_val>4.9720001406967640e-003</left_val>
- <right_val>0.8205540180206299</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 16 6 -1.</_>
- <_>3 6 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0654280036687851</threshold>
- <left_val>1.5651429891586304</left_val>
- <right_val>-0.1681749969720841</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 3 8 9 -1.</_>
- <_>16 6 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0928959995508194</threshold>
- <left_val>-1.5794529914855957</left_val>
- <right_val>0.1466179937124252</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 6 10 -1.</_>
- <_>9 13 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0411840006709099</threshold>
- <left_val>-1.5518720149993896</left_val>
- <right_val>-0.0299699995666742</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 13 9 6 -1.</_>
- <_>15 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214479994028807</threshold>
- <left_val>0.1719630062580109</left_val>
- <right_val>-0.6934319734573364</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 9 6 -1.</_>
- <_>0 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255699995905161</threshold>
- <left_val>-1.3061310052871704</left_val>
- <right_val>-0.0243369992822409</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 16 9 6 -1.</_>
- <_>13 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0412009991705418</threshold>
- <left_val>-1.3821059465408325</left_val>
- <right_val>0.1480180025100708</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 9 6 -1.</_>
- <_>2 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176689997315407</threshold>
- <left_val>-0.7088999748229981</left_val>
- <right_val>0.0365240015089512</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 18 3 -1.</_>
- <_>5 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0060001239180565e-003</threshold>
- <left_val>-0.0409139990806580</left_val>
- <right_val>0.8037310242652893</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 18 3 -1.</_>
- <_>1 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116529995575547</threshold>
- <left_val>0.5754680037498474</left_val>
- <right_val>-0.2499170005321503</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 18 3 -1.</_>
- <_>5 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4780001305043697e-003</threshold>
- <left_val>-0.4928089976310730</left_val>
- <right_val>0.1981090009212494</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 19 2 -1.</_>
- <_>1 2 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5499999113380909e-004</threshold>
- <left_val>-0.4885810017585754</left_val>
- <right_val>0.1356309950351715</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 6 11 -1.</_>
- <_>16 2 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305380001664162</threshold>
- <left_val>-0.6027839779853821</left_val>
- <right_val>0.1852200031280518</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 15 6 -1.</_>
- <_>9 15 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188469998538494</threshold>
- <left_val>0.2356559932231903</left_val>
- <right_val>-0.3513630032539368</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 6 11 -1.</_>
- <_>16 2 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1129996106028557e-003</threshold>
- <left_val>-0.0813049972057343</left_val>
- <right_val>0.2106959968805313</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 11 -1.</_>
- <_>6 2 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0348300002515316</threshold>
- <left_val>-1.2065670490264893</left_val>
- <right_val>-0.0142519995570183</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 9 -1.</_>
- <_>18 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0190210007131100</threshold>
- <left_val>0.2334990054368973</left_val>
- <right_val>-0.4566490054130554</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 22 4 -1.</_>
- <_>1 2 11 2 2.</_>
- <_>12 4 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190040003508329</threshold>
- <left_val>-0.8107579946517944</left_val>
- <right_val>0.0131400004029274</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 21 12 -1.</_>
- <_>9 0 7 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0890579968690872</threshold>
- <left_val>0.6154239773750305</left_val>
- <right_val>0.0329830013215542</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 18 3 -1.</_>
- <_>0 13 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8620000965893269e-003</threshold>
- <left_val>-0.2958309948444367</left_val>
- <right_val>0.2700369954109192</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 6 9 -1.</_>
- <_>14 2 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0282409992069006</threshold>
- <left_val>-0.6110270023345947</left_val>
- <right_val>0.1735749989748001</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 18 3 -1.</_>
- <_>3 11 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2099999953061342e-004</threshold>
- <left_val>-0.5332289934158325</left_val>
- <right_val>0.0685390010476112</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 3 8 9 -1.</_>
- <_>16 6 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1082910001277924</threshold>
- <left_val>-1.2879559993743896</left_val>
- <right_val>0.1180170029401779</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 3 -1.</_>
- <_>3 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158789996057749</threshold>
- <left_val>-0.1707260012626648</left_val>
- <right_val>1.1103910207748413</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 6 9 -1.</_>
- <_>11 11 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6859995499253273e-003</threshold>
- <left_val>-0.1099509969353676</left_val>
- <right_val>0.4601050019264221</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 6 9 -1.</_>
- <_>11 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252349991351366</threshold>
- <left_val>1.0220669507980347</left_val>
- <right_val>-0.1869429945945740</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 18 -1.</_>
- <_>15 0 1 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135089997202158</threshold>
- <left_val>-0.7831659913063049</left_val>
- <right_val>0.1420260071754456</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 2 18 -1.</_>
- <_>8 0 1 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7149998396635056e-003</threshold>
- <left_val>-0.8806070089340210</left_val>
- <right_val>0.0110600003972650</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 3 7 9 -1.</_>
- <_>17 6 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0715800002217293</threshold>
- <left_val>0.1136939972639084</left_val>
- <right_val>-1.1032789945602417</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 9 6 -1.</_>
- <_>3 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135540002956986</threshold>
- <left_val>-0.8109650015830994</left_val>
- <right_val>3.4080001059919596e-003</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 21 3 -1.</_>
- <_>3 19 21 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9450000729411840e-003</threshold>
- <left_val>-0.0728799998760223</left_val>
- <right_val>0.3499810099601746</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 7 9 -1.</_>
- <_>0 6 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0508330017328262</threshold>
- <left_val>-1.2868590354919434</left_val>
- <right_val>-0.0288420002907515</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 22 3 -1.</_>
- <_>2 8 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7989997118711472e-003</threshold>
- <left_val>0.4761359989643097</left_val>
- <right_val>-0.1469040066003799</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 16 -1.</_>
- <_>0 3 12 8 2.</_>
- <_>12 11 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2142439931631088</threshold>
- <left_val>-0.0597020015120506</left_val>
- <right_val>-2.4802260398864746</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 17 9 4 -1.</_>
- <_>13 19 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139629999175668</threshold>
- <left_val>0.1742029935121536</left_val>
- <right_val>-0.4391100108623505</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 12 8 -1.</_>
- <_>5 5 6 4 2.</_>
- <_>11 9 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0425020009279251</threshold>
- <left_val>-0.1996529996395111</left_val>
- <right_val>0.7065479755401611</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 6 -1.</_>
- <_>12 6 7 3 2.</_>
- <_>5 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198279991745949</threshold>
- <left_val>-0.0691360011696815</left_val>
- <right_val>0.6164339780807495</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 14 6 -1.</_>
- <_>5 16 7 3 2.</_>
- <_>12 19 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0335600003600121</threshold>
- <left_val>-1.2740780115127563</left_val>
- <right_val>-0.0256730001419783</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 9 -1.</_>
- <_>18 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0635429993271828</threshold>
- <left_val>0.1240350008010864</left_val>
- <right_val>-1.0776289701461792</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 9 -1.</_>
- <_>0 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219330005347729</threshold>
- <left_val>0.0149520002305508</left_val>
- <right_val>-0.7102349996566773</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 20 10 -1.</_>
- <_>13 4 10 5 2.</_>
- <_>3 9 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0784249976277351</threshold>
- <left_val>0.6203399896621704</left_val>
- <right_val>0.0336109995841980</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 9 8 -1.</_>
- <_>5 13 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143900001421571</threshold>
- <left_val>-0.3632459938526154</left_val>
- <right_val>0.1730830073356628</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 21 15 -1.</_>
- <_>9 1 7 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0673099979758263</threshold>
- <left_val>0.5237410068511963</left_val>
- <right_val>0.0127999996766448</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 14 8 -1.</_>
- <_>12 12 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1304749995470047</threshold>
- <left_val>-0.1712249964475632</left_val>
- <right_val>1.1235200166702271</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 4 -1.</_>
- <_>6 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0462459996342659</threshold>
- <left_val>-1.1908329725265503</left_val>
- <right_val>0.1742559969425201</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 9 6 -1.</_>
- <_>9 5 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0298420004546642</threshold>
- <left_val>0.8393059968948364</left_val>
- <right_val>-0.1806419938802719</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 6 -1.</_>
- <_>13 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8099999073892832e-004</threshold>
- <left_val>0.3553279936313629</left_val>
- <right_val>-0.2384230047464371</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 6 -1.</_>
- <_>8 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223789997398853</threshold>
- <left_val>-0.8794389963150024</left_val>
- <right_val>-7.8399997437372804e-004</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 18 2 -1.</_>
- <_>6 5 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5569999814033508e-003</threshold>
- <left_val>-0.1425330042839050</left_val>
- <right_val>0.2587620019912720</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 11 -1.</_>
- <_>2 2 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120130004361272</threshold>
- <left_val>-0.2901549935340881</left_val>
- <right_val>0.2605110108852387</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 6 15 -1.</_>
- <_>20 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243849996477365</threshold>
- <left_val>-0.0314389988780022</left_val>
- <right_val>0.5869590044021606</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 13 -1.</_>
- <_>2 0 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0471809990704060</threshold>
- <left_val>0.6943010091781616</left_val>
- <right_val>-0.2181610018014908</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248939990997314</threshold>
- <left_val>-0.6459929943084717</left_val>
- <right_val>0.1561159938573837</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219449996948242</threshold>
- <left_val>-0.0277420002967119</left_val>
- <right_val>-1.1346880197525024</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 4 -1.</_>
- <_>8 2 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1880989968776703</threshold>
- <left_val>-0.0100760003551841</left_val>
- <right_val>1.2429029941558838</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 18 4 -1.</_>
- <_>12 13 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0778720006346703</threshold>
- <left_val>0.8500800132751465</left_val>
- <right_val>-0.1901549994945526</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 10 4 -1.</_>
- <_>9 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0487690009176731</threshold>
- <left_val>-2.0763080120086670</left_val>
- <right_val>0.1217940002679825</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 3 -1.</_>
- <_>11 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171150006353855</threshold>
- <left_val>-0.8568729758262634</left_val>
- <right_val>7.8760003671050072e-003</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 19 3 -1.</_>
- <_>4 15 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7499999850988388e-003</threshold>
- <left_val>0.3864549994468689</left_val>
- <right_val>-0.1139149963855743</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 4 20 -1.</_>
- <_>10 10 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0987939983606339</threshold>
- <left_val>-1.7233899831771851</left_val>
- <right_val>-0.0560630001127720</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 9 6 -1.</_>
- <_>8 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219369996339083</threshold>
- <left_val>0.5474939942359924</left_val>
- <right_val>-0.0424819998443127</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 15 4 -1.</_>
- <_>7 9 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0610969997942448</threshold>
- <left_val>-0.0389450006186962</left_val>
- <right_val>-1.0807880163192749</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 12 7 -1.</_>
- <_>12 4 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245639998465776</threshold>
- <left_val>0.5831109881401062</left_val>
- <right_val>-9.7599998116493225e-004</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 6 9 -1.</_>
- <_>0 13 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0337520018219948</threshold>
- <left_val>-0.0137959998100996</left_val>
- <right_val>-0.8473029732704163</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 6 9 -1.</_>
- <_>18 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0381990000605583</threshold>
- <left_val>0.1511429995298386</left_val>
- <right_val>-0.7947340011596680</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 16 6 -1.</_>
- <_>0 18 8 3 2.</_>
- <_>8 21 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201179999858141</threshold>
- <left_val>0.5157909989356995</left_val>
- <right_val>-0.2144539952278137</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 14 6 -1.</_>
- <_>16 18 7 3 2.</_>
- <_>9 21 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247349999845028</threshold>
- <left_val>-0.0221050009131432</left_val>
- <right_val>0.4291769862174988</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 20 4 -1.</_>
- <_>1 20 10 2 2.</_>
- <_>11 22 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0243570003658533</threshold>
- <left_val>-0.8620129823684692</left_val>
- <right_val>-3.6760000512003899e-003</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 20 6 -1.</_>
- <_>12 8 10 3 2.</_>
- <_>2 11 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264420006424189</threshold>
- <left_val>-0.4539749920368195</left_val>
- <right_val>0.2246280014514923</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 6 9 -1.</_>
- <_>9 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4429999068379402e-003</threshold>
- <left_val>0.1307300031185150</left_val>
- <right_val>-0.3862270116806030</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 12 8 -1.</_>
- <_>12 5 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1070170029997826</threshold>
- <left_val>0.1315860003232956</left_val>
- <right_val>-0.7930690050125122</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 12 8 -1.</_>
- <_>8 5 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0451529994606972</threshold>
- <left_val>-0.2529680132865906</left_val>
- <right_val>0.4067240059375763</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0443499982357025</threshold>
- <left_val>0.0226130001246929</left_val>
- <right_val>0.7961810231208801</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 16 -1.</_>
- <_>4 0 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0839999886229634e-003</threshold>
- <left_val>-0.3915840089321137</left_val>
- <right_val>0.1163910031318665</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 6 12 -1.</_>
- <_>15 8 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0714330002665520</threshold>
- <left_val>0.0824669972062111</left_val>
- <right_val>1.2530590295791626</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 12 -1.</_>
- <_>3 8 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358380004763603</threshold>
- <left_val>-0.1820330023765564</left_val>
- <right_val>0.7707870006561279</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0208390001207590</threshold>
- <left_val>-0.6174439787864685</left_val>
- <right_val>0.1589139997959137</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 15 22 -1.</_>
- <_>4 11 15 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4252580106258392</threshold>
- <left_val>-0.0489780008792877</left_val>
- <right_val>-1.8422030210494995</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114080002531409</threshold>
- <left_val>0.1791819930076599</left_val>
- <right_val>-0.1538349986076355</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 9 6 -1.</_>
- <_>0 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153649998828769</threshold>
- <left_val>-0.8401650190353394</left_val>
- <right_val>-1.0280000278726220e-003</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 6 -1.</_>
- <_>15 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152120003476739</threshold>
- <left_val>-0.1899569928646088</left_val>
- <right_val>0.1713099926710129</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 6 -1.</_>
- <_>0 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189720001071692</threshold>
- <left_val>-0.7954199910163879</left_val>
- <right_val>6.6800001077353954e-003</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 10 -1.</_>
- <_>14 0 4 5 2.</_>
- <_>10 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3330000005662441e-003</threshold>
- <left_val>-0.2353080064058304</left_val>
- <right_val>0.2473009973764420</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 4 16 -1.</_>
- <_>3 0 2 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0932480022311211</threshold>
- <left_val>-0.0547580011188984</left_val>
- <right_val>-1.8324300050735474</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 6 -1.</_>
- <_>7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125550003722310</threshold>
- <left_val>0.2638520002365112</left_val>
- <right_val>-0.3852640092372894</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 4 10 -1.</_>
- <_>10 17 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0270700007677078</threshold>
- <left_val>-0.6692979931831360</left_val>
- <right_val>0.0203409995883703</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 10 6 -1.</_>
- <_>8 6 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0236770007759333</threshold>
- <left_val>0.6726530194282532</left_val>
- <right_val>-0.0143440002575517</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 22 18 2 -1.</_>
- <_>12 22 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142750004306436</threshold>
- <left_val>0.3018639981746674</left_val>
- <right_val>-0.2851440012454987</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 11 6 -1.</_>
- <_>7 9 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0280969999730587</threshold>
- <left_val>0.1476600021123886</left_val>
- <right_val>-1.4078520536422729</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 10 -1.</_>
- <_>0 0 6 5 2.</_>
- <_>6 5 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0508400015532970</threshold>
- <left_val>-0.1861360073089600</left_val>
- <right_val>0.7995300292968750</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 12 6 -1.</_>
- <_>16 1 6 3 2.</_>
- <_>10 4 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0115059996023774</threshold>
- <left_val>0.1911839991807938</left_val>
- <right_val>-0.0850350037217140</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 9 4 -1.</_>
- <_>7 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0146610001102090</threshold>
- <left_val>0.4523929953575134</left_val>
- <right_val>-0.2220519930124283</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 15 16 -1.</_>
- <_>10 7 5 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2284249961376190</threshold>
- <left_val>0.1348839998245239</left_val>
- <right_val>-1.2894610166549683</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 12 13 -1.</_>
- <_>11 10 6 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1110690012574196</threshold>
- <left_val>-0.2075379937887192</left_val>
- <right_val>0.5456159710884094</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 12 6 -1.</_>
- <_>12 2 6 3 2.</_>
- <_>6 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2450000289827585e-003</threshold>
- <left_val>0.3205370008945465</left_val>
- <right_val>-0.1640350073575974</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 12 9 -1.</_>
- <_>3 12 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0853099972009659</threshold>
- <left_val>-0.2021050006151199</left_val>
- <right_val>0.5329679846763611</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 8 6 -1.</_>
- <_>16 5 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220480002462864</threshold>
- <left_val>0.1569859981536865</left_val>
- <right_val>-0.1701409965753555</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 8 6 -1.</_>
- <_>0 5 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156769994646311</threshold>
- <left_val>-0.6286349892616272</left_val>
- <right_val>0.0407619997859001</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 11 -1.</_>
- <_>0 3 12 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3311290144920349</threshold>
- <left_val>0.1660930067300797</left_val>
- <right_val>-1.0326379537582397</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 8 10 -1.</_>
- <_>0 13 4 5 2.</_>
- <_>4 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8470000773668289e-003</threshold>
- <left_val>-0.2507619857788086</left_val>
- <right_val>0.3166059851646423</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 4 10 -1.</_>
- <_>10 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0460800006985664</threshold>
- <left_val>0.1535210013389587</left_val>
- <right_val>-1.6333500146865845</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 21 -1.</_>
- <_>10 9 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0377030000090599</threshold>
- <left_val>0.5687379837036133</left_val>
- <right_val>-0.2010259926319122</right_val></_></_></trees>
- <stage_threshold>-3.5125269889831543</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 15 9 -1.</_>
- <_>4 7 15 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0818089991807938</threshold>
- <left_val>0.5712479948997498</left_val>
- <right_val>-0.6743879914283752</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 6 -1.</_>
- <_>8 1 8 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2176119983196259</threshold>
- <left_val>-0.3861019909381867</left_val>
- <right_val>0.9034399986267090</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 5 16 -1.</_>
- <_>9 14 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148780001327395</threshold>
- <left_val>0.2224159985780716</left_val>
- <right_val>-1.2779350280761719</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>9 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0524349994957447</threshold>
- <left_val>-0.2869040071964264</left_val>
- <right_val>0.7574229836463928</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 3 12 -1.</_>
- <_>6 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1429995372891426e-003</threshold>
- <left_val>-0.6488040089607239</left_val>
- <right_val>0.2226880043745041</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 9 -1.</_>
- <_>11 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9169999808073044e-003</threshold>
- <left_val>-0.2925359904766083</left_val>
- <right_val>0.3103019893169403</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 9 8 -1.</_>
- <_>8 6 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0260840002447367</threshold>
- <left_val>0.4553270041942596</left_val>
- <right_val>-0.3850060105323792</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 20 2 -1.</_>
- <_>4 4 20 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9400000348687172e-003</threshold>
- <left_val>-0.5126439929008484</left_val>
- <right_val>0.2743229866027832</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 18 3 -1.</_>
- <_>8 10 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0571300014853477</threshold>
- <left_val>0.0157880000770092</left_val>
- <right_val>-1.2133100032806396</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 10 6 -1.</_>
- <_>7 17 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1309998854994774e-003</threshold>
- <left_val>0.3917460143566132</left_val>
- <right_val>-0.3086679875850678</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 4 18 -1.</_>
- <_>1 4 2 9 2.</_>
- <_>3 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0404050014913082</threshold>
- <left_val>1.1901949644088745</left_val>
- <right_val>-0.2034710049629211</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 9 -1.</_>
- <_>15 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0202970001846552</threshold>
- <left_val>-0.6823949813842773</left_val>
- <right_val>0.2045869976282120</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 9 -1.</_>
- <_>7 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171889998018742</threshold>
- <left_val>-0.8493989706039429</left_val>
- <right_val>0.0384330004453659</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0242159999907017</threshold>
- <left_val>-1.1039420366287231</left_val>
- <right_val>0.1597509980201721</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 9 6 -1.</_>
- <_>9 7 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0568690001964569</threshold>
- <left_val>-0.1959529966115952</left_val>
- <right_val>1.1806850433349609</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 2 -1.</_>
- <_>3 1 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6199999158270657e-004</threshold>
- <left_val>-0.4084779918193817</left_val>
- <right_val>0.3293859958648682</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 20 4 -1.</_>
- <_>0 10 10 2 2.</_>
- <_>10 12 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9790003150701523e-003</threshold>
- <left_val>-0.2967300117015839</left_val>
- <right_val>0.4154790043830872</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 12 -1.</_>
- <_>10 8 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0526250004768372</threshold>
- <left_val>-1.3069299459457397</left_val>
- <right_val>0.1786260008811951</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 6 12 -1.</_>
- <_>6 5 3 6 2.</_>
- <_>9 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137489996850491</threshold>
- <left_val>0.2366580069065094</left_val>
- <right_val>-0.4453659951686859</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 22 -1.</_>
- <_>15 0 9 11 2.</_>
- <_>6 11 9 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305170007050037</threshold>
- <left_val>0.2901830077171326</left_val>
- <right_val>-0.1121010035276413</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 22 -1.</_>
- <_>0 0 9 11 2.</_>
- <_>9 11 9 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3003750145435333</threshold>
- <left_val>-2.4237680435180664</left_val>
- <right_val>-0.0428309999406338</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 11 -1.</_>
- <_>20 2 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0359909981489182</threshold>
- <left_val>0.8820649981498718</left_val>
- <right_val>-0.0470129996538162</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 11 -1.</_>
- <_>2 2 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0551120005548000</threshold>
- <left_val>0.8011900186538696</left_val>
- <right_val>-0.2049099951982498</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0337620005011559</threshold>
- <left_val>0.1461759954690933</left_val>
- <right_val>-1.1349489688873291</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 20 3 -1.</_>
- <_>0 1 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2710003480315208e-003</threshold>
- <left_val>-0.8160489797592163</left_val>
- <right_val>0.0189880002290010</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 20 2 -1.</_>
- <_>2 3 20 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4399999789893627e-003</threshold>
- <left_val>-0.7098090052604675</left_val>
- <right_val>0.2234369963407517</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 2 -1.</_>
- <_>1 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1059999018907547e-003</threshold>
- <left_val>-0.7280859947204590</left_val>
- <right_val>0.0402249991893768</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 7 6 9 -1.</_>
- <_>18 10 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0536519996821880</threshold>
- <left_val>0.1717090010643005</left_val>
- <right_val>-1.1163710355758667</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 22 9 -1.</_>
- <_>0 3 22 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1254139989614487</threshold>
- <left_val>2.7680370807647705</left_val>
- <right_val>-0.1461150050163269</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 3 6 9 -1.</_>
- <_>17 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0925420001149178</threshold>
- <left_val>0.1160980015993118</left_val>
- <right_val>-3.9635529518127441</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 6 9 -1.</_>
- <_>0 10 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0385139994323254</threshold>
- <left_val>-7.6399999670684338e-003</left_val>
- <right_val>-0.9878090023994446</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 6 -1.</_>
- <_>0 8 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0200000144541264e-003</threshold>
- <left_val>0.2305999994277954</left_val>
- <right_val>-0.7497029900550842</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 10 -1.</_>
- <_>2 2 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7599998116493225e-003</threshold>
- <left_val>-0.3113799989223480</left_val>
- <right_val>0.3028779923915863</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0240950006991625</threshold>
- <left_val>-0.0495299994945526</left_val>
- <right_val>0.5269010066986084</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179820004850626</threshold>
- <left_val>-1.1610640287399292</left_val>
- <right_val>-5.7000000961124897e-003</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 9 -1.</_>
- <_>17 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105550000444055</threshold>
- <left_val>-0.2718909978866577</left_val>
- <right_val>0.2359769940376282</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 9 -1.</_>
- <_>5 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2889998555183411e-003</threshold>
- <left_val>-0.5421910285949707</left_val>
- <right_val>0.0819140002131462</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239390004426241</threshold>
- <left_val>0.1797579973936081</left_val>
- <right_val>-0.6704949736595154</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0183659996837378</threshold>
- <left_val>0.6266430020332336</left_val>
- <right_val>-0.2097010016441345</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 14 9 6 -1.</_>
- <_>15 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157159995287657</threshold>
- <left_val>0.2419369965791702</left_val>
- <right_val>-1.0444309711456299</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 23 6 -1.</_>
- <_>0 17 23 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0488040000200272</threshold>
- <left_val>-0.9406059980392456</left_val>
- <right_val>-3.7519999314099550e-003</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 18 3 -1.</_>
- <_>5 16 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7130001261830330e-003</threshold>
- <left_val>-0.0754320025444031</left_val>
- <right_val>0.6157529950141907</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 9 6 -1.</_>
- <_>0 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7770001739263535e-003</threshold>
- <left_val>0.0392850004136562</left_val>
- <right_val>-0.8481029868125916</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 8 10 -1.</_>
- <_>13 8 4 5 2.</_>
- <_>9 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147449998185039</threshold>
- <left_val>0.1696899980306625</left_val>
- <right_val>-0.5090640187263489</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 15 6 -1.</_>
- <_>8 7 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0970790013670921</threshold>
- <left_val>-0.0331030003726482</left_val>
- <right_val>-1.2706379890441895</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 8 10 -1.</_>
- <_>13 8 4 5 2.</_>
- <_>9 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0482859984040260</threshold>
- <left_val>0.0943299978971481</left_val>
- <right_val>2.7203190326690674</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 12 -1.</_>
- <_>8 0 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7810002043843269e-003</threshold>
- <left_val>-0.3953340053558350</left_val>
- <right_val>0.1536380052566528</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 8 10 -1.</_>
- <_>13 8 4 5 2.</_>
- <_>9 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398939996957779</threshold>
- <left_val>-0.2276740074157715</left_val>
- <right_val>0.1391399949789047</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 9 -1.</_>
- <_>10 5 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0228480007499456</threshold>
- <left_val>-0.2739199995994568</left_val>
- <right_val>0.3419950008392334</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>12 6 2 9 2.</_>
- <_>10 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7179999314248562e-003</threshold>
- <left_val>-0.1087429970502853</left_val>
- <right_val>0.4812540113925934</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 12 4 -1.</_>
- <_>11 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0595999993383884</threshold>
- <left_val>-0.0495220012962818</left_val>
- <right_val>-2.0117089748382568</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 8 10 -1.</_>
- <_>13 8 4 5 2.</_>
- <_>9 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9340001791715622e-003</threshold>
- <left_val>0.1503749936819077</left_val>
- <right_val>-0.1127189993858337</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 8 10 -1.</_>
- <_>7 8 4 5 2.</_>
- <_>11 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157570000737906</threshold>
- <left_val>-0.0208850000053644</left_val>
- <right_val>-1.1651979684829712</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 10 6 14 -1.</_>
- <_>14 10 3 7 2.</_>
- <_>11 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0496900007128716</threshold>
- <left_val>-0.8021349906921387</left_val>
- <right_val>0.1437229961156845</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 19 -1.</_>
- <_>12 5 3 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0523470006883144</threshold>
- <left_val>-0.2083670049905777</left_val>
- <right_val>0.6167759895324707</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 12 6 -1.</_>
- <_>12 12 6 3 2.</_>
- <_>6 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224309992045164</threshold>
- <left_val>0.2030590027570725</left_val>
- <right_val>-0.7532619833946228</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 18 6 -1.</_>
- <_>1 9 9 3 2.</_>
- <_>10 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0411420017480850</threshold>
- <left_val>-0.1811819970607758</left_val>
- <right_val>1.0033359527587891</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 14 8 10 -1.</_>
- <_>20 14 4 5 2.</_>
- <_>16 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216320008039474</threshold>
- <left_val>0.4999899864196777</left_val>
- <right_val>-0.0346629992127419</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 22 8 -1.</_>
- <_>0 9 11 4 2.</_>
- <_>11 13 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0828080028295517</threshold>
- <left_val>1.1711900234222412</left_val>
- <right_val>-0.1843360066413879</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 12 6 -1.</_>
- <_>14 18 6 3 2.</_>
- <_>8 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5060000419616699e-003</threshold>
- <left_val>-0.0632250010967255</left_val>
- <right_val>0.2902489900588989</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 20 18 -1.</_>
- <_>0 6 10 9 2.</_>
- <_>10 15 10 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0789050012826920</threshold>
- <left_val>-0.2327450066804886</left_val>
- <right_val>0.5969579815864563</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 20 12 -1.</_>
- <_>13 6 10 6 2.</_>
- <_>3 12 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0902070030570030</threshold>
- <left_val>-0.8221189975738525</left_val>
- <right_val>0.1777220070362091</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 10 8 -1.</_>
- <_>0 16 5 4 2.</_>
- <_>5 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292690005153418</threshold>
- <left_val>0.6086069941520691</left_val>
- <right_val>-0.2146890014410019</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9499998353421688e-003</threshold>
- <left_val>-0.0426659993827343</left_val>
- <right_val>0.6051210165023804</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 19 3 -1.</_>
- <_>0 12 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0629996955394745e-003</threshold>
- <left_val>-1.1508270502090454</left_val>
- <right_val>-0.0272860005497932</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 9 -1.</_>
- <_>14 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195959992706776</threshold>
- <left_val>-9.1880001127719879e-003</left_val>
- <right_val>0.5685780048370361</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 22 4 -1.</_>
- <_>1 7 11 2 2.</_>
- <_>12 9 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148849999532104</threshold>
- <left_val>0.3765879869461060</left_val>
- <right_val>-0.2714950144290924</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 7 12 -1.</_>
- <_>13 10 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252170003950596</threshold>
- <left_val>-0.0999910011887550</left_val>
- <right_val>0.2466470003128052</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 11 9 -1.</_>
- <_>4 10 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158559996634722</threshold>
- <left_val>0.6682670116424561</left_val>
- <right_val>-0.2061470001935959</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 10 8 -1.</_>
- <_>17 10 5 4 2.</_>
- <_>12 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0294410008937120</threshold>
- <left_val>0.1583220064640045</left_val>
- <right_val>-0.7606089711189270</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 9 7 -1.</_>
- <_>5 12 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5279997438192368e-003</threshold>
- <left_val>0.3821229934692383</left_val>
- <right_val>-0.2540780007839203</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 14 6 9 -1.</_>
- <_>16 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244219992309809</threshold>
- <left_val>0.1510509997606278</left_val>
- <right_val>-0.2875289916992188</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 12 -1.</_>
- <_>3 16 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338869988918304</threshold>
- <left_val>-0.6800280213356018</left_val>
- <right_val>0.0343270003795624</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 6 -1.</_>
- <_>14 16 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0810000132769346e-003</threshold>
- <left_val>0.2541390061378479</left_val>
- <right_val>-0.2685909867286682</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 9 -1.</_>
- <_>10 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303589999675751</threshold>
- <left_val>-0.0308420006185770</left_val>
- <right_val>-1.1476809978485107</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 23 -1.</_>
- <_>11 1 2 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0210001170635223e-003</threshold>
- <left_val>-0.3525379896163940</left_val>
- <right_val>0.2986809909343720</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 9 6 -1.</_>
- <_>0 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0276810005307198</threshold>
- <left_val>-0.0381489992141724</left_val>
- <right_val>-1.3262039422988892</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 18 3 -1.</_>
- <_>4 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9039996489882469e-003</threshold>
- <left_val>-0.0237370003014803</left_val>
- <right_val>0.7050300240516663</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 13 14 -1.</_>
- <_>5 9 13 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0440310016274452</threshold>
- <left_val>0.1067489981651306</left_val>
- <right_val>-0.4526120126247406</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 8 12 -1.</_>
- <_>19 0 4 6 2.</_>
- <_>15 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323709994554520</threshold>
- <left_val>0.4667490124702454</left_val>
- <right_val>-0.0615469999611378</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 12 -1.</_>
- <_>0 0 4 6 2.</_>
- <_>4 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209330003708601</threshold>
- <left_val>-0.2844789922237396</left_val>
- <right_val>0.4384559988975525</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 8 7 -1.</_>
- <_>8 2 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252279993146658</threshold>
- <left_val>-0.0225370004773140</left_val>
- <right_val>0.7038909792900085</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 9 -1.</_>
- <_>3 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5520000644028187e-003</threshold>
- <left_val>-0.3255490064620972</left_val>
- <right_val>0.2402369976043701</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 6 12 -1.</_>
- <_>17 8 3 6 2.</_>
- <_>14 14 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0585579983890057</threshold>
- <left_val>-1.2227720022201538</left_val>
- <right_val>0.1166879981756210</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 12 -1.</_>
- <_>4 8 3 6 2.</_>
- <_>7 14 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318999998271465</threshold>
- <left_val>-0.0193050000816584</left_val>
- <right_val>-1.0973169803619385</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 5 15 -1.</_>
- <_>16 10 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0304450001567602</threshold>
- <left_val>0.6558250188827515</left_val>
- <right_val>0.0750909969210625</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 5 15 -1.</_>
- <_>3 10 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149330003187060</threshold>
- <left_val>-0.5215579867362976</left_val>
- <right_val>0.1152309998869896</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 6 9 -1.</_>
- <_>18 7 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0490080006420612</threshold>
- <left_val>-0.7830399870872498</left_val>
- <right_val>0.1665720045566559</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 6 15 -1.</_>
- <_>1 12 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0831589996814728</threshold>
- <left_val>-2.6879999786615372e-003</left_val>
- <right_val>-0.8528230190277100</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 15 12 8 -1.</_>
- <_>17 15 6 4 2.</_>
- <_>11 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239029992371798</threshold>
- <left_val>-0.0510109998285770</left_val>
- <right_val>0.4199909865856171</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 4 -1.</_>
- <_>0 2 12 2 2.</_>
- <_>12 4 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164289996027946</threshold>
- <left_val>0.0192329995334148</left_val>
- <right_val>-0.6504909992218018</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 2 19 -1.</_>
- <_>15 1 1 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118380002677441</threshold>
- <left_val>-0.6240980029106140</left_val>
- <right_val>0.1541119962930679</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 2 19 -1.</_>
- <_>8 1 1 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6799999866634607e-004</threshold>
- <left_val>0.1758919954299927</left_val>
- <right_val>-0.3433870077133179</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>22 1 2 20 -1.</_>
- <_>22 1 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191939994692802</threshold>
- <left_val>0.0434189997613430</left_val>
- <right_val>0.7906919717788696</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 2 20 -1.</_>
- <_>1 1 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100320000201464</threshold>
- <left_val>0.4564889967441559</left_val>
- <right_val>-0.2249480038881302</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 11 6 12 -1.</_>
- <_>20 11 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140040004625916</threshold>
- <left_val>0.3357099890708923</left_val>
- <right_val>-4.8799999058246613e-003</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 6 12 -1.</_>
- <_>2 11 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1031989976763725</threshold>
- <left_val>-2.3378000259399414</left_val>
- <right_val>-0.0589330010116100</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 14 -1.</_>
- <_>3 13 18 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0956970006227493</threshold>
- <left_val>-0.6615390181541443</left_val>
- <right_val>0.2009859979152679</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 7 8 -1.</_>
- <_>6 14 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414809994399548</threshold>
- <left_val>0.4593920111656189</left_val>
- <right_val>-0.2231409996747971</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 12 12 -1.</_>
- <_>7 13 12 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4099999573081732e-003</threshold>
- <left_val>-0.2689859867095947</left_val>
- <right_val>0.2492299973964691</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 18 5 -1.</_>
- <_>11 18 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1072499975562096</threshold>
- <left_val>-0.1864019930362701</left_val>
- <right_val>0.7276980280876160</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 21 20 3 -1.</_>
- <_>4 22 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1870000530034304e-003</threshold>
- <left_val>-0.0246089994907379</left_val>
- <right_val>0.2864390015602112</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 12 -1.</_>
- <_>9 12 3 6 2.</_>
- <_>12 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291670002043247</threshold>
- <left_val>-0.0346830002963543</left_val>
- <right_val>-1.1162580251693726</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 18 3 -1.</_>
- <_>4 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112870000302792</threshold>
- <left_val>6.3760001212358475e-003</left_val>
- <right_val>0.6663209795951843</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 3 -1.</_>
- <_>3 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120010003447533</threshold>
- <left_val>0.4242010116577148</left_val>
- <right_val>-0.2627980113029480</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 6 9 -1.</_>
- <_>18 7 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126959998160601</threshold>
- <left_val>-0.0219570007175207</left_val>
- <right_val>0.1893679946660996</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 9 6 -1.</_>
- <_>2 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0245970003306866</threshold>
- <left_val>-0.0349639989435673</left_val>
- <right_val>-1.0989320278167725</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 18 4 -1.</_>
- <_>13 14 9 2 2.</_>
- <_>4 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0459530018270016</threshold>
- <left_val>0.1110979989171028</left_val>
- <right_val>-2.9306049346923828</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 6 14 -1.</_>
- <_>7 7 3 7 2.</_>
- <_>10 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272410009056330</threshold>
- <left_val>0.2910169959068298</left_val>
- <right_val>-0.2740789949893951</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 12 6 -1.</_>
- <_>13 13 6 3 2.</_>
- <_>7 16 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0400639995932579</threshold>
- <left_val>0.1187790036201477</left_val>
- <right_val>-0.6280180215835571</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 9 -1.</_>
- <_>10 7 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0230550002306700</threshold>
- <left_val>0.1481380015611649</left_val>
- <right_val>-0.3700749874114990</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 6 -1.</_>
- <_>12 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237370003014803</threshold>
- <left_val>-0.5372480154037476</left_val>
- <right_val>0.1935819983482361</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 4 10 -1.</_>
- <_>0 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0775220021605492</threshold>
- <left_val>-0.0601940006017685</left_val>
- <right_val>-1.9489669799804688</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 6 -1.</_>
- <_>11 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133450003340840</threshold>
- <left_val>-0.4522959887981415</left_val>
- <right_val>0.1874150037765503</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 12 6 -1.</_>
- <_>2 12 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217199996113777</threshold>
- <left_val>1.2144249677658081</left_val>
- <right_val>-0.1536580026149750</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 9 -1.</_>
- <_>13 13 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0714749991893768</threshold>
- <left_val>-2.3047130107879639</left_val>
- <right_val>0.1099990010261536</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 6 9 -1.</_>
- <_>5 13 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4999999701976776e-003</threshold>
- <left_val>-0.7185519933700562</left_val>
- <right_val>0.0201009996235371</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 9 6 -1.</_>
- <_>9 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0267409998923540</threshold>
- <left_val>0.0735450014472008</left_val>
- <right_val>0.9878600239753723</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 12 6 -1.</_>
- <_>5 19 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0394079983234406</threshold>
- <left_val>-1.2227380275726318</left_val>
- <right_val>-0.0435069985687733</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 20 3 -1.</_>
- <_>3 3 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0258889999240637</threshold>
- <left_val>0.1340930014848709</left_val>
- <right_val>-1.1770780086517334</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 12 6 -1.</_>
- <_>6 5 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0489250011742115</threshold>
- <left_val>-0.0308100003749132</left_val>
- <right_val>-0.9347950220108032</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 24 -1.</_>
- <_>12 0 1 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0368929989635944</threshold>
- <left_val>0.1333370059728622</left_val>
- <right_val>-1.4998290538787842</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 15 4 -1.</_>
- <_>8 16 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0789299979805946</threshold>
- <left_val>-0.1453880071640015</left_val>
- <right_val>1.5631790161132813</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 12 -1.</_>
- <_>9 18 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0290060006082058</threshold>
- <left_val>0.1938370019197464</left_val>
- <right_val>-0.6764280200004578</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 8 -1.</_>
- <_>1 15 6 4 2.</_>
- <_>7 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3089998438954353e-003</threshold>
- <left_val>-0.3746539950370789</left_val>
- <right_val>0.1085750013589859</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 10 8 14 -1.</_>
- <_>19 10 4 7 2.</_>
- <_>15 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0658309981226921</threshold>
- <left_val>0.8105940222740173</left_val>
- <right_val>0.0302019994705915</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 8 14 -1.</_>
- <_>1 9 4 7 2.</_>
- <_>5 16 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0689650028944016</threshold>
- <left_val>0.8377259969711304</left_val>
- <right_val>-0.1714099943637848</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 9 10 -1.</_>
- <_>9 16 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1166910007596016</threshold>
- <left_val>-0.9464719891548157</left_val>
- <right_val>0.1312319934368134</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 6 -1.</_>
- <_>6 9 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3060000492259860e-003</threshold>
- <left_val>0.0460079982876778</left_val>
- <right_val>-0.5201159715652466</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 6 9 -1.</_>
- <_>12 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0445589981973171</threshold>
- <left_val>-1.9423669576644897</left_val>
- <right_val>0.1320070028305054</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 9 7 -1.</_>
- <_>10 8 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0510330013930798</threshold>
- <left_val>-0.2148099988698959</left_val>
- <right_val>0.4867390096187592</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 8 10 -1.</_>
- <_>14 4 4 5 2.</_>
- <_>10 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0315780006349087</threshold>
- <left_val>0.5998979806900024</left_val>
- <right_val>7.9159997403621674e-003</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 9 -1.</_>
- <_>4 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210200008004904</threshold>
- <left_val>-0.2206950038671494</left_val>
- <right_val>0.5404620170593262</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 12 -1.</_>
- <_>8 6 8 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1382420063018799</threshold>
- <left_val>0.6295750141143799</left_val>
- <right_val>-0.0217129997909069</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 6 14 -1.</_>
- <_>6 7 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0522289983928204</threshold>
- <left_val>-0.2336090058088303</left_val>
- <right_val>0.4976080060005188</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 8 5 8 -1.</_>
- <_>19 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0258840005844831</threshold>
- <left_val>0.1804199963808060</left_val>
- <right_val>-0.2203920036554337</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 5 8 -1.</_>
- <_>0 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0121389999985695</threshold>
- <left_val>-0.6973189711570740</left_val>
- <right_val>0.0157120004296303</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 3 6 6 -1.</_>
- <_>17 6 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0242379996925592</threshold>
- <left_val>0.3459329903125763</left_val>
- <right_val>0.0714699998497963</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 6 -1.</_>
- <_>1 6 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252720005810261</threshold>
- <left_val>-0.8758329749107361</left_val>
- <right_val>-9.8240002989768982e-003</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 9 -1.</_>
- <_>18 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125970002263784</threshold>
- <left_val>0.2364999949932098</left_val>
- <right_val>-0.2873120009899139</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 9 -1.</_>
- <_>0 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0573309995234013</threshold>
- <left_val>-0.0615309998393059</left_val>
- <right_val>-2.2326040267944336</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 18 6 -1.</_>
- <_>3 5 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166710000485182</threshold>
- <left_val>-0.1985010057687759</left_val>
- <right_val>0.4081070125102997</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 9 6 -1.</_>
- <_>2 5 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228189993649721</threshold>
- <left_val>0.9648759961128235</left_val>
- <right_val>-0.2024569958448410</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 10 8 -1.</_>
- <_>14 3 5 4 2.</_>
- <_>9 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7000001611886546e-005</threshold>
- <left_val>-0.0589089989662170</left_val>
- <right_val>0.2705540060997009</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 10 8 -1.</_>
- <_>5 3 5 4 2.</_>
- <_>10 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6700001955032349e-003</threshold>
- <left_val>-0.4531710147857666</left_val>
- <right_val>0.0896280035376549</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 6 12 -1.</_>
- <_>10 11 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0940859988331795</threshold>
- <left_val>0.1160459965467453</left_val>
- <right_val>-1.0951169729232788</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 6 11 -1.</_>
- <_>11 11 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0622670017182827</threshold>
- <left_val>1.8096530437469482</left_val>
- <right_val>-0.1477320045232773</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 4 -1.</_>
- <_>7 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174160003662109</threshold>
- <left_val>0.2306820005178452</left_val>
- <right_val>-0.4241760075092316</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 7 -1.</_>
- <_>12 6 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220660008490086</threshold>
- <left_val>0.4927029907703400</left_val>
- <right_val>-0.2063090056180954</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 18 3 -1.</_>
- <_>5 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104040000587702</threshold>
- <left_val>0.6092429757118225</left_val>
- <right_val>0.0281300004571676</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 9 -1.</_>
- <_>10 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3670003116130829e-003</threshold>
- <left_val>0.4017120003700256</left_val>
- <right_val>-0.2168170064687729</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 9 7 -1.</_>
- <_>11 1 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290399994701147</threshold>
- <left_val>-0.8487650156021118</left_val>
- <right_val>0.1424680054187775</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 6 6 -1.</_>
- <_>9 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210619997233152</threshold>
- <left_val>-0.7919830083847046</left_val>
- <right_val>-0.0125959999859333</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 4 11 -1.</_>
- <_>14 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0370009988546371</threshold>
- <left_val>-0.6748890280723572</left_val>
- <right_val>0.1283040046691895</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 4 11 -1.</_>
- <_>8 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107359997928143</threshold>
- <left_val>0.0367799997329712</left_val>
- <right_val>-0.6339300274848938</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 12 18 -1.</_>
- <_>12 0 4 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1636759936809540</threshold>
- <left_val>0.1380389928817749</left_val>
- <right_val>-0.4718900024890900</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 10 5 -1.</_>
- <_>7 12 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0949179977178574</threshold>
- <left_val>-0.1385570019483566</left_val>
- <right_val>1.9492419958114624</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 22 3 -1.</_>
- <_>2 21 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0352619998157024</threshold>
- <left_val>0.1372189968824387</left_val>
- <right_val>-2.1186530590057373</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 2 20 -1.</_>
- <_>1 4 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128110004588962</threshold>
- <left_val>-0.2000810056924820</left_val>
- <right_val>0.4950779974460602</right_val></_></_></trees>
- <stage_threshold>-3.5939640998840332</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 17 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 4 -1.</_>
- <_>8 2 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1390440016984940</threshold>
- <left_val>-0.4658119976520538</left_val>
- <right_val>0.7643160223960877</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 4 -1.</_>
- <_>7 10 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119169997051358</threshold>
- <left_val>-0.9439899921417236</left_val>
- <right_val>0.3972629904747009</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 8 10 -1.</_>
- <_>6 7 4 5 2.</_>
- <_>10 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100069995969534</threshold>
- <left_val>0.3271879851818085</left_val>
- <right_val>-0.6336740255355835</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 14 -1.</_>
- <_>17 0 3 7 2.</_>
- <_>14 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0479999519884586e-003</threshold>
- <left_val>0.2742789983749390</left_val>
- <right_val>-0.5744699835777283</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 5 8 -1.</_>
- <_>4 15 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2489999644458294e-003</threshold>
- <left_val>0.2362930029630661</left_val>
- <right_val>-0.6859350204467773</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 20 9 -1.</_>
- <_>2 3 20 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0323820002377033</threshold>
- <left_val>-0.5763019919395447</left_val>
- <right_val>0.2749269902706146</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 8 -1.</_>
- <_>6 7 6 4 2.</_>
- <_>12 11 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139579996466637</threshold>
- <left_val>-0.6106150150299072</left_val>
- <right_val>0.2454160004854202</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 6 6 -1.</_>
- <_>9 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1159999994561076e-003</threshold>
- <left_val>-0.5653910040855408</left_val>
- <right_val>0.2717930078506470</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 10 4 -1.</_>
- <_>7 12 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7000000045518391e-005</threshold>
- <left_val>-0.8023599982261658</left_val>
- <right_val>0.1150910034775734</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 9 -1.</_>
- <_>10 5 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5700000696815550e-004</threshold>
- <left_val>-0.8120589852333069</left_val>
- <right_val>0.2384469956159592</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 8 -1.</_>
- <_>8 11 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0460000745952129e-003</threshold>
- <left_val>0.1390960067510605</left_val>
- <right_val>-0.6616320013999939</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 17 -1.</_>
- <_>18 4 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143560003489256</threshold>
- <left_val>-0.1648519933223724</left_val>
- <right_val>0.4190169870853424</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 6 -1.</_>
- <_>3 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0553749985992908</threshold>
- <left_val>1.4425870180130005</left_val>
- <right_val>-0.1882019937038422</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 4 17 -1.</_>
- <_>18 4 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0935949981212616</threshold>
- <left_val>0.1354829967021942</left_val>
- <right_val>-0.9163609743118286</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 4 17 -1.</_>
- <_>4 4 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0266249999403954</threshold>
- <left_val>-0.3374829888343811</left_val>
- <right_val>0.3923360109329224</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 19 3 -1.</_>
- <_>5 19 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7469998933374882e-003</threshold>
- <left_val>-0.1161540001630783</left_val>
- <right_val>0.4439930021762848</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 18 -1.</_>
- <_>11 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0318860001862049</threshold>
- <left_val>-0.9949830174446106</left_val>
- <right_val>1.6120000509545207e-003</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 2 18 -1.</_>
- <_>15 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226000007241964</threshold>
- <left_val>-0.4806739985942841</left_val>
- <right_val>0.1700730025768280</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 2 18 -1.</_>
- <_>7 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252020005136728</threshold>
- <left_val>0.0355800017714500</left_val>
- <right_val>-0.8021540045738220</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 10 8 -1.</_>
- <_>12 11 5 4 2.</_>
- <_>7 15 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0310369990766048</threshold>
- <left_val>-1.0895340442657471</left_val>
- <right_val>0.1808190047740936</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>12 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264759995043278</threshold>
- <left_val>0.9567120075225830</left_val>
- <right_val>-0.2104939967393875</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 9 -1.</_>
- <_>12 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138539997860789</threshold>
- <left_val>-1.0370320081710815</left_val>
- <right_val>0.2216670066118240</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 16 8 -1.</_>
- <_>2 9 8 4 2.</_>
- <_>10 13 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0629250034689903</threshold>
- <left_val>0.9019939899444580</left_val>
- <right_val>-0.1908529996871948</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 6 9 -1.</_>
- <_>14 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0447509996592999</threshold>
- <left_val>-1.0119110345840454</left_val>
- <right_val>0.1469119936227799</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 9 -1.</_>
- <_>10 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0204280000180006</threshold>
- <left_val>0.6162449717521668</left_val>
- <right_val>-0.2355269938707352</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 6 9 -1.</_>
- <_>14 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0329999327659607e-003</threshold>
- <left_val>-0.0832799971103668</left_val>
- <right_val>0.2172870039939880</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 12 6 -1.</_>
- <_>3 14 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7280003353953362e-003</threshold>
- <left_val>0.0654589980840683</left_val>
- <right_val>-0.6031870245933533</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 9 6 -1.</_>
- <_>14 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272020008414984</threshold>
- <left_val>-0.9344739913940430</left_val>
- <right_val>0.1527000069618225</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 9 6 -1.</_>
- <_>1 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164710003882647</threshold>
- <left_val>-0.8417710065841675</left_val>
- <right_val>0.0133320000022650</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 3 -1.</_>
- <_>3 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137440003454685</threshold>
- <left_val>0.6056720018386841</left_val>
- <right_val>-0.0920210033655167</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 22 6 -1.</_>
- <_>1 9 22 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291649997234344</threshold>
- <left_val>-0.0281140003353357</left_val>
- <right_val>-1.4014569520950317</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 4 6 6 -1.</_>
- <_>18 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0374570004642010</threshold>
- <left_val>0.1308059990406036</left_val>
- <right_val>-0.4938249886035919</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 6 6 -1.</_>
- <_>0 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250700004398823</threshold>
- <left_val>-1.1289390325546265</left_val>
- <right_val>-0.0146000003442168</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 16 6 -1.</_>
- <_>5 14 16 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0638120025396347</threshold>
- <left_val>0.7587159872055054</left_val>
- <right_val>-1.8200000049546361e-003</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 9 4 -1.</_>
- <_>6 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3900002539157867e-003</threshold>
- <left_val>0.2993640005588532</left_val>
- <right_val>-0.2948780059814453</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 6 9 -1.</_>
- <_>14 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6000002445653081e-004</threshold>
- <left_val>0.0197250004857779</left_val>
- <right_val>0.1999389976263046</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 9 -1.</_>
- <_>4 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217409990727901</threshold>
- <left_val>-0.8524789810180664</left_val>
- <right_val>0.0491699986159801</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 6 23 -1.</_>
- <_>17 1 2 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178699996322393</threshold>
- <left_val>-0.0599859990179539</left_val>
- <right_val>0.1522250026464462</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 24 3 -1.</_>
- <_>8 21 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248310007154942</threshold>
- <left_val>0.3560340106487274</left_val>
- <right_val>-0.2625989913940430</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 24 4 -1.</_>
- <_>8 20 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1571550071239471</threshold>
- <left_val>1.5599999460391700e-004</left_val>
- <right_val>1.0428730249404907</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 23 -1.</_>
- <_>5 1 2 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0690269991755486</threshold>
- <left_val>-0.0330069996416569</left_val>
- <right_val>-1.1796669960021973</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 18 3 -1.</_>
- <_>3 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110219996422529</threshold>
- <left_val>0.5898770093917847</left_val>
- <right_val>-0.0576479993760586</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 3 -1.</_>
- <_>0 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138349998742342</threshold>
- <left_val>0.5950279831886292</left_val>
- <right_val>-0.2441859990358353</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 22 4 -1.</_>
- <_>12 16 11 2 2.</_>
- <_>1 18 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0309410002082586</threshold>
- <left_val>-1.1723799705505371</left_val>
- <right_val>0.1690700054168701</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 9 6 -1.</_>
- <_>0 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212580002844334</threshold>
- <left_val>-0.0189009997993708</left_val>
- <right_val>-1.0684759616851807</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 21 3 -1.</_>
- <_>9 10 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0930799990892410</threshold>
- <left_val>0.1630560010671616</left_val>
- <right_val>-1.3375270366668701</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 12 6 -1.</_>
- <_>2 18 6 3 2.</_>
- <_>8 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0296359993517399</threshold>
- <left_val>-0.2252479940652847</left_val>
- <right_val>0.4540010094642639</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 24 4 -1.</_>
- <_>0 7 24 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2199999764561653e-004</threshold>
- <left_val>0.2740910053253174</left_val>
- <right_val>-0.3737139999866486</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0420980006456375</threshold>
- <left_val>-0.7582880258560181</left_val>
- <right_val>0.0171370003372431</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 6 12 -1.</_>
- <_>10 13 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225050002336502</threshold>
- <left_val>-0.2275930047035217</left_val>
- <right_val>0.2369869947433472</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 9 -1.</_>
- <_>8 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128629999235272</threshold>
- <left_val>0.1925240010023117</left_val>
- <right_val>-0.3212710022926331</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0278600007295609</threshold>
- <left_val>0.1672369986772537</left_val>
- <right_val>-1.0209059715270996</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 6 9 -1.</_>
- <_>11 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278079994022846</threshold>
- <left_val>1.2824759483337402</left_val>
- <right_val>-0.1722529977560043</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 20 3 -1.</_>
- <_>2 2 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1630001291632652e-003</threshold>
- <left_val>-0.5407289862632752</left_val>
- <right_val>0.2388570010662079</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 12 6 -1.</_>
- <_>1 18 6 3 2.</_>
- <_>7 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0204360000789166</threshold>
- <left_val>0.6335539817810059</left_val>
- <right_val>-0.2109059989452362</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 4 13 -1.</_>
- <_>13 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123079996556044</threshold>
- <left_val>-0.4977819919586182</left_val>
- <right_val>0.1740259975194931</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 4 -1.</_>
- <_>12 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0404939986765385</threshold>
- <left_val>-1.1848740577697754</left_val>
- <right_val>-0.0338909998536110</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 4 13 -1.</_>
- <_>10 1 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0296570006757975</threshold>
- <left_val>0.0217409990727901</left_val>
- <right_val>1.0069919824600220</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 3 18 -1.</_>
- <_>7 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8379999138414860e-003</threshold>
- <left_val>0.0292179994285107</left_val>
- <right_val>-0.5990629792213440</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 10 5 -1.</_>
- <_>14 3 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161649994552135</threshold>
- <left_val>-0.2100079953670502</left_val>
- <right_val>0.3763729929924011</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 12 8 -1.</_>
- <_>10 15 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0501930005848408</threshold>
- <left_val>2.5319999549537897e-003</left_val>
- <right_val>-0.7166820168495178</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 6 9 -1.</_>
- <_>11 10 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9680000841617584e-003</threshold>
- <left_val>-0.2192140072584152</left_val>
- <right_val>0.3229869902133942</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 4 9 -1.</_>
- <_>10 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249799992889166</threshold>
- <left_val>-9.6840001642704010e-003</left_val>
- <right_val>-0.7757290005683899</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 6 14 -1.</_>
- <_>20 0 3 7 2.</_>
- <_>17 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158099997788668</threshold>
- <left_val>0.4463750123977661</left_val>
- <right_val>-0.0617600008845329</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 14 -1.</_>
- <_>1 0 3 7 2.</_>
- <_>4 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0372069999575615</threshold>
- <left_val>-0.2049539983272553</left_val>
- <right_val>0.5772219896316528</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 16 -1.</_>
- <_>17 0 3 8 2.</_>
- <_>14 8 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0792649984359741</threshold>
- <left_val>-0.7674540281295776</left_val>
- <right_val>0.1255040019750595</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 10 -1.</_>
- <_>9 4 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171520002186298</threshold>
- <left_val>-1.4121830463409424</left_val>
- <right_val>-0.0517040006816387</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 18 6 -1.</_>
- <_>12 17 9 3 2.</_>
- <_>3 20 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0327400006353855</threshold>
- <left_val>0.1933400034904480</left_val>
- <right_val>-0.6363369822502136</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 22 4 -1.</_>
- <_>12 20 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1175699979066849</threshold>
- <left_val>0.8432540297508240</left_val>
- <right_val>-0.1801860034465790</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 10 5 -1.</_>
- <_>14 3 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1205720007419586</threshold>
- <left_val>0.1253000050783157</left_val>
- <right_val>-2.1213600635528564</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 10 5 -1.</_>
- <_>5 3 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2779999785125256e-003</threshold>
- <left_val>-0.4660440087318420</left_val>
- <right_val>0.0896439999341965</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 12 16 -1.</_>
- <_>16 6 4 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0725449994206429</threshold>
- <left_val>0.5182650089263916</left_val>
- <right_val>0.0168239995837212</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 16 -1.</_>
- <_>4 6 4 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1771059930324554</threshold>
- <left_val>-0.0309100002050400</left_val>
- <right_val>-1.1046639680862427</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 5 15 -1.</_>
- <_>10 14 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4229996427893639e-003</threshold>
- <left_val>0.2444580048322678</left_val>
- <right_val>-0.3861309885978699</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 21 2 -1.</_>
- <_>1 19 21 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130350003018975</threshold>
- <left_val>0.9800440073013306</left_val>
- <right_val>-0.1701650023460388</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 9 6 -1.</_>
- <_>15 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189120005816221</threshold>
- <left_val>0.2024849951267242</left_val>
- <right_val>-0.3854590058326721</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 4 -1.</_>
- <_>12 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214479994028807</threshold>
- <left_val>-0.2571719884872437</left_val>
- <right_val>0.3518120050430298</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 12 -1.</_>
- <_>12 0 6 6 2.</_>
- <_>6 6 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0633570030331612</threshold>
- <left_val>0.1699479967355728</left_val>
- <right_val>-0.9138380289077759</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 8 12 -1.</_>
- <_>8 10 4 6 2.</_>
- <_>12 16 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0324359983205795</threshold>
- <left_val>-0.8568159937858582</left_val>
- <right_val>-0.0216809995472431</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 16 10 8 -1.</_>
- <_>19 16 5 4 2.</_>
- <_>14 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235649999231100</threshold>
- <left_val>0.5611559748649597</left_val>
- <right_val>-2.2400000307243317e-004</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 10 8 -1.</_>
- <_>0 16 5 4 2.</_>
- <_>5 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187890008091927</threshold>
- <left_val>-0.2545979917049408</left_val>
- <right_val>0.3451290130615234</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 12 5 -1.</_>
- <_>14 12 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0310420002788305</threshold>
- <left_val>7.5719999149441719e-003</left_val>
- <right_val>0.3480019867420197</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 10 8 -1.</_>
- <_>6 16 5 4 2.</_>
- <_>11 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112269995734096</threshold>
- <left_val>-0.6021980047225952</left_val>
- <right_val>0.0428149998188019</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 12 6 -1.</_>
- <_>13 6 6 3 2.</_>
- <_>7 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128459995612502</threshold>
- <left_val>0.4202040135860443</left_val>
- <right_val>-0.0538010001182556</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 18 -1.</_>
- <_>9 6 2 9 2.</_>
- <_>11 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127919996157289</threshold>
- <left_val>0.2272450029850006</left_val>
- <right_val>-0.3239800035953522</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 6 14 -1.</_>
- <_>13 9 3 7 2.</_>
- <_>10 16 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0686519965529442</threshold>
- <left_val>0.0935320034623146</left_val>
- <right_val>10.</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 6 14 -1.</_>
- <_>8 9 3 7 2.</_>
- <_>11 16 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2789999172091484e-003</threshold>
- <left_val>-0.2692629992961884</left_val>
- <right_val>0.3330320119857788</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 11 12 -1.</_>
- <_>7 10 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0387790016829968</threshold>
- <left_val>-0.7236530184745789</left_val>
- <right_val>0.1780650019645691</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 16 -1.</_>
- <_>4 8 3 8 2.</_>
- <_>7 16 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1820000410079956e-003</threshold>
- <left_val>-0.3511939942836762</left_val>
- <right_val>0.1658630073070526</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 3 4 21 -1.</_>
- <_>17 10 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1751520037651062</threshold>
- <left_val>0.1162310019135475</left_val>
- <right_val>-1.5419290065765381</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 4 21 -1.</_>
- <_>3 10 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1162799969315529</threshold>
- <left_val>-9.1479998081922531e-003</left_val>
- <right_val>-0.9984260201454163</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 8 18 -1.</_>
- <_>14 1 4 9 2.</_>
- <_>10 10 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229640007019043</threshold>
- <left_val>0.2056539952754974</left_val>
- <right_val>0.0154320001602173</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 16 8 -1.</_>
- <_>2 5 8 4 2.</_>
- <_>10 9 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0514100007712841</threshold>
- <left_val>0.5807240009307861</left_val>
- <right_val>-0.2011840045452118</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 12 -1.</_>
- <_>3 10 18 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2247419953346252</threshold>
- <left_val>0.0187289994210005</left_val>
- <right_val>1.0829299688339233</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 16 12 -1.</_>
- <_>4 14 16 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4860000535845757e-003</threshold>
- <left_val>-0.3317129909992218</left_val>
- <right_val>0.1990299969911575</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 8 20 -1.</_>
- <_>19 4 4 10 2.</_>
- <_>15 14 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1184630021452904</threshold>
- <left_val>1.3711010217666626</left_val>
- <right_val>0.0689269974827766</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 9 6 -1.</_>
- <_>10 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378109999001026</threshold>
- <left_val>-9.3600002583116293e-004</left_val>
- <right_val>-0.8399699926376343</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 8 20 -1.</_>
- <_>19 4 4 10 2.</_>
- <_>15 14 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222020000219345</threshold>
- <left_val>-0.0119639998301864</left_val>
- <right_val>0.3667399883270264</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 8 20 -1.</_>
- <_>1 4 4 10 2.</_>
- <_>5 14 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363660007715225</threshold>
- <left_val>0.3786650002002716</left_val>
- <right_val>-0.2771480083465576</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 8 14 -1.</_>
- <_>15 8 4 7 2.</_>
- <_>11 15 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1318469941616058</threshold>
- <left_val>-2.7481179237365723</left_val>
- <right_val>0.1066690012812614</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 8 14 -1.</_>
- <_>5 8 4 7 2.</_>
- <_>9 15 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416559986770153</threshold>
- <left_val>0.4752430021762848</left_val>
- <right_val>-0.2324980050325394</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 5 8 -1.</_>
- <_>10 17 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331519991159439</threshold>
- <left_val>-0.5792940258979797</left_val>
- <right_val>0.1743440032005310</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 7 9 -1.</_>
- <_>4 16 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157699994742870</threshold>
- <left_val>-0.0112840002402663</left_val>
- <right_val>-0.8370140194892883</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 24 10 -1.</_>
- <_>0 18 24 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0393630005419254</threshold>
- <left_val>0.3482159972190857</left_val>
- <right_val>-0.1745540052652359</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 8 11 -1.</_>
- <_>8 2 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0678490027785301</threshold>
- <left_val>1.4225699901580811</left_val>
- <right_val>-0.1476559937000275</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 8 16 -1.</_>
- <_>14 2 4 8 2.</_>
- <_>10 10 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0267750006169081</threshold>
- <left_val>0.2394700050354004</left_val>
- <right_val>0.0132719995453954</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 6 -1.</_>
- <_>0 2 12 3 2.</_>
- <_>12 5 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0399190001189709</threshold>
- <left_val>-8.9999996125698090e-003</left_val>
- <right_val>-0.7593889832496643</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 9 -1.</_>
- <_>6 3 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1006560027599335</threshold>
- <left_val>-0.0186850000172853</left_val>
- <right_val>0.7624530196189880</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 12 -1.</_>
- <_>1 2 6 6 2.</_>
- <_>7 8 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0810220018029213</threshold>
- <left_val>-0.9043909907341003</left_val>
- <right_val>-8.5880002006888390e-003</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 6 9 -1.</_>
- <_>18 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0212580002844334</threshold>
- <left_val>-0.2131959944963455</left_val>
- <right_val>0.2191970050334930</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 8 10 -1.</_>
- <_>4 3 4 5 2.</_>
- <_>8 8 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106309996917844</threshold>
- <left_val>0.1959809958934784</left_val>
- <right_val>-0.3576810061931610</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 21 18 3 -1.</_>
- <_>6 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1300002057105303e-004</threshold>
- <left_val>-0.0927949994802475</left_val>
- <right_val>0.2614589929580689</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 2 -1.</_>
- <_>1 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4650000743567944e-003</threshold>
- <left_val>-0.5533609986305237</left_val>
- <right_val>0.0273860003799200</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 22 3 -1.</_>
- <_>1 11 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188359990715981</threshold>
- <left_val>0.1844609975814819</left_val>
- <right_val>-0.6693429946899414</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 12 9 -1.</_>
- <_>2 11 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0256319995969534</threshold>
- <left_val>1.9382879734039307</left_val>
- <right_val>-0.1470890045166016</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 12 6 -1.</_>
- <_>18 8 6 3 2.</_>
- <_>12 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0939999744296074e-003</threshold>
- <left_val>-0.2645159959793091</left_val>
- <right_val>0.2073320001363754</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 12 6 -1.</_>
- <_>0 8 6 3 2.</_>
- <_>6 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9199998183175921e-004</threshold>
- <left_val>-0.5503159761428833</left_val>
- <right_val>0.0503749996423721</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 6 9 -1.</_>
- <_>12 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0495180003345013</threshold>
- <left_val>-2.5615389347076416</left_val>
- <right_val>0.1314170062541962</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 9 6 -1.</_>
- <_>7 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116809997707605</threshold>
- <left_val>-0.2481980025768280</left_val>
- <right_val>0.3998270034790039</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 7 12 -1.</_>
- <_>9 14 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0345639996230602</threshold>
- <left_val>0.1617880016565323</left_val>
- <right_val>-0.7141889929771423</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 9 6 -1.</_>
- <_>7 13 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2909995689988136e-003</threshold>
- <left_val>0.2218009978532791</left_val>
- <right_val>-0.2918170094490051</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 18 4 -1.</_>
- <_>12 15 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223580002784729</threshold>
- <left_val>0.3104409873485565</left_val>
- <right_val>-2.7280000504106283e-003</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 16 -1.</_>
- <_>7 4 2 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0308010000735521</threshold>
- <left_val>-0.9567270278930664</left_val>
- <right_val>-8.3400001749396324e-003</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 6 9 -1.</_>
- <_>12 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0437790006399155</threshold>
- <left_val>0.1255690008401871</left_val>
- <right_val>-1.1759619712829590</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 6 9 -1.</_>
- <_>10 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0430460013449192</threshold>
- <left_val>-0.0588769987225533</left_val>
- <right_val>-1.8568470478057861</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 12 10 -1.</_>
- <_>15 11 6 5 2.</_>
- <_>9 16 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0271889995783567</threshold>
- <left_val>0.0428580008447170</left_val>
- <right_val>0.3903670012950897</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 14 6 -1.</_>
- <_>3 8 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4149997457861900e-003</threshold>
- <left_val>-0.0435670018196106</left_val>
- <right_val>-1.1094470024108887</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 17 8 -1.</_>
- <_>4 6 17 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0943119972944260</threshold>
- <left_val>0.0402569994330406</left_val>
- <right_val>0.9844229817390442</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 12 21 -1.</_>
- <_>6 9 12 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1702509969472885</threshold>
- <left_val>0.0295100007206202</left_val>
- <right_val>-0.6950929760932922</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 9 9 -1.</_>
- <_>8 4 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0471480004489422</threshold>
- <left_val>1.0338569879531860</left_val>
- <right_val>0.0676020011305809</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 24 3 -1.</_>
- <_>12 7 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1118630021810532</threshold>
- <left_val>-0.0686829984188080</left_val>
- <right_val>-2.4985830783843994</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 9 10 -1.</_>
- <_>11 11 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143539998680353</threshold>
- <left_val>-0.5948190093040466</left_val>
- <right_val>0.1500169932842255</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 18 3 -1.</_>
- <_>2 12 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0340240001678467</threshold>
- <left_val>-0.0648230016231537</left_val>
- <right_val>-2.1382639408111572</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 16 9 4 -1.</_>
- <_>8 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216019991785288</threshold>
- <left_val>0.0553099997341633</left_val>
- <right_val>0.7829290032386780</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 9 6 -1.</_>
- <_>0 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217719990760088</threshold>
- <left_val>-7.1279997937381268e-003</left_val>
- <right_val>-0.7214810252189636</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 24 6 -1.</_>
- <_>0 13 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0824169963598251</threshold>
- <left_val>0.1460949927568436</left_val>
- <right_val>-1.3636670112609863</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 20 6 -1.</_>
- <_>2 12 20 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0846719965338707</threshold>
- <left_val>-0.1778469979763031</left_val>
- <right_val>0.7285770177841187</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 16 12 -1.</_>
- <_>12 5 8 6 2.</_>
- <_>4 11 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0551280006766319</threshold>
- <left_val>-0.5940240025520325</left_val>
- <right_val>0.1935780048370361</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0648230016231537</threshold>
- <left_val>-1.0783840417861938</left_val>
- <right_val>-0.0407340005040169</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 10 4 -1.</_>
- <_>7 5 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227690003812313</threshold>
- <left_val>0.7790020108222961</left_val>
- <right_val>3.4960000775754452e-003</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 6 8 -1.</_>
- <_>9 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0547560006380081</threshold>
- <left_val>-0.0656839981675148</left_val>
- <right_val>-1.8188409805297852</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 7 10 -1.</_>
- <_>17 5 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9000001025851816e-005</threshold>
- <left_val>-0.0178919993340969</left_val>
- <right_val>0.2076829969882965</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 7 10 -1.</_>
- <_>0 5 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0983619987964630</threshold>
- <left_val>-0.0559469982981682</left_val>
- <right_val>-1.4153920412063599</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 6 12 -1.</_>
- <_>19 1 3 6 2.</_>
- <_>16 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0930002257227898e-003</threshold>
- <left_val>0.3413529992103577</left_val>
- <right_val>-0.1208989992737770</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 19 8 -1.</_>
- <_>1 4 19 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0502780005335808</threshold>
- <left_val>-0.2628670036792755</left_val>
- <right_val>0.2579729855060577</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 9 4 -1.</_>
- <_>12 4 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7870000600814819e-003</threshold>
- <left_val>-0.1317860037088394</left_val>
- <right_val>0.1735019981861115</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 9 4 -1.</_>
- <_>3 4 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139739997684956</threshold>
- <left_val>0.0285180006176233</left_val>
- <right_val>-0.6115220189094544</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 10 6 -1.</_>
- <_>12 4 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214499998837709</threshold>
- <left_val>0.0261819995939732</left_val>
- <right_val>0.3030659854412079</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 18 2 -1.</_>
- <_>12 4 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292140003293753</threshold>
- <left_val>0.4494059979915619</left_val>
- <right_val>-0.2280309945344925</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 4 9 -1.</_>
- <_>12 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8099999548867345e-004</threshold>
- <left_val>-0.1987999975681305</left_val>
- <right_val>0.2074449956417084</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 9 -1.</_>
- <_>10 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7109999898821115e-003</threshold>
- <left_val>-0.5403720140457153</left_val>
- <right_val>0.0678659975528717</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 8 10 -1.</_>
- <_>14 5 4 5 2.</_>
- <_>10 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6660003289580345e-003</threshold>
- <left_val>-0.0131280003115535</left_val>
- <right_val>0.5229790210723877</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 13 -1.</_>
- <_>10 4 4 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0636579990386963</threshold>
- <left_val>0.0682990029454231</left_val>
- <right_val>-0.4923509955406189</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 6 6 -1.</_>
- <_>13 5 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279680006206036</threshold>
- <left_val>0.6818389892578125</left_val>
- <right_val>0.0787810012698174</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 3 -1.</_>
- <_>7 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0489539988338947</threshold>
- <left_val>-0.2062239944934845</left_val>
- <right_val>0.5038809776306152</right_val></_></_></trees>
- <stage_threshold>-3.3933560848236084</stage_threshold>
- <parent>16</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 18 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 10 6 -1.</_>
- <_>7 7 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0293129999190569</threshold>
- <left_val>0.7128469944000244</left_val>
- <right_val>-0.5823069810867310</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 21 5 -1.</_>
- <_>9 0 7 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1241509988903999</threshold>
- <left_val>-0.3686349987983704</left_val>
- <right_val>0.6006720066070557</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 9 9 -1.</_>
- <_>0 11 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9349996522068977e-003</threshold>
- <left_val>-0.8600829839706421</left_val>
- <right_val>0.2172469943761826</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303659997880459</threshold>
- <left_val>-0.2718699872493744</left_val>
- <right_val>0.6124789714813232</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 7 -1.</_>
- <_>3 3 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252180006355047</threshold>
- <left_val>-0.3474830090999603</left_val>
- <right_val>0.5042769908905029</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 12 6 -1.</_>
- <_>15 18 6 3 2.</_>
- <_>9 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100140003487468</threshold>
- <left_val>-0.3189899921417236</left_val>
- <right_val>0.4137679934501648</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 20 6 -1.</_>
- <_>2 8 10 3 2.</_>
- <_>12 11 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167750008404255</threshold>
- <left_val>-0.6904810070991516</left_val>
- <right_val>0.0948309972882271</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 10 4 -1.</_>
- <_>13 4 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6950000319629908e-003</threshold>
- <left_val>-0.2082979977130890</left_val>
- <right_val>0.2373719960451126</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 5 18 -1.</_>
- <_>4 11 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0422579981386662</threshold>
- <left_val>-0.4936670064926148</left_val>
- <right_val>0.1817059963941574</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 4 4 9 -1.</_>
- <_>20 4 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0485050007700920</threshold>
- <left_val>1.3429640531539917</left_val>
- <right_val>0.0397690013051033</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 14 -1.</_>
- <_>8 13 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289929993450642</threshold>
- <left_val>0.0464960001409054</left_val>
- <right_val>-0.8164349794387817</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 6 -1.</_>
- <_>12 1 12 3 2.</_>
- <_>0 4 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0400890000164509</threshold>
- <left_val>-0.7119780182838440</left_val>
- <right_val>0.2255389988422394</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 9 -1.</_>
- <_>2 4 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0410219989717007</threshold>
- <left_val>1.0057929754257202</left_val>
- <right_val>-0.1969020068645477</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 3 -1.</_>
- <_>3 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118380002677441</threshold>
- <left_val>-0.0126000000163913</left_val>
- <right_val>0.8076710104942322</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 16 6 -1.</_>
- <_>3 19 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0213280003517866</threshold>
- <left_val>-0.8202390074729919</left_val>
- <right_val>0.0205249991267920</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 6 9 -1.</_>
- <_>13 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239049997180700</threshold>
- <left_val>0.5421050190925598</left_val>
- <right_val>-0.0747670009732246</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 6 -1.</_>
- <_>5 6 7 3 2.</_>
- <_>12 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0180089995265007</threshold>
- <left_val>-0.3382770121097565</left_val>
- <right_val>0.4235860109329224</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 5 8 10 -1.</_>
- <_>17 5 4 5 2.</_>
- <_>13 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0436140000820160</threshold>
- <left_val>-1.1983489990234375</left_val>
- <right_val>0.1556620001792908</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 20 3 -1.</_>
- <_>2 3 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2449998483061790e-003</threshold>
- <left_val>-0.8902999758720398</left_val>
- <right_val>0.0110039999708533</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 9 6 -1.</_>
- <_>12 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0474850013852119</threshold>
- <left_val>0.1666409969329834</left_val>
- <right_val>-0.9076449871063232</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 9 -1.</_>
- <_>10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142339998856187</threshold>
- <left_val>0.6269519925117493</left_val>
- <right_val>-0.2579120099544525</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 4 11 -1.</_>
- <_>12 3 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8010000716894865e-003</threshold>
- <left_val>-0.2822999954223633</left_val>
- <right_val>0.2662459909915924</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 4 11 -1.</_>
- <_>10 3 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4330000635236502e-003</threshold>
- <left_val>-0.6377199888229370</left_val>
- <right_val>0.0984229966998100</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 8 10 -1.</_>
- <_>12 3 4 5 2.</_>
- <_>8 8 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292210001498461</threshold>
- <left_val>-0.7676990032196045</left_val>
- <right_val>0.2263450026512146</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 18 -1.</_>
- <_>12 1 1 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4949998632073402e-003</threshold>
- <left_val>0.4560010135173798</left_val>
- <right_val>-0.2652890086174011</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 9 6 -1.</_>
- <_>12 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300340000540018</threshold>
- <left_val>-0.7655109763145447</left_val>
- <right_val>0.1400929987430573</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 19 3 -1.</_>
- <_>0 3 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8360000625252724e-003</threshold>
- <left_val>0.0467559993267059</left_val>
- <right_val>-0.7235620021820068</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 9 6 -1.</_>
- <_>9 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8550001382827759e-003</threshold>
- <left_val>-0.0491419993340969</left_val>
- <right_val>0.5147269964218140</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 18 5 -1.</_>
- <_>7 8 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0959739983081818</threshold>
- <left_val>-0.0200689993798733</left_val>
- <right_val>-1.0850950479507446</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0328769981861115</threshold>
- <left_val>-0.9587529897689819</left_val>
- <right_val>0.1454360038042069</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133840003982186</threshold>
- <left_val>-0.7001360058784485</left_val>
- <right_val>0.0291579999029636</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 4 15 -1.</_>
- <_>13 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152359995990992</threshold>
- <left_val>-0.2823570072650909</left_val>
- <right_val>0.2536799907684326</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 18 3 -1.</_>
- <_>1 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120540000498295</threshold>
- <left_val>-0.2530339956283569</left_val>
- <right_val>0.4652670025825501</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 14 6 -1.</_>
- <_>9 9 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0762950032949448</threshold>
- <left_val>-0.6991580128669739</left_val>
- <right_val>0.1321720033884049</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 18 3 -1.</_>
- <_>2 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120400004088879</threshold>
- <left_val>0.4589459896087647</left_val>
- <right_val>-0.2385649979114533</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219160001724958</threshold>
- <left_val>0.1826860010623932</left_val>
- <right_val>-0.6162970066070557</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 12 6 -1.</_>
- <_>0 8 6 3 2.</_>
- <_>6 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7330000884830952e-003</threshold>
- <left_val>-0.6325790286064148</left_val>
- <right_val>0.0342190004885197</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 7 8 -1.</_>
- <_>9 17 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0486520007252693</threshold>
- <left_val>-1.0297729969024658</left_val>
- <right_val>0.1738650053739548</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 20 3 -1.</_>
- <_>2 18 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104639995843172</threshold>
- <left_val>0.3475730121135712</left_val>
- <right_val>-0.2746410071849823</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6550001502037048e-003</threshold>
- <left_val>-0.2898029983043671</left_val>
- <right_val>0.2403790056705475</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 15 4 -1.</_>
- <_>4 2 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5469996556639671e-003</threshold>
- <left_val>-0.4434050023555756</left_val>
- <right_val>0.1426739990711212</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 2 6 6 -1.</_>
- <_>17 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199139993637800</threshold>
- <left_val>0.1774040013551712</left_val>
- <right_val>-0.2409629970788956</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 9 -1.</_>
- <_>0 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220129992812872</threshold>
- <left_val>-0.0108120003715158</left_val>
- <right_val>-0.9469079971313477</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0521790012717247</threshold>
- <left_val>1.6547499895095825</left_val>
- <right_val>0.0964870005846024</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 9 6 -1.</_>
- <_>0 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0196989998221397</threshold>
- <left_val>-6.7560002207756042e-003</left_val>
- <right_val>-0.8631150126457214</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 12 6 -1.</_>
- <_>15 18 6 3 2.</_>
- <_>9 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0230400003492832</threshold>
- <left_val>-2.3519999813288450e-003</left_val>
- <right_val>0.3853130042552948</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 6 9 -1.</_>
- <_>3 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150380004197359</threshold>
- <left_val>-0.6190569996833801</left_val>
- <right_val>0.0310779996216297</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 13 8 10 -1.</_>
- <_>20 13 4 5 2.</_>
- <_>16 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499560013413429</threshold>
- <left_val>0.7065749764442444</left_val>
- <right_val>0.0478809997439384</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 24 4 -1.</_>
- <_>8 14 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0692699998617172</threshold>
- <left_val>0.3921290040016174</left_val>
- <right_val>-0.2384800016880035</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 18 6 6 -1.</_>
- <_>13 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7399997711181641e-003</threshold>
- <left_val>-0.0243090000003576</left_val>
- <right_val>0.2538630068302155</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 8 10 -1.</_>
- <_>0 13 4 5 2.</_>
- <_>4 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0339239984750748</threshold>
- <left_val>0.4693039953708649</left_val>
- <right_val>-0.2332189977169037</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 24 6 -1.</_>
- <_>0 17 24 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162310004234314</threshold>
- <left_val>0.3231920003890991</left_val>
- <right_val>-0.2054560035467148</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 8 -1.</_>
- <_>5 2 6 4 2.</_>
- <_>11 6 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0501930005848408</threshold>
- <left_val>-1.2277870178222656</left_val>
- <right_val>-0.0407980009913445</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 9 6 -1.</_>
- <_>11 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0569440014660358</threshold>
- <left_val>0.0451840013265610</left_val>
- <right_val>0.6019750237464905</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 16 4 -1.</_>
- <_>4 5 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0409369990229607</threshold>
- <left_val>-0.1677280068397522</left_val>
- <right_val>0.8981930017471314</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 10 -1.</_>
- <_>10 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0839999672025442e-003</threshold>
- <left_val>0.3371619880199432</left_val>
- <right_val>-0.2724080085754395</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 5 8 -1.</_>
- <_>8 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0326000005006790</threshold>
- <left_val>-0.8544650077819824</left_val>
- <right_val>0.0196649990975857</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 9 12 -1.</_>
- <_>11 9 9 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0984809994697571</threshold>
- <left_val>0.0547420009970665</left_val>
- <right_val>0.6382730007171631</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 9 12 -1.</_>
- <_>4 9 9 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0381850004196167</threshold>
- <left_val>0.5227469801902771</left_val>
- <right_val>-0.2338480055332184</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 9 -1.</_>
- <_>14 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459170006215572</threshold>
- <left_val>0.6282920241355896</left_val>
- <right_val>0.0328590013086796</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 20 12 -1.</_>
- <_>2 8 20 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1195549964904785</threshold>
- <left_val>-0.6157270073890686</left_val>
- <right_val>0.0346800014376640</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 17 16 -1.</_>
- <_>4 12 17 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1204439997673035</threshold>
- <left_val>-0.8438000082969666</left_val>
- <right_val>0.1653070002794266</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 7 6 -1.</_>
- <_>8 10 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0706190019845963</threshold>
- <left_val>-0.0632610023021698</left_val>
- <right_val>-1.9863929748535156</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 23 2 -1.</_>
- <_>1 10 23 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4889996796846390e-003</threshold>
- <left_val>-0.1766339987516403</left_val>
- <right_val>0.3801119923591614</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227109994739294</threshold>
- <left_val>-0.0276059992611408</left_val>
- <right_val>-0.9192140102386475</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 4 9 -1.</_>
- <_>13 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9700000090524554e-004</threshold>
- <left_val>-0.2429320067167282</left_val>
- <right_val>0.2287890017032623</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 13 -1.</_>
- <_>10 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0346519984304905</threshold>
- <left_val>-0.2370599955320358</left_val>
- <right_val>0.5401099920272827</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 22 18 2 -1.</_>
- <_>4 23 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4700000435113907e-003</threshold>
- <left_val>0.3907899856567383</left_val>
- <right_val>-0.1269380003213882</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 9 6 -1.</_>
- <_>6 10 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0236430000513792</threshold>
- <left_val>-0.2666369974613190</left_val>
- <right_val>0.3231259882450104</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 2 24 -1.</_>
- <_>14 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128130000084639</threshold>
- <left_val>0.1754080057144165</left_val>
- <right_val>-0.6078799962997437</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 2 24 -1.</_>
- <_>9 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112509997561574</threshold>
- <left_val>-1.0852589607238770</left_val>
- <right_val>-0.0280460007488728</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 18 10 -1.</_>
- <_>9 2 6 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415350012481213</threshold>
- <left_val>0.7188739776611328</left_val>
- <right_val>0.0279820002615452</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 15 6 -1.</_>
- <_>9 13 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0934709981083870</threshold>
- <left_val>-1.1906319856643677</left_val>
- <right_val>-0.0448109991848469</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>9 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272499993443489</threshold>
- <left_val>0.6294249892234802</left_val>
- <right_val>9.5039997249841690e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 11 -1.</_>
- <_>11 1 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217599999159575</threshold>
- <left_val>1.3233649730682373</left_val>
- <right_val>-0.1502700001001358</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 10 4 -1.</_>
- <_>9 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6890004351735115e-003</threshold>
- <left_val>-0.3394710123538971</left_val>
- <right_val>0.1708579957485199</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 18 -1.</_>
- <_>12 0 5 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0693959966301918</threshold>
- <left_val>-0.2565779983997345</left_val>
- <right_val>0.4765209853649139</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 6 16 -1.</_>
- <_>14 1 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312089994549751</threshold>
- <left_val>0.1415400058031082</left_val>
- <right_val>-0.3494200110435486</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 16 -1.</_>
- <_>8 1 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0497270002961159</threshold>
- <left_val>-1.1675560474395752</left_val>
- <right_val>-0.0407579988241196</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 6 -1.</_>
- <_>18 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203019995242357</threshold>
- <left_val>-0.3948639929294586</left_val>
- <right_val>0.1581490039825440</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 18 2 -1.</_>
- <_>3 6 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153670003637671</threshold>
- <left_val>0.4930000007152557</left_val>
- <right_val>-0.2009209990501404</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 6 -1.</_>
- <_>18 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0507350005209446</threshold>
- <left_val>1.8736059665679932</left_val>
- <right_val>0.0867300033569336</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 6 -1.</_>
- <_>0 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207260008901358</threshold>
- <left_val>-0.8893839716911316</left_val>
- <right_val>-7.3199998587369919e-003</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 11 6 -1.</_>
- <_>13 13 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0309939999133348</threshold>
- <left_val>-1.1664899587631226</left_val>
- <right_val>0.1427460014820099</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 10 4 -1.</_>
- <_>10 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4269999489188194e-003</threshold>
- <left_val>-0.6681510210037231</left_val>
- <right_val>4.4120000675320625e-003</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 10 7 -1.</_>
- <_>11 9 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0457439981400967</threshold>
- <left_val>-0.4795520007610321</left_val>
- <right_val>0.1512199938297272</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 10 7 -1.</_>
- <_>8 9 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166989993304014</threshold>
- <left_val>0.1204859986901283</left_val>
- <right_val>-0.4523589909076691</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 4 6 6 -1.</_>
- <_>16 4 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2210000790655613e-003</threshold>
- <left_val>-0.0776150003075600</left_val>
- <right_val>0.2784659862518311</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 10 8 -1.</_>
- <_>5 6 5 4 2.</_>
- <_>10 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244340002536774</threshold>
- <left_val>-0.1998710036277771</left_val>
- <right_val>0.6725370287895203</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 21 16 3 -1.</_>
- <_>7 21 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0796779990196228</threshold>
- <left_val>0.9222239851951599</left_val>
- <right_val>0.0925579965114594</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 16 3 -1.</_>
- <_>9 21 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0445300005376339</threshold>
- <left_val>-0.2669050097465515</left_val>
- <right_val>0.3332050144672394</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 22 14 -1.</_>
- <_>13 5 11 7 2.</_>
- <_>2 12 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1252830028533936</threshold>
- <left_val>-0.5425310134887695</left_val>
- <right_val>0.1397629976272583</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 8 10 -1.</_>
- <_>3 10 4 5 2.</_>
- <_>7 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179719999432564</threshold>
- <left_val>0.0182199999690056</left_val>
- <right_val>-0.6804850101470947</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 6 12 -1.</_>
- <_>20 0 3 6 2.</_>
- <_>17 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191840007901192</threshold>
- <left_val>-0.0125839998945594</left_val>
- <right_val>0.5412669777870178</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 6 18 -1.</_>
- <_>7 2 2 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0400240011513233</threshold>
- <left_val>-0.1763879954814911</left_val>
- <right_val>0.7881039977073669</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 9 -1.</_>
- <_>15 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135589996352792</threshold>
- <left_val>0.2073760032653809</left_val>
- <right_val>-0.4774430096149445</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 7 9 -1.</_>
- <_>0 15 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162209998816252</threshold>
- <left_val>0.0230769999325275</left_val>
- <right_val>-0.6118209958076477</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 13 8 10 -1.</_>
- <_>19 13 4 5 2.</_>
- <_>15 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112290000542998</threshold>
- <left_val>-0.0177280008792877</left_val>
- <right_val>0.4176419973373413</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 12 -1.</_>
- <_>1 0 3 6 2.</_>
- <_>4 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0391930006444454</threshold>
- <left_val>-0.1894849985837936</left_val>
- <right_val>0.7401930093765259</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5539996400475502e-003</threshold>
- <left_val>0.4094710052013397</left_val>
- <right_val>-0.1350889950990677</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 8 10 -1.</_>
- <_>1 13 4 5 2.</_>
- <_>5 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0278789997100830</threshold>
- <left_val>-0.2035070061683655</left_val>
- <right_val>0.6162539720535278</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 19 2 -1.</_>
- <_>3 22 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0236009992659092</threshold>
- <left_val>-1.6967060565948486</left_val>
- <right_val>0.1463319957256317</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 13 -1.</_>
- <_>8 3 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0269300006330013</threshold>
- <left_val>-0.0304019991308451</left_val>
- <right_val>-1.0909470319747925</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 18 3 -1.</_>
- <_>5 11 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8999999631196260e-004</threshold>
- <left_val>-0.2007600069046021</left_val>
- <right_val>0.2231409996747971</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 5 12 -1.</_>
- <_>9 7 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0411249995231628</threshold>
- <left_val>-0.4524219930171967</left_val>
- <right_val>0.0573920011520386</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 4 15 -1.</_>
- <_>11 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6789998672902584e-003</threshold>
- <left_val>0.2382490038871765</left_val>
- <right_val>-0.2126210033893585</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 16 4 -1.</_>
- <_>4 3 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0478649996221066</threshold>
- <left_val>-0.1819480061531067</left_val>
- <right_val>0.6191840171813965</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 3 -1.</_>
- <_>6 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1679999083280563e-003</threshold>
- <left_val>-0.2739320099353790</left_val>
- <right_val>0.2501730024814606</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 10 8 -1.</_>
- <_>5 1 5 4 2.</_>
- <_>10 5 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6230002343654633e-003</threshold>
- <left_val>-0.4628030061721802</left_val>
- <right_val>0.0423979982733727</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 18 12 6 -1.</_>
- <_>17 18 6 3 2.</_>
- <_>11 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4350000359117985e-003</threshold>
- <left_val>0.4179680049419403</left_val>
- <right_val>-1.7079999670386314e-003</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 3 -1.</_>
- <_>11 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8769999733194709e-003</threshold>
- <left_val>0.1460230052471161</left_val>
- <right_val>-0.3372110128402710</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 22 4 -1.</_>
- <_>1 10 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0862260013818741</threshold>
- <left_val>0.7514340281486511</left_val>
- <right_val>0.0107119996100664</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 9 6 -1.</_>
- <_>10 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0468339994549751</threshold>
- <left_val>-0.1911959946155548</left_val>
- <right_val>0.4841490089893341</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 12 5 -1.</_>
- <_>10 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2000002041459084e-005</threshold>
- <left_val>0.3522039949893951</left_val>
- <right_val>-0.1733330041170120</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 10 7 -1.</_>
- <_>11 7 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163439996540546</threshold>
- <left_val>-0.6439769864082336</left_val>
- <right_val>9.0680001303553581e-003</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 8 10 -1.</_>
- <_>11 2 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0457039996981621</threshold>
- <left_val>0.0182160008698702</left_val>
- <right_val>0.3197079896926880</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 8 10 -1.</_>
- <_>9 2 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0273829996585846</threshold>
- <left_val>1.0564049482345581</left_val>
- <right_val>-0.1727640032768250</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 18 6 -1.</_>
- <_>15 4 9 3 2.</_>
- <_>6 7 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0276020001620054</threshold>
- <left_val>0.2971549928188324</left_val>
- <right_val>-9.4600003212690353e-003</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 10 9 -1.</_>
- <_>0 8 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6939999125897884e-003</threshold>
- <left_val>-0.2166029959917069</left_val>
- <right_val>0.4738520085811615</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 21 6 -1.</_>
- <_>2 9 21 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0500001311302185e-004</threshold>
- <left_val>0.2404879927635193</left_val>
- <right_val>-0.2677600085735321</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 22 16 -1.</_>
- <_>0 4 11 8 2.</_>
- <_>11 12 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1105419993400574</threshold>
- <left_val>-0.0335390008985996</left_val>
- <right_val>-1.0233880281448364</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 22 -1.</_>
- <_>9 11 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0687659978866577</threshold>
- <left_val>-4.3239998631179333e-003</left_val>
- <right_val>0.5715339779853821</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 3 12 -1.</_>
- <_>9 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7999999690800905e-003</threshold>
- <left_val>0.0775749981403351</left_val>
- <right_val>-0.4209269881248474</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 12 18 -1.</_>
- <_>18 0 6 9 2.</_>
- <_>12 9 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1923200041055679</threshold>
- <left_val>0.0820219963788986</left_val>
- <right_val>2.8810169696807861</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 18 -1.</_>
- <_>0 0 6 9 2.</_>
- <_>6 9 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1574209928512573</threshold>
- <left_val>-0.1370819956064224</left_val>
- <right_val>2.0890059471130371</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 22 4 -1.</_>
- <_>12 1 11 2 2.</_>
- <_>1 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0493870005011559</threshold>
- <left_val>-1.8610910177230835</left_val>
- <right_val>0.1433209925889969</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 4 -1.</_>
- <_>3 2 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0519290007650852</threshold>
- <left_val>-0.1873700022697449</left_val>
- <right_val>0.5423160195350647</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 22 6 -1.</_>
- <_>2 7 22 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0499650016427040</threshold>
- <left_val>0.1417530030012131</left_val>
- <right_val>-1.5625779628753662</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 9 -1.</_>
- <_>5 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0426330007612705</threshold>
- <left_val>1.6059479713439941</left_val>
- <right_val>-0.1471289992332459</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 6 9 -1.</_>
- <_>12 14 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0375539995729923</threshold>
- <left_val>-0.8097490072250366</left_val>
- <right_val>0.1325699985027313</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 6 9 -1.</_>
- <_>10 14 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0371749997138977</threshold>
- <left_val>-1.3945020437240601</left_val>
- <right_val>-0.0570550002157688</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 18 3 -1.</_>
- <_>5 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139459995552897</threshold>
- <left_val>0.0334270000457764</left_val>
- <right_val>0.5747479796409607</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 13 -1.</_>
- <_>9 0 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4800000614486635e-004</threshold>
- <left_val>-0.5532749891281128</left_val>
- <right_val>0.0219529997557402</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 12 4 -1.</_>
- <_>7 4 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319930016994476</threshold>
- <left_val>0.0203409995883703</left_val>
- <right_val>0.3745920062065125</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 6 -1.</_>
- <_>9 2 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2799999937415123e-003</threshold>
- <left_val>0.4442870020866394</left_val>
- <right_val>-0.2299969941377640</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 18 3 -1.</_>
- <_>4 2 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8550003021955490e-003</threshold>
- <left_val>0.1831579953432083</left_val>
- <right_val>-0.4096499979496002</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 12 -1.</_>
- <_>0 12 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0933569967746735</threshold>
- <left_val>-0.0636610016226768</left_val>
- <right_val>-1.6929290294647217</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 6 9 -1.</_>
- <_>11 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172099992632866</threshold>
- <left_val>0.2015389949083328</left_val>
- <right_val>-0.4606109857559204</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 6 13 -1.</_>
- <_>11 10 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4319999441504478e-003</threshold>
- <left_val>-0.3200399875640869</left_val>
- <right_val>0.1531219929456711</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 18 2 -1.</_>
- <_>6 18 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140549996867776</threshold>
- <left_val>0.8688240051269531</left_val>
- <right_val>0.0325750000774860</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 6 9 -1.</_>
- <_>11 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7180000953376293e-003</threshold>
- <left_val>0.6368669867515564</left_val>
- <right_val>-0.1842550039291382</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 9 -1.</_>
- <_>12 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0280050002038479</threshold>
- <left_val>0.1735749989748001</left_val>
- <right_val>-0.4788359999656677</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 10 8 -1.</_>
- <_>5 6 5 4 2.</_>
- <_>10 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188849996775389</threshold>
- <left_val>0.2410160005092621</left_val>
- <right_val>-0.2654759883880615</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 5 8 -1.</_>
- <_>14 13 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185850001871586</threshold>
- <left_val>0.5423250198364258</left_val>
- <right_val>0.0536330007016659</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 5 8 -1.</_>
- <_>5 13 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0364370010793209</threshold>
- <left_val>2.3908898830413818</left_val>
- <right_val>-0.1363469958305359</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 11 9 6 -1.</_>
- <_>14 13 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0324550010263920</threshold>
- <left_val>0.1591069996356964</left_val>
- <right_val>-0.6758149862289429</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 23 15 -1.</_>
- <_>0 7 23 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0597819983959198</threshold>
- <left_val>-2.3479999508708715e-003</left_val>
- <right_val>-0.7305369973182678</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 8 12 -1.</_>
- <_>16 6 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8209995776414871e-003</threshold>
- <left_val>-0.1144409999251366</left_val>
- <right_val>0.3057030141353607</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 9 -1.</_>
- <_>4 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0351639986038208</threshold>
- <left_val>-1.0511469841003418</left_val>
- <right_val>-0.0331030003726482</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 9 4 -1.</_>
- <_>8 20 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7429999317973852e-003</threshold>
- <left_val>-0.2013539969921112</left_val>
- <right_val>0.3275409936904907</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1059997901320457e-003</threshold>
- <left_val>-0.2138350009918213</left_val>
- <right_val>0.4336209893226624</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 11 6 -1.</_>
- <_>13 13 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0889429971575737</threshold>
- <left_val>0.1094089969992638</left_val>
- <right_val>-4.7609338760375977</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 11 6 -1.</_>
- <_>0 13 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300549995154142</threshold>
- <left_val>-1.7169300317764282</left_val>
- <right_val>-0.0609190016984940</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 24 6 -1.</_>
- <_>12 9 12 3 2.</_>
- <_>0 12 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217349994927645</threshold>
- <left_val>0.6477890014648438</left_val>
- <right_val>-0.0328309983015060</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 8 8 -1.</_>
- <_>6 20 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0376489982008934</threshold>
- <left_val>-0.0100600002333522</left_val>
- <right_val>-0.7656909823417664</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 16 14 6 -1.</_>
- <_>10 18 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7189999818801880e-003</threshold>
- <left_val>0.1988890022039414</left_val>
- <right_val>-0.0824790000915527</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 21 3 -1.</_>
- <_>1 2 21 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105480002239347</threshold>
- <left_val>-0.8661360144615173</left_val>
- <right_val>-0.0259860008955002</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 3 -1.</_>
- <_>0 2 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1296630054712296</threshold>
- <left_val>0.1391199976205826</left_val>
- <right_val>-2.2271950244903564</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 8 5 -1.</_>
- <_>6 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176769997924566</threshold>
- <left_val>0.3396770060062408</left_val>
- <right_val>-0.2398959994316101</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 21 3 -1.</_>
- <_>9 11 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0770519971847534</threshold>
- <left_val>-2.5017969608306885</left_val>
- <right_val>0.1284199953079224</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 12 6 -1.</_>
- <_>1 18 6 3 2.</_>
- <_>7 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192300006747246</threshold>
- <left_val>0.5064120292663574</left_val>
- <right_val>-0.1975159943103790</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 4 10 -1.</_>
- <_>10 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0512229986488819</threshold>
- <left_val>-2.9333369731903076</left_val>
- <right_val>0.1385850012302399</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 4 10 -1.</_>
- <_>7 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0830000285059214e-003</threshold>
- <left_val>-0.6004359722137451</left_val>
- <right_val>0.0297180004417896</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 6 12 -1.</_>
- <_>9 12 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254180002957582</threshold>
- <left_val>0.3391579985618591</left_val>
- <right_val>-0.1439200043678284</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 9 6 -1.</_>
- <_>10 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239059999585152</threshold>
- <left_val>-1.1082680225372314</left_val>
- <right_val>-0.0473770014941692</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 19 2 -1.</_>
- <_>3 15 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3740001060068607e-003</threshold>
- <left_val>0.4453369975090027</left_val>
- <right_val>-0.0670529976487160</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 10 10 -1.</_>
- <_>7 7 5 5 2.</_>
- <_>12 12 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376989990472794</threshold>
- <left_val>-1.0406579971313477</left_val>
- <right_val>-0.0417900010943413</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 18 12 -1.</_>
- <_>3 12 9 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2165510058403015</threshold>
- <left_val>0.0338630005717278</left_val>
- <right_val>0.8201730251312256</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 12 -1.</_>
- <_>10 0 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134009998291731</threshold>
- <left_val>0.5290349721908569</left_val>
- <right_val>-0.1913300007581711</right_val></_></_></trees>
- <stage_threshold>-3.2396929264068604</stage_threshold>
- <parent>17</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 19 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 17 9 -1.</_>
- <_>3 3 17 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0712689980864525</threshold>
- <left_val>-0.5363119840621948</left_val>
- <right_val>0.6071529984474182</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 11 -1.</_>
- <_>10 0 4 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0561110004782677</threshold>
- <left_val>-0.5014160275459290</left_val>
- <right_val>0.4397610127925873</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 13 -1.</_>
- <_>4 0 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0404639989137650</threshold>
- <left_val>-0.3292219936847687</left_val>
- <right_val>0.5483469963073731</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 16 6 -1.</_>
- <_>5 11 16 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0631550028920174</threshold>
- <left_val>-0.3170169889926910</left_val>
- <right_val>0.4615299999713898</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 5 12 -1.</_>
- <_>8 14 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103209996595979</threshold>
- <left_val>0.1069499999284744</left_val>
- <right_val>-0.9824389815330505</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>9 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0626069977879524</threshold>
- <left_val>-0.1432970017194748</left_val>
- <right_val>0.7109500169754028</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 6 -1.</_>
- <_>3 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0394160002470016</threshold>
- <left_val>0.9438019990921021</left_val>
- <right_val>-0.2157209962606430</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 20 3 -1.</_>
- <_>2 1 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3960001096129417e-003</threshold>
- <left_val>-0.5461199879646301</left_val>
- <right_val>0.2530379891395569</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 15 10 -1.</_>
- <_>9 6 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1077319979667664</threshold>
- <left_val>0.0124960001558065</left_val>
- <right_val>-1.0809199810028076</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169820003211498</threshold>
- <left_val>-0.3153640031814575</left_val>
- <right_val>0.5123999714851379</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312169995158911</threshold>
- <left_val>-4.5199999585747719e-003</left_val>
- <right_val>-1.2443480491638184</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 9 -1.</_>
- <_>16 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231069996953011</threshold>
- <left_val>-0.7649289965629578</left_val>
- <right_val>0.2064059972763062</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 9 6 -1.</_>
- <_>7 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112039996311069</threshold>
- <left_val>0.2409269958734512</left_val>
- <right_val>-0.3514209985733032</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 9 -1.</_>
- <_>16 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7479998320341110e-003</threshold>
- <left_val>-0.0970079973340034</left_val>
- <right_val>0.2063809931278229</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 9 -1.</_>
- <_>6 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173589996993542</threshold>
- <left_val>-0.7902029752731323</left_val>
- <right_val>0.0218529999256134</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 6 16 -1.</_>
- <_>19 1 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188519991934299</threshold>
- <left_val>-0.1039460003376007</left_val>
- <right_val>0.5484420061111450</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 16 -1.</_>
- <_>3 1 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2249998338520527e-003</threshold>
- <left_val>-0.4040940105915070</left_val>
- <right_val>0.2676379978656769</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 9 -1.</_>
- <_>14 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189159996807575</threshold>
- <left_val>0.2050800025463104</left_val>
- <right_val>-1.0206340551376343</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 9 -1.</_>
- <_>0 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0311569999903440</threshold>
- <left_val>1.2400000123307109e-003</left_val>
- <right_val>-0.8729349970817566</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 6 -1.</_>
- <_>9 5 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209519993513823</threshold>
- <left_val>-5.5559999309480190e-003</left_val>
- <right_val>0.8035619854927063</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 9 6 -1.</_>
- <_>6 10 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112910000607371</threshold>
- <left_val>-0.3647840023040772</left_val>
- <right_val>0.2276789993047714</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 3 16 -1.</_>
- <_>14 15 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0570110008120537</threshold>
- <left_val>-1.4295619726181030</left_val>
- <right_val>0.1432200074195862</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 14 12 -1.</_>
- <_>4 10 7 6 2.</_>
- <_>11 16 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0721940025687218</threshold>
- <left_val>-0.0418500006198883</left_val>
- <right_val>-1.9111829996109009</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 12 6 -1.</_>
- <_>7 8 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198740009218454</threshold>
- <left_val>0.2642549872398377</left_val>
- <right_val>-0.3261770009994507</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 4 20 -1.</_>
- <_>9 2 2 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166929997503757</threshold>
- <left_val>-0.8390780091285706</left_val>
- <right_val>4.0799999260343611e-004</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 9 -1.</_>
- <_>14 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398349985480309</threshold>
- <left_val>-0.4885849952697754</left_val>
- <right_val>0.1643610000610352</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>12 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270099993795156</threshold>
- <left_val>-0.1886249929666519</left_val>
- <right_val>0.8341940045356751</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 6 9 -1.</_>
- <_>14 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9420002140104771e-003</threshold>
- <left_val>0.2323150038719177</left_val>
- <right_val>-0.0723600015044212</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 14 4 -1.</_>
- <_>5 22 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0228330008685589</threshold>
- <left_val>-0.0358840003609657</left_val>
- <right_val>-1.1549400091171265</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 16 12 -1.</_>
- <_>4 10 16 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0688880011439323</threshold>
- <left_val>-1.7837309837341309</left_val>
- <right_val>0.1515900045633316</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0430970005691051</threshold>
- <left_val>-0.2160809934139252</left_val>
- <right_val>0.5062410235404968</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 21 4 -1.</_>
- <_>3 2 21 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6239995434880257e-003</threshold>
- <left_val>-0.1779559999704361</left_val>
- <right_val>0.2895790040493012</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 9 -1.</_>
- <_>4 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145610002800822</threshold>
- <left_val>-0.0114080002531409</left_val>
- <right_val>-0.8940200209617615</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 16 5 8 -1.</_>
- <_>16 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115010002627969</threshold>
- <left_val>0.3017199933528900</left_val>
- <right_val>-0.0436590015888214</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 16 16 -1.</_>
- <_>4 0 8 8 2.</_>
- <_>12 8 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1097149997949600</threshold>
- <left_val>-0.9514709711074829</left_val>
- <right_val>-0.0199730005115271</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 14 6 -1.</_>
- <_>13 6 7 3 2.</_>
- <_>6 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0452280007302761</threshold>
- <left_val>0.0331109985709190</left_val>
- <right_val>0.9661980271339417</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 15 -1.</_>
- <_>10 10 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0270479992032051</threshold>
- <left_val>0.9796360135078430</left_val>
- <right_val>-0.1726190000772476</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 12 8 -1.</_>
- <_>15 15 6 4 2.</_>
- <_>9 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0180309992283583</threshold>
- <left_val>-0.0208010002970696</left_val>
- <right_val>0.2738589942455292</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 4 -1.</_>
- <_>12 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0505249984562397</threshold>
- <left_val>-0.0568029992282391</left_val>
- <right_val>-1.7775089740753174</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 6 -1.</_>
- <_>12 6 7 3 2.</_>
- <_>5 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0299239996820688</threshold>
- <left_val>0.6532920002937317</left_val>
- <right_val>-0.0235370006412268</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 10 -1.</_>
- <_>3 6 9 5 2.</_>
- <_>12 11 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0380580015480518</threshold>
- <left_val>0.0263170003890991</left_val>
- <right_val>-0.7066569924354553</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 21 -1.</_>
- <_>12 0 6 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1856389939785004</threshold>
- <left_val>-5.6039998307824135e-003</left_val>
- <right_val>0.3287369906902313</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 21 -1.</_>
- <_>8 0 8 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0670000016689301e-003</threshold>
- <left_val>0.3420479893684387</left_val>
- <right_val>-0.3017159998416901</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 18 3 -1.</_>
- <_>6 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101089999079704</threshold>
- <left_val>-7.3600001633167267e-003</left_val>
- <right_val>0.5798159837722778</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 6 -1.</_>
- <_>0 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115670002996922</threshold>
- <left_val>-0.5272219777107239</left_val>
- <right_val>0.0464479997754097</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 19 2 -1.</_>
- <_>4 4 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5649999305605888e-003</threshold>
- <left_val>-0.5852910280227661</left_val>
- <right_val>0.1910189986228943</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 2 -1.</_>
- <_>0 4 24 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105820000171661</threshold>
- <left_val>0.0210730005055666</left_val>
- <right_val>-0.6889259815216065</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 14 9 4 -1.</_>
- <_>15 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203040000051260</threshold>
- <left_val>-0.3640069961547852</left_val>
- <right_val>0.1533879935741425</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 9 4 -1.</_>
- <_>0 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3529999889433384e-003</threshold>
- <left_val>0.0361640006303787</left_val>
- <right_val>-0.5982509851455689</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 18 2 -1.</_>
- <_>6 16 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4690000098198652e-003</threshold>
- <left_val>-0.1470769941806793</left_val>
- <right_val>0.3750799894332886</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 18 3 -1.</_>
- <_>3 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6449999362230301e-003</threshold>
- <left_val>-0.2170850038528442</left_val>
- <right_val>0.5193679928779602</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 3 23 -1.</_>
- <_>13 0 1 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0243260003626347</threshold>
- <left_val>-1.0846769809722900</left_val>
- <right_val>0.1408479958772659</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 6 -1.</_>
- <_>6 3 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0744189992547035</threshold>
- <left_val>-0.1551380008459091</left_val>
- <right_val>1.1822769641876221</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170779991894960</threshold>
- <left_val>0.0442310012876987</left_val>
- <right_val>0.9156110286712647</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 23 -1.</_>
- <_>10 0 1 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245779994875193</threshold>
- <left_val>-1.5504100322723389</left_val>
- <right_val>-0.0547459982335567</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 10 -1.</_>
- <_>10 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0302050001919270</threshold>
- <left_val>0.1666280031204224</left_val>
- <right_val>-1.0001239776611328</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 12 -1.</_>
- <_>7 12 10 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121360002085567</threshold>
- <left_val>-0.7707909941673279</left_val>
- <right_val>-4.8639997839927673e-003</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 6 14 -1.</_>
- <_>17 9 3 7 2.</_>
- <_>14 16 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0867170020937920</threshold>
- <left_val>0.1106169968843460</left_val>
- <right_val>-1.6857999563217163</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 10 9 -1.</_>
- <_>2 3 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0423090010881424</threshold>
- <left_val>1.1075930595397949</left_val>
- <right_val>-0.1543859988451004</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 5 12 -1.</_>
- <_>11 7 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6420000940561295e-003</threshold>
- <left_val>0.2745189964771271</left_val>
- <right_val>-0.1845619976520538</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 10 -1.</_>
- <_>1 4 6 5 2.</_>
- <_>7 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0566620007157326</threshold>
- <left_val>-0.8062559962272644</left_val>
- <right_val>-0.0169280003756285</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 9 4 -1.</_>
- <_>15 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234750006347895</threshold>
- <left_val>0.1418769955635071</left_val>
- <right_val>-0.2550089955329895</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 8 10 -1.</_>
- <_>1 2 4 5 2.</_>
- <_>5 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0208030007779598</threshold>
- <left_val>0.1982630044221878</left_val>
- <right_val>-0.3117119967937470</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 5 12 -1.</_>
- <_>10 5 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2599998675286770e-003</threshold>
- <left_val>-0.0505909994244576</left_val>
- <right_val>0.4192380011081696</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 14 24 -1.</_>
- <_>11 0 7 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3416000008583069</threshold>
- <left_val>-0.1667490005493164</left_val>
- <right_val>0.9274860024452210</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 10 4 -1.</_>
- <_>7 19 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2029999680817127e-003</threshold>
- <left_val>-0.1262589991092682</left_val>
- <right_val>0.4044530093669891</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 4 10 -1.</_>
- <_>10 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0326920002698898</threshold>
- <left_val>-0.0326349996030331</left_val>
- <right_val>-0.9893980026245117</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 15 6 9 -1.</_>
- <_>15 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1100000594742596e-004</threshold>
- <left_val>-0.0645340010523796</left_val>
- <right_val>0.2547369897365570</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>3 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2100001852959394e-004</threshold>
- <left_val>-0.3661859929561615</left_val>
- <right_val>0.1197310015559197</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 15 6 9 -1.</_>
- <_>15 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0544909983873367</threshold>
- <left_val>0.1207349970936775</left_val>
- <right_val>-1.0291390419006348</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 6 9 -1.</_>
- <_>7 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101410001516342</threshold>
- <left_val>-0.5217720270156860</left_val>
- <right_val>0.0337349995970726</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>12 6 2 9 2.</_>
- <_>10 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188159998506308</threshold>
- <left_val>0.6518179774284363</left_val>
- <right_val>1.3399999588727951e-003</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 11 -1.</_>
- <_>9 3 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3480002097785473e-003</threshold>
- <left_val>0.1737069934606552</left_val>
- <right_val>-0.3413200080394745</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 9 4 -1.</_>
- <_>15 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108470004051924</threshold>
- <left_val>-0.1969989985227585</left_val>
- <right_val>0.1504549980163574</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 14 8 -1.</_>
- <_>5 8 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499260015785694</threshold>
- <left_val>-0.5088850259780884</left_val>
- <right_val>0.0307620000094175</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 15 9 -1.</_>
- <_>8 4 15 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121600003913045</threshold>
- <left_val>-0.0692519992589951</left_val>
- <right_val>0.1874549984931946</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 8 10 -1.</_>
- <_>7 2 4 5 2.</_>
- <_>11 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2189998999238014e-003</threshold>
- <left_val>-0.4084909856319428</left_val>
- <right_val>0.0799549967050552</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 6 12 -1.</_>
- <_>12 2 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1580000650137663e-003</threshold>
- <left_val>-0.2112459987401962</left_val>
- <right_val>0.2236640006303787</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 6 12 -1.</_>
- <_>9 2 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1439998894929886e-003</threshold>
- <left_val>-0.4990029931068420</left_val>
- <right_val>0.0629170015454292</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 12 4 -1.</_>
- <_>7 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3730000294744968e-003</threshold>
- <left_val>-0.2055329978466034</left_val>
- <right_val>0.2209669947624207</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 12 10 -1.</_>
- <_>10 3 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0518120005726814</threshold>
- <left_val>0.1809680014848709</left_val>
- <right_val>-0.4349580109119415</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 16 6 -1.</_>
- <_>13 6 8 3 2.</_>
- <_>5 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183400008827448</threshold>
- <left_val>0.0152000002563000</left_val>
- <right_val>0.3799169957637787</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 9 -1.</_>
- <_>9 1 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1749079972505570</threshold>
- <left_val>-0.2092079967260361</left_val>
- <right_val>0.4001300036907196</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 18 5 -1.</_>
- <_>9 8 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0539939999580383</threshold>
- <left_val>0.2475160062313080</left_val>
- <right_val>-0.2671290040016174</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 22 -1.</_>
- <_>0 0 12 11 2.</_>
- <_>12 11 12 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3203319907188416</threshold>
- <left_val>-1.9094380140304565</left_val>
- <right_val>-0.0669609978795052</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 16 9 6 -1.</_>
- <_>14 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0270600002259016</threshold>
- <left_val>-0.7137129902839661</left_val>
- <right_val>0.1590459942817688</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 24 8 -1.</_>
- <_>0 20 24 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0774639993906021</threshold>
- <left_val>-0.1697019934654236</left_val>
- <right_val>0.7755299806594849</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 22 4 -1.</_>
- <_>12 19 11 2 2.</_>
- <_>1 21 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0237719994038343</threshold>
- <left_val>0.1902189999818802</left_val>
- <right_val>-0.6016209721565247</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 9 6 -1.</_>
- <_>1 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0115010002627969</threshold>
- <left_val>7.7039999887347221e-003</left_val>
- <right_val>-0.6173030138015747</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 4 -1.</_>
- <_>7 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0326160006225109</threshold>
- <left_val>0.1715919971466065</left_val>
- <right_val>-0.7097820043563843</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 6 9 -1.</_>
- <_>11 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443830005824566</threshold>
- <left_val>-2.2606229782104492</left_val>
- <right_val>-0.0732769966125488</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 18 12 6 -1.</_>
- <_>16 18 6 3 2.</_>
- <_>10 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0584760010242462</threshold>
- <left_val>2.4087750911712646</left_val>
- <right_val>0.0830919966101646</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 12 6 -1.</_>
- <_>2 18 6 3 2.</_>
- <_>8 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0193039998412132</threshold>
- <left_val>-0.2708230018615723</left_val>
- <right_val>0.2736999988555908</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 16 9 -1.</_>
- <_>8 6 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0447059981524944</threshold>
- <left_val>0.3135559856891632</left_val>
- <right_val>-0.0624920018017292</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 10 6 -1.</_>
- <_>0 7 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0603349991142750</threshold>
- <left_val>-1.4515119791030884</left_val>
- <right_val>-0.0587610006332397</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 18 3 -1.</_>
- <_>5 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116670001298189</threshold>
- <left_val>-0.0180849991738796</left_val>
- <right_val>0.5047969818115234</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 9 6 -1.</_>
- <_>2 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0280099995434284</threshold>
- <left_val>-0.2330289930105209</left_val>
- <right_val>0.3070870041847229</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 10 9 -1.</_>
- <_>14 5 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0653970018029213</threshold>
- <left_val>0.1413590013980866</left_val>
- <right_val>-0.5001090168952942</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 3 -1.</_>
- <_>3 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6239997074007988e-003</threshold>
- <left_val>-0.2205460071563721</left_val>
- <right_val>0.3919120132923126</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 15 6 -1.</_>
- <_>9 4 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5510000996291637e-003</threshold>
- <left_val>-0.1138150021433830</left_val>
- <right_val>0.2003230005502701</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 15 6 -1.</_>
- <_>4 10 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318470001220703</threshold>
- <left_val>0.0254769995808601</left_val>
- <right_val>-0.5332639813423157</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 24 4 -1.</_>
- <_>12 5 12 2 2.</_>
- <_>0 7 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0330550000071526</threshold>
- <left_val>0.1780769973993301</left_val>
- <right_val>-0.6279389858245850</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 6 12 -1.</_>
- <_>9 8 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0476009994745255</threshold>
- <left_val>-0.1474789977073669</left_val>
- <right_val>1.4204180240631104</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195719990879297</threshold>
- <left_val>-0.5269349813461304</left_val>
- <right_val>0.1583860069513321</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 12 -1.</_>
- <_>0 12 3 6 2.</_>
- <_>3 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0547300018370152</threshold>
- <left_val>0.8823159933090210</left_val>
- <right_val>-0.1662780046463013</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 10 6 -1.</_>
- <_>14 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226860009133816</threshold>
- <left_val>-0.4838689863681793</left_val>
- <right_val>0.1500010043382645</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 18 9 -1.</_>
- <_>2 10 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1071320027112961</threshold>
- <left_val>-0.2133619934320450</left_val>
- <right_val>0.4233390092849731</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 10 9 -1.</_>
- <_>11 17 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363800004124641</threshold>
- <left_val>-0.0741980001330376</left_val>
- <right_val>0.1458940058946610</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 8 -1.</_>
- <_>7 6 5 4 2.</_>
- <_>12 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139359999448061</threshold>
- <left_val>-0.2491160035133362</left_val>
- <right_val>0.2677119970321655</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 14 6 -1.</_>
- <_>13 6 7 3 2.</_>
- <_>6 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209919996559620</threshold>
- <left_val>8.7959999218583107e-003</left_val>
- <right_val>0.4306499958038330</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 9 7 -1.</_>
- <_>7 13 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0491189993917942</threshold>
- <left_val>-0.1759199947118759</left_val>
- <right_val>0.6928290128707886</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 10 6 12 -1.</_>
- <_>17 10 3 6 2.</_>
- <_>14 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0363159999251366</threshold>
- <left_val>0.1314529925584793</left_val>
- <right_val>-0.3359729945659638</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 12 -1.</_>
- <_>4 10 3 6 2.</_>
- <_>7 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0412280000746250</threshold>
- <left_val>-0.0456920005381107</left_val>
- <right_val>-1.3515930175781250</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 8 6 -1.</_>
- <_>13 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156720001250505</threshold>
- <left_val>0.1754409968852997</left_val>
- <right_val>-0.0605500005185604</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 4 14 -1.</_>
- <_>10 3 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162860006093979</threshold>
- <left_val>-1.1308189630508423</left_val>
- <right_val>-0.0395330004394054</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 3 18 -1.</_>
- <_>18 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0229999683797359e-003</threshold>
- <left_val>-0.2245430052280426</left_val>
- <right_val>0.2362809926271439</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 16 12 -1.</_>
- <_>12 12 8 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1378629952669144</threshold>
- <left_val>0.4537689983844757</left_val>
- <right_val>-0.2109870016574860</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 14 -1.</_>
- <_>17 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6760001033544540e-003</threshold>
- <left_val>-0.1510509997606278</left_val>
- <right_val>0.2078170031309128</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 14 -1.</_>
- <_>5 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248399991542101</threshold>
- <left_val>-0.6835029721260071</left_val>
- <right_val>-8.0040004104375839e-003</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 12 20 -1.</_>
- <_>16 2 4 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1396439969539642</threshold>
- <left_val>0.6501129865646362</left_val>
- <right_val>0.0465440005064011</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 12 20 -1.</_>
- <_>4 2 4 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0821539983153343</threshold>
- <left_val>0.4488719999790192</left_val>
- <right_val>-0.2359199970960617</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 6 17 -1.</_>
- <_>18 0 2 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8449999410659075e-003</threshold>
- <left_val>-0.0881730020046234</left_val>
- <right_val>0.2734679877758026</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 17 -1.</_>
- <_>4 0 2 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6579999402165413e-003</threshold>
- <left_val>-0.4686659872531891</left_val>
- <right_val>0.0770019963383675</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 9 6 -1.</_>
- <_>15 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158980004489422</threshold>
- <left_val>0.2926839888095856</left_val>
- <right_val>-0.0219410005956888</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 9 6 -1.</_>
- <_>0 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0509460009634495</threshold>
- <left_val>-1.2093789577484131</left_val>
- <right_val>-0.0421099998056889</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 13 -1.</_>
- <_>20 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168379992246628</threshold>
- <left_val>-0.0455959998071194</left_val>
- <right_val>0.5018069744110107</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 13 -1.</_>
- <_>2 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159189999103546</threshold>
- <left_val>-0.2690429985523224</left_val>
- <right_val>0.2651630043983460</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 4 9 -1.</_>
- <_>16 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6309999413788319e-003</threshold>
- <left_val>-0.1304610073566437</left_val>
- <right_val>0.3180710077285767</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 12 7 -1.</_>
- <_>9 10 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0861449986696243</threshold>
- <left_val>1.9443659782409668</left_val>
- <right_val>-0.1397829949855804</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 12 6 -1.</_>
- <_>12 11 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0331409983336926</threshold>
- <left_val>0.1526679992675781</left_val>
- <right_val>-0.0308660008013248</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 12 6 -1.</_>
- <_>0 11 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9679999463260174e-003</threshold>
- <left_val>-0.7120230197906494</left_val>
- <right_val>-0.0138440001755953</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 14 9 -1.</_>
- <_>5 10 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240080002695322</threshold>
- <left_val>0.9200779795646668</left_val>
- <right_val>0.0467239990830421</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 20 3 -1.</_>
- <_>0 16 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7320003658533096e-003</threshold>
- <left_val>-0.2256730049848557</left_val>
- <right_val>0.3193179965019226</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 8 10 -1.</_>
- <_>12 10 4 5 2.</_>
- <_>8 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277869999408722</threshold>
- <left_val>-0.7233710289001465</left_val>
- <right_val>0.1701859980821610</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 13 9 -1.</_>
- <_>5 7 13 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1945530027151108</threshold>
- <left_val>1.2461860179901123</left_val>
- <right_val>-0.1473619937896729</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 6 18 -1.</_>
- <_>10 8 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1086969971656799</threshold>
- <left_val>-1.4465179443359375</left_val>
- <right_val>0.1214530020952225</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194949992001057</threshold>
- <left_val>-0.7815309762954712</left_val>
- <right_val>-0.0237329993396997</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 12 4 -1.</_>
- <_>6 11 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0650000553578138e-003</threshold>
- <left_val>-0.8547139763832092</left_val>
- <right_val>0.1668699979782105</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 15 12 -1.</_>
- <_>3 6 15 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0591939985752106</threshold>
- <left_val>-0.1485369950532913</left_val>
- <right_val>1.1273469924926758</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 12 5 -1.</_>
- <_>16 0 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0542079992592335</threshold>
- <left_val>0.5472699999809265</left_val>
- <right_val>0.0355239994823933</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 18 3 -1.</_>
- <_>6 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0393249988555908</threshold>
- <left_val>0.3664259910583496</left_val>
- <right_val>-0.2054399996995926</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 24 5 -1.</_>
- <_>8 14 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0822789967060089</threshold>
- <left_val>-0.0350079983472824</left_val>
- <right_val>0.5399420261383057</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 3 18 -1.</_>
- <_>6 1 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4479999020695686e-003</threshold>
- <left_val>-0.6153749823570252</left_val>
- <right_val>-3.5319998860359192e-003</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 4 14 -1.</_>
- <_>10 0 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3770000599324703e-003</threshold>
- <left_val>-0.0655910000205040</left_val>
- <right_val>0.4196139872074127</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 9 -1.</_>
- <_>11 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0779998786747456e-003</threshold>
- <left_val>-0.3412950038909912</left_val>
- <right_val>0.1253679990768433</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 12 6 -1.</_>
- <_>14 2 6 3 2.</_>
- <_>8 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155819999054074</threshold>
- <left_val>-0.3024039864540100</left_val>
- <right_val>0.2151100039482117</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 17 4 -1.</_>
- <_>0 6 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7399999089539051e-003</threshold>
- <left_val>0.0765530019998550</left_val>
- <right_val>-0.4106050133705139</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 16 5 8 -1.</_>
- <_>16 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0706000030040741</threshold>
- <left_val>-0.9735620021820068</left_val>
- <right_val>0.1124180033802986</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 5 8 -1.</_>
- <_>3 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117060001939535</threshold>
- <left_val>0.1856070011854172</left_val>
- <right_val>-0.2975519895553589</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 18 2 -1.</_>
- <_>6 19 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1499997284263372e-004</threshold>
- <left_val>-0.0596500001847744</left_val>
- <right_val>0.2482469975948334</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 5 -1.</_>
- <_>4 0 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0368660017848015</threshold>
- <left_val>0.3275170028209686</left_val>
- <right_val>-0.2305960059165955</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 3 6 12 -1.</_>
- <_>17 3 3 6 2.</_>
- <_>14 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0325269997119904</threshold>
- <left_val>-0.2932029962539673</left_val>
- <right_val>0.1542769968509674</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 12 -1.</_>
- <_>2 12 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0748139992356300</threshold>
- <left_val>-1.2143570184707642</left_val>
- <right_val>-0.0522440001368523</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 21 3 -1.</_>
- <_>2 4 21 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0414699986577034</threshold>
- <left_val>0.1306249946355820</left_val>
- <right_val>-2.3274369239807129</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 6 12 -1.</_>
- <_>4 3 3 6 2.</_>
- <_>7 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288800001144409</threshold>
- <left_val>-0.6607459783554077</left_val>
- <right_val>-9.0960003435611725e-003</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 12 6 -1.</_>
- <_>18 8 6 3 2.</_>
- <_>12 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0463819988071918</threshold>
- <left_val>0.1663019955158234</left_val>
- <right_val>-0.6694949865341187</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 16 9 -1.</_>
- <_>8 15 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2542499899864197</threshold>
- <left_val>-0.0546419993042946</left_val>
- <right_val>-1.2676080465316772</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 18 5 -1.</_>
- <_>6 13 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4000001139938831e-003</threshold>
- <left_val>0.2027679979801178</left_val>
- <right_val>0.0146679999306798</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 15 6 -1.</_>
- <_>6 6 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0828059986233711</threshold>
- <left_val>-0.7871360182762146</left_val>
- <right_val>-0.0244689993560314</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 9 6 -1.</_>
- <_>14 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114380000159144</threshold>
- <left_val>0.2862339913845062</left_val>
- <right_val>-0.0308940000832081</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 15 11 -1.</_>
- <_>8 0 5 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1291339993476868</threshold>
- <left_val>1.7292929887771606</left_val>
- <right_val>-0.1429390013217926</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 3 3 18 -1.</_>
- <_>15 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0385529994964600</threshold>
- <left_val>0.0192329995334148</left_val>
- <right_val>0.3773260116577148</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 3 18 -1.</_>
- <_>6 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1019140034914017</threshold>
- <left_val>-0.0745339989662170</left_val>
- <right_val>-3.3868899345397949</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 8 -1.</_>
- <_>14 5 5 4 2.</_>
- <_>9 9 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190680008381605</threshold>
- <left_val>0.3181410133838654</left_val>
- <right_val>0.0192610006779432</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 16 8 -1.</_>
- <_>4 4 8 4 2.</_>
- <_>12 8 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0607750006020069</threshold>
- <left_val>0.7693629860877991</left_val>
- <right_val>-0.1764400005340576</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 12 3 -1.</_>
- <_>7 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0246799997985363</threshold>
- <left_val>0.1839649975299835</left_val>
- <right_val>-0.3086880147457123</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 13 -1.</_>
- <_>8 0 3 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0267590004950762</threshold>
- <left_val>-0.2345490008592606</left_val>
- <right_val>0.3305659890174866</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149699999019504</threshold>
- <left_val>0.1721359938383102</left_val>
- <right_val>-0.1824889928102493</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261429995298386</threshold>
- <left_val>-0.0464639998972416</left_val>
- <right_val>-1.1318379640579224</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 10 9 -1.</_>
- <_>8 4 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0375120006501675</threshold>
- <left_val>0.8040400147438049</left_val>
- <right_val>0.0696600005030632</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 18 2 -1.</_>
- <_>0 3 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3229997865855694e-003</threshold>
- <left_val>-0.8188440203666687</left_val>
- <right_val>-0.0182249993085861</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 14 6 -1.</_>
- <_>17 13 7 3 2.</_>
- <_>10 16 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0178130008280277</threshold>
- <left_val>0.1495780050754547</left_val>
- <right_val>-0.1866720020771027</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 6 -1.</_>
- <_>0 13 7 3 2.</_>
- <_>7 16 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0340100005269051</threshold>
- <left_val>-0.7285230159759522</left_val>
- <right_val>-0.0166159998625517</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 2 3 21 -1.</_>
- <_>21 2 1 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0159530006349087</threshold>
- <left_val>0.5694400072097778</left_val>
- <right_val>0.0138320000842214</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 5 12 -1.</_>
- <_>0 13 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0197439994663000</threshold>
- <left_val>0.0405250005424023</left_val>
- <right_val>-0.4177339971065521</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 12 6 -1.</_>
- <_>12 8 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1037480011582375</threshold>
- <left_val>-1.9825149774551392</left_val>
- <right_val>0.1196020022034645</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 20 3 -1.</_>
- <_>1 9 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192850008606911</threshold>
- <left_val>0.5023059844970703</left_val>
- <right_val>-0.1974589973688126</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 19 3 -1.</_>
- <_>5 8 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127800004556775</threshold>
- <left_val>0.4019500017166138</left_val>
- <right_val>-0.0269579999148846</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 9 6 -1.</_>
- <_>1 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163529999554157</threshold>
- <left_val>-0.7660880088806152</left_val>
- <right_val>-0.0242090001702309</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 14 12 -1.</_>
- <_>6 14 14 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1276369988918304</threshold>
- <left_val>0.8657850027084351</left_val>
- <right_val>0.0642059966921806</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 18 -1.</_>
- <_>5 12 14 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0190689992159605</threshold>
- <left_val>-0.5592979788780212</left_val>
- <right_val>-1.6880000475794077e-003</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 9 7 -1.</_>
- <_>14 12 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0324809998273849</threshold>
- <left_val>0.0407220013439655</left_val>
- <right_val>0.4892509877681732</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 18 4 -1.</_>
- <_>1 17 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4849998131394386e-003</threshold>
- <left_val>-0.1923190057277679</left_val>
- <right_val>0.5113970041275024</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 6 9 -1.</_>
- <_>11 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0470000132918358e-003</threshold>
- <left_val>0.1870680004358292</left_val>
- <right_val>-0.1611360013484955</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 18 4 -1.</_>
- <_>0 8 9 2 2.</_>
- <_>9 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0412679985165596</threshold>
- <left_val>-0.0488179996609688</left_val>
- <right_val>-1.1326299905776978</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 20 6 -1.</_>
- <_>13 10 10 3 2.</_>
- <_>3 13 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0763589963316917</threshold>
- <left_val>1.4169390201568604</left_val>
- <right_val>0.0873199999332428</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 20 6 -1.</_>
- <_>1 10 10 3 2.</_>
- <_>11 13 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0728349983692169</threshold>
- <left_val>1.3189860582351685</left_val>
- <right_val>-0.1481910049915314</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 24 2 -1.</_>
- <_>0 9 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0595769993960857</threshold>
- <left_val>0.0483769997954369</left_val>
- <right_val>0.8561180233955383</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 20 8 -1.</_>
- <_>1 12 10 4 2.</_>
- <_>11 16 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202639997005463</threshold>
- <left_val>-0.2104409933090210</left_val>
- <right_val>0.3385899960994721</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 9 7 -1.</_>
- <_>14 12 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0803010016679764</threshold>
- <left_val>-1.2464400529861450</left_val>
- <right_val>0.1185709983110428</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 9 7 -1.</_>
- <_>7 12 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178350005298853</threshold>
- <left_val>0.2578229904174805</left_val>
- <right_val>-0.2456479966640472</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 8 5 -1.</_>
- <_>12 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114310001954436</threshold>
- <left_val>0.2294979989528656</left_val>
- <right_val>-0.2949759960174561</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 8 5 -1.</_>
- <_>8 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255410000681877</threshold>
- <left_val>-0.8625299930572510</left_val>
- <right_val>-7.0400000549852848e-004</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 4 10 -1.</_>
- <_>13 10 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6899997657164931e-004</threshold>
- <left_val>0.3151139914989471</left_val>
- <right_val>-0.1434900015592575</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 20 2 -1.</_>
- <_>11 15 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144539996981621</threshold>
- <left_val>0.2514849901199341</left_val>
- <right_val>-0.2823289930820465</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 6 6 -1.</_>
- <_>9 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6730001494288445e-003</threshold>
- <left_val>0.2660140097141266</left_val>
- <right_val>-0.2819080054759979</right_val></_></_></trees>
- <stage_threshold>-3.2103500366210937</stage_threshold>
- <parent>18</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 20 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 21 3 -1.</_>
- <_>7 1 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0547089986503124</threshold>
- <left_val>-0.5414429903030396</left_val>
- <right_val>0.6104300022125244</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 13 9 -1.</_>
- <_>6 7 13 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1083879992365837</threshold>
- <left_val>0.7173990011215210</left_val>
- <right_val>-0.4119609892368317</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 5 -1.</_>
- <_>10 5 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0229969993233681</threshold>
- <left_val>-0.5826979875564575</left_val>
- <right_val>0.2964560091495514</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 10 6 -1.</_>
- <_>10 12 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7540000155568123e-003</threshold>
- <left_val>-0.7424389719963074</left_val>
- <right_val>0.1418330073356628</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 5 8 -1.</_>
- <_>6 16 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1520000882446766e-003</threshold>
- <left_val>0.1787990033626556</left_val>
- <right_val>-0.6854860186576843</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 9 -1.</_>
- <_>15 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225590001791716</threshold>
- <left_val>-1.0775549411773682</left_val>
- <right_val>0.1238899976015091</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 18 6 -1.</_>
- <_>8 10 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0830250009894371</threshold>
- <left_val>0.0245009995996952</left_val>
- <right_val>-1.0251879692077637</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 9 4 -1.</_>
- <_>11 4 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6740000620484352e-003</threshold>
- <left_val>-0.4528310000896454</left_val>
- <right_val>0.2123019993305206</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 21 3 -1.</_>
- <_>8 20 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0764850005507469</threshold>
- <left_val>-0.2697269916534424</left_val>
- <right_val>0.4858019948005676</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 22 2 -1.</_>
- <_>1 11 22 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4910001344978809e-003</threshold>
- <left_val>-0.4887120127677918</left_val>
- <right_val>0.3161639869213104</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104149999096990</threshold>
- <left_val>0.4151290059089661</left_val>
- <right_val>-0.3004480004310608</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 9 -1.</_>
- <_>15 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0276079997420311</threshold>
- <left_val>0.1620379984378815</left_val>
- <right_val>-0.9986850023269653</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 9 -1.</_>
- <_>7 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0232720002532005</threshold>
- <left_val>-1.1024399995803833</left_val>
- <right_val>0.0211249999701977</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 20 -1.</_>
- <_>20 2 2 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0556199997663498</threshold>
- <left_val>0.6503310203552246</left_val>
- <right_val>-0.0279380008578300</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 20 -1.</_>
- <_>2 2 2 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0406319983303547</threshold>
- <left_val>0.4211730062961578</left_val>
- <right_val>-0.2676379978656769</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 6 14 -1.</_>
- <_>14 7 3 7 2.</_>
- <_>11 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3560001328587532e-003</threshold>
- <left_val>0.3527779877185822</left_val>
- <right_val>-0.3785400092601776</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 4 9 -1.</_>
- <_>2 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170070007443428</threshold>
- <left_val>-0.2918950021266937</left_val>
- <right_val>0.4105379879474640</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 9 4 -1.</_>
- <_>12 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0370340012013912</threshold>
- <left_val>-1.3216309547424316</left_val>
- <right_val>0.1296650022268295</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 9 4 -1.</_>
- <_>1 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0196330007165670</threshold>
- <left_val>-0.8770229816436768</left_val>
- <right_val>1.0799999581649899e-003</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 15 6 -1.</_>
- <_>7 8 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235469993203878</threshold>
- <left_val>0.2610610127449036</left_val>
- <right_val>-0.2148140072822571</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 3 18 -1.</_>
- <_>8 8 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0433529987931252</threshold>
- <left_val>-0.9908969998359680</left_val>
- <right_val>-9.9560003727674484e-003</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 6 -1.</_>
- <_>12 6 6 3 2.</_>
- <_>6 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221839994192123</threshold>
- <left_val>0.6345440149307251</left_val>
- <right_val>-0.0565470010042191</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 20 4 -1.</_>
- <_>2 19 10 2 2.</_>
- <_>12 21 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165309999138117</threshold>
- <left_val>0.0246649999171495</left_val>
- <right_val>-0.7332680225372315</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 6 9 -1.</_>
- <_>14 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0327440015971661</threshold>
- <left_val>-0.5629720091819763</left_val>
- <right_val>0.1664029955863953</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 18 14 -1.</_>
- <_>3 5 9 7 2.</_>
- <_>12 12 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0714159980416298</threshold>
- <left_val>-3.0000001424923539e-004</left_val>
- <right_val>-0.9328640103340149</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 4 18 -1.</_>
- <_>17 6 2 9 2.</_>
- <_>15 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0999999772757292e-004</threshold>
- <left_val>-0.0953800007700920</left_val>
- <right_val>0.2518469989299774</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 4 18 -1.</_>
- <_>5 6 2 9 2.</_>
- <_>7 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4090000018477440e-003</threshold>
- <left_val>-0.6549680233001709</left_val>
- <right_val>0.0673009976744652</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 9 -1.</_>
- <_>13 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0172540005296469</threshold>
- <left_val>-0.4649299979209900</left_val>
- <right_val>0.1607089936733246</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0186410006135702</threshold>
- <left_val>-1.0594010353088379</left_val>
- <right_val>-0.0196170005947351</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 6 9 -1.</_>
- <_>13 5 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1979997232556343e-003</threshold>
- <left_val>0.5071619749069214</left_val>
- <right_val>-0.1533920019865036</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 6 -1.</_>
- <_>12 5 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0185380000621080</threshold>
- <left_val>-0.3049820065498352</left_val>
- <right_val>0.7350620031356812</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 16 6 -1.</_>
- <_>12 1 8 3 2.</_>
- <_>4 4 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0503350012004375</threshold>
- <left_val>-1.1140480041503906</left_val>
- <right_val>0.1800010055303574</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 6 11 -1.</_>
- <_>11 13 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235290005803108</threshold>
- <left_val>-0.8690789937973023</left_val>
- <right_val>-0.0124599998816848</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 6 12 -1.</_>
- <_>20 1 3 6 2.</_>
- <_>17 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271000005304813</threshold>
- <left_val>0.6594290137290955</left_val>
- <right_val>-0.0353239998221397</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 18 3 -1.</_>
- <_>1 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5879998728632927e-003</threshold>
- <left_val>-0.2295340001583099</left_val>
- <right_val>0.4242509901523590</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 10 8 -1.</_>
- <_>7 17 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233600009232759</threshold>
- <left_val>0.1835619956254959</left_val>
- <right_val>-0.9858729839324951</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 10 6 -1.</_>
- <_>6 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129469996318221</threshold>
- <left_val>-0.3314740061759949</left_val>
- <right_val>0.2132319957017899</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 9 4 -1.</_>
- <_>9 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6559999249875546e-003</threshold>
- <left_val>-0.1195140033960342</left_val>
- <right_val>0.2975279986858368</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 12 -1.</_>
- <_>1 1 3 6 2.</_>
- <_>4 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225709993392229</threshold>
- <left_val>0.3849940001964569</left_val>
- <right_val>-0.2443449944257736</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 5 12 -1.</_>
- <_>19 8 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0638139992952347</threshold>
- <left_val>-0.8938350081443787</left_val>
- <right_val>0.1421750038862228</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 8 -1.</_>
- <_>4 0 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499450005590916</threshold>
- <left_val>0.5386440157890320</left_val>
- <right_val>-0.2048529982566834</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 19 3 -1.</_>
- <_>3 6 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8319998681545258e-003</threshold>
- <left_val>-0.0566789992153645</left_val>
- <right_val>0.3997099995613098</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 6 -1.</_>
- <_>1 5 6 3 2.</_>
- <_>7 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0558359995484352</threshold>
- <left_val>-1.5239470005035400</left_val>
- <right_val>-0.0511830002069473</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 21 8 -1.</_>
- <_>9 1 7 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3195700049400330</threshold>
- <left_val>0.0745740011334419</left_val>
- <right_val>1.2447799444198608</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 16 8 -1.</_>
- <_>4 5 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0809559971094131</threshold>
- <left_val>-0.1966550052165985</left_val>
- <right_val>0.5988969802856445</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 3 -1.</_>
- <_>6 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149119999259710</threshold>
- <left_val>-0.6402059793472290</left_val>
- <right_val>0.1580760031938553</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 10 14 -1.</_>
- <_>4 11 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0467090010643005</threshold>
- <left_val>0.0852390006184578</left_val>
- <right_val>-0.4548720121383667</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 4 10 -1.</_>
- <_>15 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0539999976754189e-003</threshold>
- <left_val>-0.4318400025367737</left_val>
- <right_val>0.2245260030031204</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 18 3 -1.</_>
- <_>9 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0343759991228580</threshold>
- <left_val>0.4020250141620636</left_val>
- <right_val>-0.2390359938144684</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 12 6 -1.</_>
- <_>12 18 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349240005016327</threshold>
- <left_val>0.5287010073661804</left_val>
- <right_val>0.0397090017795563</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 6 9 -1.</_>
- <_>6 15 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0030000489205122e-003</threshold>
- <left_val>-0.3875429928302765</left_val>
- <right_val>0.1419260054826737</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 6 8 -1.</_>
- <_>15 11 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141329998150468</threshold>
- <left_val>0.8752840161323547</left_val>
- <right_val>0.0855079963803291</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 6 8 -1.</_>
- <_>3 11 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7940000444650650e-003</threshold>
- <left_val>-1.1649219989776611</left_val>
- <right_val>-0.0339430011808872</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 18 6 -1.</_>
- <_>14 9 9 3 2.</_>
- <_>5 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0528860017657280</threshold>
- <left_val>1.0930680036544800</left_val>
- <right_val>0.0511870011687279</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 12 6 -1.</_>
- <_>1 15 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1079999860376120e-003</threshold>
- <left_val>0.1369619965553284</left_val>
- <right_val>-0.3384999930858612</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 10 6 -1.</_>
- <_>14 17 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183530002832413</threshold>
- <left_val>0.1366160064935684</left_val>
- <right_val>-0.4077779948711395</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 10 6 -1.</_>
- <_>0 17 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126719996333122</threshold>
- <left_val>-0.0149360001087189</left_val>
- <right_val>-0.8170750141143799</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 13 6 9 -1.</_>
- <_>15 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129249999299645</threshold>
- <left_val>0.1762509942054749</left_val>
- <right_val>-0.3249169886112213</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 6 9 -1.</_>
- <_>3 16 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179210007190704</threshold>
- <left_val>-0.5274540185928345</left_val>
- <right_val>0.0444430001080036</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 8 8 -1.</_>
- <_>9 5 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9160000374540687e-003</threshold>
- <left_val>-0.1097859963774681</left_val>
- <right_val>0.2206750065088272</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 12 6 -1.</_>
- <_>1 18 6 3 2.</_>
- <_>7 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0146979996934533</threshold>
- <left_val>0.3906779885292053</left_val>
- <right_val>-0.2222499996423721</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 19 10 4 -1.</_>
- <_>13 21 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149729996919632</threshold>
- <left_val>-0.2545090019702911</left_val>
- <right_val>0.1779000014066696</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 10 4 -1.</_>
- <_>1 21 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146369999274611</threshold>
- <left_val>-0.0251250006258488</left_val>
- <right_val>-0.8712130188941956</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 19 18 3 -1.</_>
- <_>6 20 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109740002080798</threshold>
- <left_val>0.7908279895782471</left_val>
- <right_val>0.0201210007071495</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 4 10 -1.</_>
- <_>8 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1599998995661736e-003</threshold>
- <left_val>-0.4790689945220947</left_val>
- <right_val>0.0522320009768009</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 6 -1.</_>
- <_>0 2 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6179997734725475e-003</threshold>
- <left_val>-0.1724459975957871</left_val>
- <right_val>0.3452779948711395</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 9 -1.</_>
- <_>0 4 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234769992530346</threshold>
- <left_val>3.7760001141577959e-003</left_val>
- <right_val>-0.6533370018005371</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 20 6 -1.</_>
- <_>14 9 10 3 2.</_>
- <_>4 12 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0317669995129108</threshold>
- <left_val>0.0163640007376671</left_val>
- <right_val>0.5872370004653931</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 19 8 -1.</_>
- <_>1 19 19 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184199996292591</threshold>
- <left_val>0.1999389976263046</left_val>
- <right_val>-0.3205649852752686</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 10 6 -1.</_>
- <_>14 2 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195439998060465</threshold>
- <left_val>0.1845020055770874</left_val>
- <right_val>-0.2379360049962997</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 21 14 -1.</_>
- <_>8 10 7 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4115949869155884</threshold>
- <left_val>-0.0603820011019707</left_val>
- <right_val>-1.6072119474411011</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 8 8 -1.</_>
- <_>10 10 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415959991514683</threshold>
- <left_val>-0.3275620043277741</left_val>
- <right_val>0.1505800038576126</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 10 4 -1.</_>
- <_>11 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103359995409846</threshold>
- <left_val>-0.6239439845085144</left_val>
- <right_val>0.0131120001897216</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 9 -1.</_>
- <_>10 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123929996043444</threshold>
- <left_val>-0.0331149995326996</left_val>
- <right_val>0.5557990074157715</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 10 -1.</_>
- <_>9 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7270000949501991e-003</threshold>
- <left_val>0.1988320052623749</left_val>
- <right_val>-0.3763560056686401</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 4 4 13 -1.</_>
- <_>14 4 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162950009107590</threshold>
- <left_val>0.2037300020456314</left_val>
- <right_val>-0.4280079901218414</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 13 -1.</_>
- <_>8 4 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104839997366071</threshold>
- <left_val>-0.5684700012207031</left_val>
- <right_val>0.0441990010440350</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 9 6 -1.</_>
- <_>11 7 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124319996684790</threshold>
- <left_val>0.7464190125465393</left_val>
- <right_val>0.0436789989471436</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 16 6 -1.</_>
- <_>3 6 8 3 2.</_>
- <_>11 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0503749996423721</threshold>
- <left_val>0.8509010076522827</left_val>
- <right_val>-0.1777379959821701</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 16 14 -1.</_>
- <_>13 4 8 7 2.</_>
- <_>5 11 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0495480000972748</threshold>
- <left_val>0.1678490042686462</left_val>
- <right_val>-0.2987749874591827</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 4 -1.</_>
- <_>0 0 12 2 2.</_>
- <_>12 2 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0410850010812283</threshold>
- <left_val>-1.3302919864654541</left_val>
- <right_val>-0.0491820015013218</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 9 6 -1.</_>
- <_>12 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0069999843835831e-003</threshold>
- <left_val>-0.0605389997363091</left_val>
- <right_val>0.1848320066928864</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 14 4 -1.</_>
- <_>11 1 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0501429997384548</threshold>
- <left_val>0.7644770145416260</left_val>
- <right_val>-0.1835699975490570</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 7 9 -1.</_>
- <_>10 17 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7879998609423637e-003</threshold>
- <left_val>0.2265599966049194</left_val>
- <right_val>-0.0631569996476173</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 8 10 -1.</_>
- <_>8 3 4 5 2.</_>
- <_>12 8 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0501709990203381</threshold>
- <left_val>-1.5899070501327515</left_val>
- <right_val>-0.0612550005316734</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 12 5 -1.</_>
- <_>11 3 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1021609976887703</threshold>
- <left_val>0.1207180023193359</left_val>
- <right_val>-1.4120110273361206</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 13 -1.</_>
- <_>10 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143729997798800</threshold>
- <left_val>-1.3116970062255859</left_val>
- <right_val>-0.0519360005855560</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 3 19 -1.</_>
- <_>12 2 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102819995954633</threshold>
- <left_val>-2.1639999467879534e-003</left_val>
- <right_val>0.4424720108509064</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 9 6 -1.</_>
- <_>10 7 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118140000849962</threshold>
- <left_val>0.6537809967994690</left_val>
- <right_val>-0.1872369945049286</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 22 20 2 -1.</_>
- <_>4 22 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0721149966120720</threshold>
- <left_val>0.0718469992280006</left_val>
- <right_val>0.8149629831314087</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 24 4 -1.</_>
- <_>0 16 12 2 2.</_>
- <_>12 18 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190019998699427</threshold>
- <left_val>-0.6742720007896423</left_val>
- <right_val>-4.3200000072829425e-004</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 12 5 -1.</_>
- <_>11 3 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6990001574158669e-003</threshold>
- <left_val>0.3331150114536285</left_val>
- <right_val>0.0557940006256104</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 8 14 -1.</_>
- <_>1 10 4 7 2.</_>
- <_>5 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0581570006906986</threshold>
- <left_val>0.4557229876518250</left_val>
- <right_val>-0.2030510008335114</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 6 6 -1.</_>
- <_>11 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1360000353306532e-003</threshold>
- <left_val>-0.0446869991719723</left_val>
- <right_val>0.2268189936876297</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 10 24 -1.</_>
- <_>6 0 5 12 2.</_>
- <_>11 12 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0494149997830391</threshold>
- <left_val>0.2669459879398346</left_val>
- <right_val>-0.2611699998378754</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 14 14 -1.</_>
- <_>14 5 7 7 2.</_>
- <_>7 12 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1191380023956299</threshold>
- <left_val>-0.8301799893379211</left_val>
- <right_val>0.1324850022792816</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 8 -1.</_>
- <_>7 8 5 4 2.</_>
- <_>12 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0183039996773005</threshold>
- <left_val>-0.6749920248985291</left_val>
- <right_val>0.0170920006930828</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 9 6 -1.</_>
- <_>12 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9199997708201408e-003</threshold>
- <left_val>-0.0722870007157326</left_val>
- <right_val>0.1442580074071884</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 3 -1.</_>
- <_>12 6 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0519259981811047</threshold>
- <left_val>0.0309219993650913</left_val>
- <right_val>-0.5586060285568237</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 12 5 -1.</_>
- <_>11 3 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0667240023612976</threshold>
- <left_val>0.1366640031337738</left_val>
- <right_val>-0.2941100001335144</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 22 4 -1.</_>
- <_>1 13 11 2 2.</_>
- <_>12 15 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137780001387000</threshold>
- <left_val>-0.5944390296936035</left_val>
- <right_val>0.0153000000864267</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 12 6 -1.</_>
- <_>9 14 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177609995007515</threshold>
- <left_val>0.4049650132656097</left_val>
- <right_val>-3.3559999428689480e-003</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 9 6 -1.</_>
- <_>0 7 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0422349981963634</threshold>
- <left_val>-1.0897940397262573</left_val>
- <right_val>-0.0402249991893768</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 23 6 -1.</_>
- <_>1 7 23 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135249998420477</threshold>
- <left_val>0.2892189919948578</left_val>
- <right_val>-0.2519479990005493</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 19 12 -1.</_>
- <_>1 10 19 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111060002818704</threshold>
- <left_val>0.6531280279159546</left_val>
- <right_val>-0.1805370002985001</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 21 -1.</_>
- <_>9 8 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1228459998965263</threshold>
- <left_val>-1.9570649862289429</left_val>
- <right_val>0.1481540054082871</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 19 18 3 -1.</_>
- <_>9 19 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0477159991860390</threshold>
- <left_val>-0.2287559956312180</left_val>
- <right_val>0.3423370122909546</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 14 6 9 -1.</_>
- <_>11 14 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318170003592968</threshold>
- <left_val>0.1597629934549332</left_val>
- <right_val>-1.0091969966888428</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 12 -1.</_>
- <_>11 6 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2570000514388084e-003</threshold>
- <left_val>-0.3888129889965057</left_val>
- <right_val>0.0842100009322166</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 6 9 -1.</_>
- <_>18 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0613729991018772</threshold>
- <left_val>1.7152810096740723</left_val>
- <right_val>0.0593249984085560</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 9 -1.</_>
- <_>4 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7030000928789377e-003</threshold>
- <left_val>-0.3816170096397400</left_val>
- <right_val>0.0851270034909248</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 22 -1.</_>
- <_>15 1 2 11 2.</_>
- <_>13 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0685440003871918</threshold>
- <left_val>-3.0925889015197754</left_val>
- <right_val>0.1178800016641617</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 8 12 -1.</_>
- <_>1 14 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1037250012159348</threshold>
- <left_val>-0.1376930028200150</left_val>
- <right_val>1.9009410142898560</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 7 9 -1.</_>
- <_>14 10 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157990008592606</threshold>
- <left_val>-0.0626600012183189</left_val>
- <right_val>0.2591769993305206</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 18 4 -1.</_>
- <_>3 12 9 2 2.</_>
- <_>12 14 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8040001466870308e-003</threshold>
- <left_val>-0.5629159808158875</left_val>
- <right_val>0.0439230017364025</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 4 22 -1.</_>
- <_>15 1 2 11 2.</_>
- <_>13 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0229995548725128e-003</threshold>
- <left_val>0.2528710067272186</left_val>
- <right_val>-0.0412259995937347</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 22 -1.</_>
- <_>7 1 2 11 2.</_>
- <_>9 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0637549981474876</threshold>
- <left_val>-2.6178569793701172</left_val>
- <right_val>-0.0740059986710548</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 20 4 -1.</_>
- <_>14 7 10 2 2.</_>
- <_>4 9 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0389549992978573</threshold>
- <left_val>0.0590329989790916</left_val>
- <right_val>0.8594560027122498</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 6 7 -1.</_>
- <_>12 10 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398029983043671</threshold>
- <left_val>0.9360049962997437</left_val>
- <right_val>-0.1563940048217773</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 10 4 -1.</_>
- <_>7 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0503019988536835</threshold>
- <left_val>0.1372590065002441</left_val>
- <right_val>-2.5549728870391846</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 4 15 -1.</_>
- <_>0 8 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0462500005960464</threshold>
- <left_val>-0.0139640001580119</left_val>
- <right_val>-0.7102620005607605</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 8 12 -1.</_>
- <_>19 0 4 6 2.</_>
- <_>15 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0621960014104843</threshold>
- <left_val>0.0595260001718998</left_val>
- <right_val>1.6509100198745728</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 12 -1.</_>
- <_>1 0 4 6 2.</_>
- <_>5 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0647760033607483</threshold>
- <left_val>0.7136899828910828</left_val>
- <right_val>-0.1727000027894974</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 16 -1.</_>
- <_>16 5 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0275229997932911</threshold>
- <left_val>0.1463160067796707</left_val>
- <right_val>-0.0814289972186089</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 16 -1.</_>
- <_>6 5 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9900001138448715e-004</threshold>
- <left_val>-0.3714450001716614</left_val>
- <right_val>0.1015269979834557</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 16 -1.</_>
- <_>17 0 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3299999088048935e-003</threshold>
- <left_val>-0.2375629991292954</left_val>
- <right_val>0.2679840028285980</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 16 -1.</_>
- <_>5 0 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0472970008850098</threshold>
- <left_val>-0.0276820007711649</left_val>
- <right_val>-0.8491029739379883</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 24 3 -1.</_>
- <_>0 3 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125089995563030</threshold>
- <left_val>0.1873019933700562</left_val>
- <right_val>-0.5600110292434692</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 10 4 -1.</_>
- <_>7 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0458990000188351</threshold>
- <left_val>-0.1560119986534119</left_val>
- <right_val>0.9707300066947937</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 23 8 -1.</_>
- <_>1 4 23 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1985339969396591</threshold>
- <left_val>0.1489550024271011</left_val>
- <right_val>-1.1015529632568359</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 19 3 -1.</_>
- <_>1 18 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166749991476536</threshold>
- <left_val>-0.1661529988050461</left_val>
- <right_val>0.8221099972724915</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 18 2 -1.</_>
- <_>6 19 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9829999655485153e-003</threshold>
- <left_val>-0.0712499991059303</left_val>
- <right_val>0.2881090044975281</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 9 6 -1.</_>
- <_>1 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224479995667934</threshold>
- <left_val>-0.0209810007363558</left_val>
- <right_val>-0.7841650247573853</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 6 9 -1.</_>
- <_>15 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139130000025034</threshold>
- <left_val>-0.1816579997539520</left_val>
- <right_val>0.2049179971218109</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 6 9 -1.</_>
- <_>3 18 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7659999951720238e-003</threshold>
- <left_val>-0.4559589922428131</left_val>
- <right_val>0.0635769963264465</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 20 6 -1.</_>
- <_>4 17 20 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132090002298355</threshold>
- <left_val>0.2663230001926422</left_val>
- <right_val>-0.1779599934816361</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 6 14 -1.</_>
- <_>0 10 3 7 2.</_>
- <_>3 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0490529984235764</threshold>
- <left_val>-0.1547680050134659</left_val>
- <right_val>1.1069979667663574</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 18 3 -1.</_>
- <_>6 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202639997005463</threshold>
- <left_val>0.0689150020480156</left_val>
- <right_val>0.6986749768257141</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 9 7 -1.</_>
- <_>7 12 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168280005455017</threshold>
- <left_val>0.2760719954967499</left_val>
- <right_val>-0.2513920068740845</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 18 5 -1.</_>
- <_>12 10 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1693949997425079</threshold>
- <left_val>-3.0767529010772705</left_val>
- <right_val>0.1161750033497810</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 18 5 -1.</_>
- <_>6 10 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1133610010147095</threshold>
- <left_val>-1.4639229774475098</left_val>
- <right_val>-0.0514470003545284</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 18 9 -1.</_>
- <_>9 2 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0776859968900681</threshold>
- <left_val>0.8843020200729370</left_val>
- <right_val>0.0433069989085197</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 10 10 -1.</_>
- <_>4 6 5 5 2.</_>
- <_>9 11 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155680002644658</threshold>
- <left_val>0.1367249935865402</left_val>
- <right_val>-0.3450550138950348</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 14 4 9 -1.</_>
- <_>20 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0660189986228943</threshold>
- <left_val>-1.0300110578536987</left_val>
- <right_val>0.1160139963030815</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 4 9 -1.</_>
- <_>2 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3699999377131462e-003</threshold>
- <left_val>0.0764290019869804</left_val>
- <right_val>-0.4400250017642975</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 20 -1.</_>
- <_>13 1 2 10 2.</_>
- <_>11 11 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0354029983282089</threshold>
- <left_val>0.1197950020432472</left_val>
- <right_val>-0.7266830205917358</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 21 12 3 -1.</_>
- <_>12 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0390510000288486</threshold>
- <left_val>0.6737530231475830</left_val>
- <right_val>-0.1819600015878677</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 20 -1.</_>
- <_>13 1 2 10 2.</_>
- <_>11 11 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7899995744228363e-003</threshold>
- <left_val>0.2126459926366806</left_val>
- <right_val>0.0367560014128685</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 10 8 -1.</_>
- <_>1 16 5 4 2.</_>
- <_>6 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0230470001697540</threshold>
- <left_val>0.4474219977855682</left_val>
- <right_val>-0.2098670005798340</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 20 -1.</_>
- <_>13 1 2 10 2.</_>
- <_>11 11 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1169999856501818e-003</threshold>
- <left_val>0.0375440008938313</left_val>
- <right_val>0.2780820131301880</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 3 19 -1.</_>
- <_>2 0 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131360003724694</threshold>
- <left_val>-0.1984239965677261</left_val>
- <right_val>0.5433570146560669</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 20 -1.</_>
- <_>13 1 2 10 2.</_>
- <_>11 11 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147820003330708</threshold>
- <left_val>0.1353060007095337</left_val>
- <right_val>-0.1115360036492348</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 9 -1.</_>
- <_>2 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0601390004158020</threshold>
- <left_val>0.8403930068016052</left_val>
- <right_val>-0.1671160012483597</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 19 4 -1.</_>
- <_>3 9 19 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0519989989697933</threshold>
- <left_val>0.1737200021743774</left_val>
- <right_val>-0.7854760289192200</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 9 6 -1.</_>
- <_>7 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247920006513596</threshold>
- <left_val>-0.1773920059204102</left_val>
- <right_val>0.6675260066986084</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 1 7 6 -1.</_>
- <_>17 4 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120149999856949</threshold>
- <left_val>-0.1426369994878769</left_val>
- <right_val>0.1607050001621246</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 14 8 -1.</_>
- <_>5 4 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0986559987068176</threshold>
- <left_val>1.0429769754409790</left_val>
- <right_val>-0.1577019989490509</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 8 6 -1.</_>
- <_>16 4 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1175829991698265</threshold>
- <left_val>0.1095570027828217</left_val>
- <right_val>-4.4920377731323242</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 8 6 -1.</_>
- <_>0 4 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189229995012283</threshold>
- <left_val>-0.7854340076446533</left_val>
- <right_val>0.0129840001463890</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 4 -1.</_>
- <_>15 0 9 2 2.</_>
- <_>6 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0283909998834133</threshold>
- <left_val>-0.6056990027427673</left_val>
- <right_val>0.1290349960327148</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 9 6 -1.</_>
- <_>0 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131829995661974</threshold>
- <left_val>-0.0144159998744726</left_val>
- <right_val>-0.7321050167083740</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 8 -1.</_>
- <_>9 7 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1165300011634827</threshold>
- <left_val>-2.0442469120025635</left_val>
- <right_val>0.1405310034751892</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 6 9 -1.</_>
- <_>4 11 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8880000356584787e-003</threshold>
- <left_val>-0.4186159968376160</left_val>
- <right_val>0.0787049978971481</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 9 -1.</_>
- <_>12 5 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312290005385876</threshold>
- <left_val>0.0246329996734858</left_val>
- <right_val>0.4187040030956268</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>10 6 2 9 2.</_>
- <_>12 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0251989997923374</threshold>
- <left_val>-0.1755779981613159</left_val>
- <right_val>0.6471059918403626</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 4 20 -1.</_>
- <_>13 1 2 10 2.</_>
- <_>11 11 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0281240008771420</threshold>
- <left_val>-0.2200559973716736</left_val>
- <right_val>0.1412100046873093</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 20 -1.</_>
- <_>9 1 2 10 2.</_>
- <_>11 11 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0364990010857582</threshold>
- <left_val>-0.0684269964694977</left_val>
- <right_val>-2.3410849571228027</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 18 6 -1.</_>
- <_>14 9 9 3 2.</_>
- <_>5 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0722929984331131</threshold>
- <left_val>1.2898750305175781</left_val>
- <right_val>0.0848750025033951</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 9 -1.</_>
- <_>8 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416710004210472</threshold>
- <left_val>-1.1630970239639282</left_val>
- <right_val>-0.0537529997527599</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 16 8 6 -1.</_>
- <_>10 16 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0477030016481876</threshold>
- <left_val>0.0701010003685951</left_val>
- <right_val>0.7367650270462036</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 8 -1.</_>
- <_>0 0 9 4 2.</_>
- <_>9 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0657930001616478</threshold>
- <left_val>-0.1775529980659485</left_val>
- <right_val>0.6978049874305725</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 14 12 -1.</_>
- <_>13 5 7 6 2.</_>
- <_>6 11 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139049999415874</threshold>
- <left_val>0.2193679958581924</left_val>
- <right_val>-0.2039079964160919</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 15 7 -1.</_>
- <_>9 3 5 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277309995144606</threshold>
- <left_val>0.6186789870262146</left_val>
- <right_val>-0.1780409961938858</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 10 6 -1.</_>
- <_>14 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158799998462200</threshold>
- <left_val>-0.4648410081863403</left_val>
- <right_val>0.1882860064506531</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 4 10 -1.</_>
- <_>0 16 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0741280019283295</threshold>
- <left_val>-0.1285810023546219</left_val>
- <right_val>3.2792479991912842</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 22 3 -1.</_>
- <_>1 11 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9000002481043339e-004</threshold>
- <left_val>-0.3011760115623474</left_val>
- <right_val>0.2381879985332489</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 6 10 -1.</_>
- <_>10 9 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179650001227856</threshold>
- <left_val>-0.2228499948978424</left_val>
- <right_val>0.2995400130748749</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 6 12 -1.</_>
- <_>16 2 3 6 2.</_>
- <_>13 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5380000006407499e-003</threshold>
- <left_val>0.2506439983844757</left_val>
- <right_val>-0.1366560012102127</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>10 6 2 9 2.</_>
- <_>12 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0680001303553581e-003</threshold>
- <left_val>0.2901749908924103</left_val>
- <right_val>-0.2892970144748688</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 16 -1.</_>
- <_>12 8 5 8 2.</_>
- <_>7 16 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0491699986159801</threshold>
- <left_val>0.1915639936923981</left_val>
- <right_val>-0.6832870244979858</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 8 12 -1.</_>
- <_>8 1 4 6 2.</_>
- <_>12 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306809991598129</threshold>
- <left_val>-0.7567700147628784</left_val>
- <right_val>-0.0132799996063113</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 12 14 -1.</_>
- <_>13 1 6 7 2.</_>
- <_>7 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1001740023493767</threshold>
- <left_val>0.0844539999961853</left_val>
- <right_val>1.0888710021972656</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 12 6 -1.</_>
- <_>2 16 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1950001139193773e-003</threshold>
- <left_val>-0.2691940069198608</left_val>
- <right_val>0.1953790038824081</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 6 6 -1.</_>
- <_>11 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0355030000209808</threshold>
- <left_val>0.1363230049610138</left_val>
- <right_val>-0.5691720247268677</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 6 6 -1.</_>
- <_>7 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5900000259280205e-004</threshold>
- <left_val>-0.4044399857521057</left_val>
- <right_val>0.1407479941844940</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 4 10 -1.</_>
- <_>13 4 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252589993178844</threshold>
- <left_val>0.1624320000410080</left_val>
- <right_val>-0.5574179887771606</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 19 3 -1.</_>
- <_>0 20 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1549999043345451e-003</threshold>
- <left_val>0.3113259971141815</left_val>
- <right_val>-0.2275609970092773</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 6 8 -1.</_>
- <_>12 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5869999770075083e-003</threshold>
- <left_val>-0.2686769962310791</left_val>
- <right_val>0.1956540048122406</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 8 22 -1.</_>
- <_>8 12 8 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162049997597933</threshold>
- <left_val>0.1548649966716766</left_val>
- <right_val>-0.3405779898166657</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 6 8 -1.</_>
- <_>12 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296240001916885</threshold>
- <left_val>1.1466799974441528</left_val>
- <right_val>0.0905579999089241</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 6 8 -1.</_>
- <_>6 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5930000226944685e-003</threshold>
- <left_val>-0.7125750184059143</left_val>
- <right_val>-7.0400000549852848e-004</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 6 9 -1.</_>
- <_>14 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0540190003812313</threshold>
- <left_val>0.4153749942779541</left_val>
- <right_val>0.0272460002452135</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 4 -1.</_>
- <_>0 8 24 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0662110000848770</threshold>
- <left_val>-1.3340090513229370</left_val>
- <right_val>-0.0473529994487762</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 10 6 -1.</_>
- <_>14 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0279409997165203</threshold>
- <left_val>0.1444630026817322</left_val>
- <right_val>-0.5151839852333069</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 10 6 -1.</_>
- <_>0 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289570000022650</threshold>
- <left_val>-0.0499660000205040</left_val>
- <right_val>-1.1929039955139160</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 19 3 -1.</_>
- <_>4 7 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0204249992966652</threshold>
- <left_val>0.6388130187988281</left_val>
- <right_val>0.0381410010159016</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 19 3 -1.</_>
- <_>1 7 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124169997870922</threshold>
- <left_val>-0.2154700011014938</left_val>
- <right_val>0.4947769939899445</right_val></_></_></trees>
- <stage_threshold>-3.2772979736328125</stage_threshold>
- <parent>19</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 21 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 16 9 -1.</_>
- <_>4 3 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0432740002870560</threshold>
- <left_val>-0.8049439787864685</left_val>
- <right_val>0.3989729881286621</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 5 -1.</_>
- <_>8 1 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1861550062894821</threshold>
- <left_val>-0.3165529966354370</left_val>
- <right_val>0.6887729763984680</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 6 15 -1.</_>
- <_>3 11 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318609997630119</threshold>
- <left_val>-0.6426619887351990</left_val>
- <right_val>0.2555089890956879</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140220001339912</threshold>
- <left_val>-0.4592660069465637</left_val>
- <right_val>0.3117119967937470</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3029997982084751e-003</threshold>
- <left_val>0.4602690041065216</left_val>
- <right_val>-0.2743850052356720</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 22 18 2 -1.</_>
- <_>6 23 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4310001432895660e-003</threshold>
- <left_val>0.3660860061645508</left_val>
- <right_val>-0.2720580101013184</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 6 9 -1.</_>
- <_>2 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168229993432760</threshold>
- <left_val>0.0234769992530346</left_val>
- <right_val>-0.8844379782676697</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 12 6 9 -1.</_>
- <_>18 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0260390006005764</threshold>
- <left_val>0.1748879998922348</left_val>
- <right_val>-0.5456470251083374</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 9 -1.</_>
- <_>0 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0267200004309416</threshold>
- <left_val>-0.9639649987220764</left_val>
- <right_val>0.0235249996185303</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 4 10 -1.</_>
- <_>11 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170419998466969</threshold>
- <left_val>-0.7084879875183106</left_val>
- <right_val>0.2146809995174408</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 16 -1.</_>
- <_>9 14 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9569999575614929e-003</threshold>
- <left_val>0.0736010000109673</left_val>
- <right_val>-0.6822559833526611</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 10 10 -1.</_>
- <_>7 12 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8679999522864819e-003</threshold>
- <left_val>-0.7493500113487244</left_val>
- <right_val>0.2380339950323105</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 13 -1.</_>
- <_>3 3 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0437749996781349</threshold>
- <left_val>0.6832330226898193</left_val>
- <right_val>-0.2138029932975769</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 13 -1.</_>
- <_>18 1 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0516330003738403</threshold>
- <left_val>-0.1256649941205978</left_val>
- <right_val>0.6752380132675171</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 6 9 -1.</_>
- <_>7 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1780003383755684e-003</threshold>
- <left_val>0.0706899985671043</left_val>
- <right_val>-0.8066589832305908</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 2 6 11 -1.</_>
- <_>18 2 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0528419986367226</threshold>
- <left_val>0.9543390274047852</left_val>
- <right_val>0.0165480002760887</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 11 -1.</_>
- <_>3 2 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0525839999318123</threshold>
- <left_val>-0.2841440141201019</left_val>
- <right_val>0.4712980091571808</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 15 6 -1.</_>
- <_>9 14 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126590002328157</threshold>
- <left_val>0.3844540119171143</left_val>
- <right_val>-0.0622880011796951</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 20 3 -1.</_>
- <_>2 3 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116940001025796</threshold>
- <left_val>5.6000000768108293e-005</left_val>
- <right_val>-1.0173139572143555</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>10 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239189993590117</threshold>
- <left_val>0.8492130041122437</left_val>
- <right_val>5.7399999350309372e-003</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 14 -1.</_>
- <_>5 6 6 7 2.</_>
- <_>11 13 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0616739988327026</threshold>
- <left_val>-0.9257140159606934</left_val>
- <right_val>-1.7679999582469463e-003</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8279999494552612e-003</threshold>
- <left_val>-0.5437229871749878</left_val>
- <right_val>0.2493239939212799</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 6 -1.</_>
- <_>10 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0352579988539219</threshold>
- <left_val>-7.3719997890293598e-003</left_val>
- <right_val>-0.9396399855613709</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 9 -1.</_>
- <_>12 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184380002319813</threshold>
- <left_val>0.7213670015335083</left_val>
- <right_val>0.0104919997975230</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 12 20 -1.</_>
- <_>4 1 6 10 2.</_>
- <_>10 11 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383890010416508</threshold>
- <left_val>0.1927260011434555</left_val>
- <right_val>-0.3583210110664368</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 18 3 -1.</_>
- <_>6 7 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0997209995985031</threshold>
- <left_val>0.1135419979691505</left_val>
- <right_val>-1.6304190158843994</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 18 3 -1.</_>
- <_>9 7 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0844620019197464</threshold>
- <left_val>-0.0534209981560707</left_val>
- <right_val>-1.6981120109558105</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 18 3 -1.</_>
- <_>9 20 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0402700006961823</threshold>
- <left_val>-0.1078319996595383</left_val>
- <right_val>0.5192660093307495</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589359998703003</threshold>
- <left_val>-0.1805370002985001</left_val>
- <right_val>0.9511979818344116</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 12 15 -1.</_>
- <_>10 2 4 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1495700031518936</threshold>
- <left_val>0.1678529977798462</left_val>
- <right_val>-1.1591869592666626</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 18 3 -1.</_>
- <_>2 4 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9399998756125569e-004</threshold>
- <left_val>0.2049140036106110</left_val>
- <right_val>-0.3311820030212402</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 4 18 -1.</_>
- <_>21 4 2 9 2.</_>
- <_>19 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333690010011196</threshold>
- <left_val>0.9346809983253479</left_val>
- <right_val>-2.9639999847859144e-003</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 19 3 -1.</_>
- <_>0 2 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3759996816515923e-003</threshold>
- <left_val>3.7000000011175871e-003</left_val>
- <right_val>-0.7754979729652405</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 15 4 -1.</_>
- <_>5 2 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0431939996778965</threshold>
- <left_val>-2.2040000185370445e-003</left_val>
- <right_val>0.7458969950675964</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 14 5 -1.</_>
- <_>12 2 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0675550028681755</threshold>
- <left_val>0.7229210138320923</left_val>
- <right_val>-0.1840420067310333</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 22 14 -1.</_>
- <_>1 2 11 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3116860091686249</threshold>
- <left_val>1.0014270544052124</left_val>
- <right_val>0.0340030007064343</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 6 9 -1.</_>
- <_>10 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297439992427826</threshold>
- <left_val>-0.0463560000061989</left_val>
- <right_val>-1.2781809568405151</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 18 3 -1.</_>
- <_>6 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107370000332594</threshold>
- <left_val>0.0148120000958443</left_val>
- <right_val>0.6664999723434448</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 3 18 -1.</_>
- <_>9 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288410000503063</threshold>
- <left_val>-0.9422259926795960</left_val>
- <right_val>-0.0207969993352890</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 20 3 -1.</_>
- <_>2 1 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7649998925626278e-003</threshold>
- <left_val>-0.4354189932346344</left_val>
- <right_val>0.2338600009679794</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 5 12 -1.</_>
- <_>5 8 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0284109991043806</threshold>
- <left_val>-0.1761579960584641</left_val>
- <right_val>0.8576530218124390</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 12 5 -1.</_>
- <_>12 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290079992264509</threshold>
- <left_val>0.5797809958457947</left_val>
- <right_val>0.0285659991204739</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 12 -1.</_>
- <_>9 12 3 6 2.</_>
- <_>12 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249659996479750</threshold>
- <left_val>-0.0227290000766516</left_val>
- <right_val>-0.9677309989929199</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 8 10 -1.</_>
- <_>18 14 4 5 2.</_>
- <_>14 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120360003784299</threshold>
- <left_val>-0.1421470046043396</left_val>
- <right_val>0.5168799757957459</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 8 10 -1.</_>
- <_>2 14 4 5 2.</_>
- <_>6 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0425140000879765</threshold>
- <left_val>0.9727380275726318</left_val>
- <right_val>-0.1811980009078980</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 18 12 6 -1.</_>
- <_>16 18 6 3 2.</_>
- <_>10 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102760000154376</threshold>
- <left_val>-0.0830999985337257</left_val>
- <right_val>0.3176279962062836</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 9 -1.</_>
- <_>1 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0691919997334480</threshold>
- <left_val>-2.0668580532073975</left_val>
- <right_val>-0.0601739995181561</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 20 -1.</_>
- <_>12 3 1 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6769999898970127e-003</threshold>
- <left_val>0.4413180053234100</left_val>
- <right_val>0.0232090000063181</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 14 6 -1.</_>
- <_>4 6 7 3 2.</_>
- <_>11 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139239998534322</threshold>
- <left_val>0.2860670089721680</left_val>
- <right_val>-0.2915270030498505</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 13 -1.</_>
- <_>10 5 4 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153339998796582</threshold>
- <left_val>-0.5741450190544128</left_val>
- <right_val>0.2306330054998398</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 15 -1.</_>
- <_>5 9 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0102390004321933</threshold>
- <left_val>0.3447920083999634</left_val>
- <right_val>-0.2608039975166321</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 15 4 -1.</_>
- <_>14 16 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0509889982640743</threshold>
- <left_val>0.5615410208702087</left_val>
- <right_val>0.0612189993262291</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 6 14 -1.</_>
- <_>7 8 3 7 2.</_>
- <_>10 15 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0306899994611740</threshold>
- <left_val>-0.1477279961109161</left_val>
- <right_val>1.6378489732742310</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 6 -1.</_>
- <_>7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112239997833967</threshold>
- <left_val>0.2400619983673096</left_val>
- <right_val>-0.4486489892005920</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 18 3 -1.</_>
- <_>2 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2899999320507050e-003</threshold>
- <left_val>0.4311949908733368</left_val>
- <right_val>-0.2380899935960770</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 15 8 -1.</_>
- <_>5 5 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0785909965634346</threshold>
- <left_val>0.0198650006204844</left_val>
- <right_val>0.8085380196571350</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 8 18 -1.</_>
- <_>7 10 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101789999753237</threshold>
- <left_val>0.1819320023059845</left_val>
- <right_val>-0.3287779986858368</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 24 3 -1.</_>
- <_>0 11 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312270000576973</threshold>
- <left_val>0.1497389972209930</left_val>
- <right_val>-1.4180339574813843</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 13 -1.</_>
- <_>2 2 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0401969999074936</threshold>
- <left_val>-0.1976049989461899</left_val>
- <right_val>0.5850819945335388</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 8 10 -1.</_>
- <_>20 0 4 5 2.</_>
- <_>16 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161380004137754</threshold>
- <left_val>5.0000002374872565e-004</left_val>
- <right_val>0.3905000090599060</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 10 9 -1.</_>
- <_>5 4 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0455190017819405</threshold>
- <left_val>1.2646820545196533</left_val>
- <right_val>-0.1563259959220886</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 18 3 -1.</_>
- <_>5 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181300006806850</threshold>
- <left_val>0.6514850258827210</left_val>
- <right_val>0.0102359997108579</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 3 -1.</_>
- <_>0 2 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140019999817014</threshold>
- <left_val>-1.0344820022583008</left_val>
- <right_val>-0.0321829989552498</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 11 -1.</_>
- <_>13 4 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0388160012662411</threshold>
- <left_val>-0.4787429869174957</left_val>
- <right_val>0.1629070043563843</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 10 -1.</_>
- <_>0 0 4 5 2.</_>
- <_>4 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0316560007631779</threshold>
- <left_val>-0.2098339945077896</left_val>
- <right_val>0.5457590222358704</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 18 3 -1.</_>
- <_>4 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108399996533990</threshold>
- <left_val>0.5189880132675171</left_val>
- <right_val>-0.0150800002738833</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 18 3 -1.</_>
- <_>2 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120329996570945</threshold>
- <left_val>-0.2110760062932968</left_val>
- <right_val>0.7593700289726257</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 18 10 -1.</_>
- <_>12 0 9 5 2.</_>
- <_>3 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0707729980349541</threshold>
- <left_val>0.1804880052804947</left_val>
- <right_val>-0.7404850125312805</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 20 21 -1.</_>
- <_>12 3 10 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5313979983329773</threshold>
- <left_val>-0.1449169963598251</left_val>
- <right_val>1.5360039472579956</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 14 3 -1.</_>
- <_>6 7 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147740002721548</threshold>
- <left_val>-0.2815369963645935</left_val>
- <right_val>0.2040729969739914</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 12 6 -1.</_>
- <_>0 9 6 3 2.</_>
- <_>6 12 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2410000674426556e-003</threshold>
- <left_val>-0.4487630128860474</left_val>
- <right_val>0.0539890006184578</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 21 4 -1.</_>
- <_>10 14 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0499680005013943</threshold>
- <left_val>0.0415140017867088</left_val>
- <right_val>0.2941710054874420</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 21 4 -1.</_>
- <_>7 14 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0477019995450974</threshold>
- <left_val>0.3967429995536804</left_val>
- <right_val>-0.2830179929733276</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 18 3 -1.</_>
- <_>11 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0913110002875328</threshold>
- <left_val>2.1994259357452393</left_val>
- <right_val>0.0879649966955185</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 18 3 -1.</_>
- <_>7 21 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0380700007081032</threshold>
- <left_val>-0.2802560031414032</left_val>
- <right_val>0.2515619993209839</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 4 18 -1.</_>
- <_>21 4 2 9 2.</_>
- <_>19 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155389998108149</threshold>
- <left_val>0.3415749967098236</left_val>
- <right_val>0.0179249998182058</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 18 3 -1.</_>
- <_>3 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154459998011589</threshold>
- <left_val>0.2868019938468933</left_val>
- <right_val>-0.2513589859008789</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 4 4 18 -1.</_>
- <_>21 4 2 9 2.</_>
- <_>19 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0573880001902580</threshold>
- <left_val>0.6383000016212463</left_val>
- <right_val>0.0885979980230331</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 10 6 -1.</_>
- <_>7 17 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9440000914037228e-003</threshold>
- <left_val>0.0790169984102249</left_val>
- <right_val>-0.4077489972114563</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 11 9 -1.</_>
- <_>9 16 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0699689984321594</threshold>
- <left_val>-0.4464420080184937</left_val>
- <right_val>0.1721960008144379</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 4 10 -1.</_>
- <_>0 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250649992376566</threshold>
- <left_val>-0.9827020168304443</left_val>
- <right_val>-0.0353880003094673</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 16 9 6 -1.</_>
- <_>15 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172160007059574</threshold>
- <left_val>0.2270590066909790</left_val>
- <right_val>-0.8055009841918945</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 4 18 -1.</_>
- <_>1 5 2 9 2.</_>
- <_>3 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0442790016531944</threshold>
- <left_val>0.8395199775695801</left_val>
- <right_val>-0.1742960065603256</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 8 10 -1.</_>
- <_>13 8 4 5 2.</_>
- <_>9 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0439889989793301</threshold>
- <left_val>0.1155719980597496</left_val>
- <right_val>-1.9666889905929565</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 8 10 -1.</_>
- <_>7 8 4 5 2.</_>
- <_>11 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159070007503033</threshold>
- <left_val>-0.0375760011374950</left_val>
- <right_val>-1.0311100482940674</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 12 5 -1.</_>
- <_>13 8 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0927549973130226</threshold>
- <left_val>-1.3530019521713257</left_val>
- <right_val>0.1214129999279976</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 9 7 -1.</_>
- <_>10 8 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0710370019078255</threshold>
- <left_val>-0.1768430024385452</left_val>
- <right_val>0.7448520064353943</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 12 5 -1.</_>
- <_>13 8 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0577620007097721</threshold>
- <left_val>0.1283559948205948</left_val>
- <right_val>-0.4444420039653778</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 9 7 -1.</_>
- <_>10 6 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164320003241301</threshold>
- <left_val>0.8015270233154297</left_val>
- <right_val>-0.1749169975519180</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 12 5 -1.</_>
- <_>13 8 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239390004426241</threshold>
- <left_val>0.1614499986171722</left_val>
- <right_val>-0.1236450001597405</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 18 -1.</_>
- <_>10 11 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126360002905130</threshold>
- <left_val>0.1541199982166290</left_val>
- <right_val>-0.3329379856586456</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 14 12 -1.</_>
- <_>5 11 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0543479993939400</threshold>
- <left_val>-1.8400700092315674</left_val>
- <right_val>0.1483599990606308</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 11 4 -1.</_>
- <_>0 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132619999349117</threshold>
- <left_val>-0.8083879947662354</left_val>
- <right_val>-0.0277260001748800</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 6 10 -1.</_>
- <_>11 10 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1340001411736012e-003</threshold>
- <left_val>-0.1378500014543533</left_val>
- <right_val>0.3285849988460541</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 11 6 -1.</_>
- <_>2 19 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289910007268190</threshold>
- <left_val>-0.0255169998854399</left_val>
- <right_val>-0.8338720202445984</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 16 9 6 -1.</_>
- <_>15 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219860002398491</threshold>
- <left_val>-0.7373999953269959</left_val>
- <right_val>0.1788710057735443</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 2 -1.</_>
- <_>1 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3269998170435429e-003</threshold>
- <left_val>-0.4544929862022400</left_val>
- <right_val>0.0687910020351410</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 13 -1.</_>
- <_>10 4 4 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0860479995608330</threshold>
- <left_val>0.2100850045681000</left_val>
- <right_val>-0.3780890107154846</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 18 3 -1.</_>
- <_>0 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5549997165799141e-003</threshold>
- <left_val>0.4013499915599823</left_val>
- <right_val>-0.2107409983873367</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 18 3 -1.</_>
- <_>6 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7790001630783081e-003</threshold>
- <left_val>-0.0216489993035793</left_val>
- <right_val>0.4542149901390076</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 9 6 -1.</_>
- <_>0 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3959998078644276e-003</threshold>
- <left_val>-0.4981859922409058</left_val>
- <right_val>0.0759079977869987</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 15 9 6 -1.</_>
- <_>13 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9469999074935913e-003</threshold>
- <left_val>0.1785770058631897</left_val>
- <right_val>-0.2845489978790283</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 9 6 -1.</_>
- <_>2 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2589999027550220e-003</threshold>
- <left_val>0.0466249994933605</left_val>
- <right_val>-0.5520629882812500</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 1 6 16 -1.</_>
- <_>13 1 3 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0414769984781742</threshold>
- <left_val>0.1755049973726273</left_val>
- <right_val>-0.2070399969816208</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 6 16 -1.</_>
- <_>8 1 3 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7449999041855335e-003</threshold>
- <left_val>-0.4639259874820709</left_val>
- <right_val>0.0693039968609810</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 6 10 -1.</_>
- <_>13 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0305649992078543</threshold>
- <left_val>0.0517349988222122</left_val>
- <right_val>0.7555050253868103</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 10 -1.</_>
- <_>9 5 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4780001305043697e-003</threshold>
- <left_val>0.1489389985799789</left_val>
- <right_val>-0.3190680146217346</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 24 -1.</_>
- <_>12 0 2 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0890889987349510</threshold>
- <left_val>0.1373880058526993</left_val>
- <right_val>-1.1379710435867310</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 4 20 -1.</_>
- <_>3 4 2 10 2.</_>
- <_>5 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3230001144111156e-003</threshold>
- <left_val>-0.2882919907569885</left_val>
- <right_val>0.1908860057592392</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 9 -1.</_>
- <_>16 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0182050000876188</threshold>
- <left_val>-0.3017860054969788</left_val>
- <right_val>0.1679580062627792</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 9 -1.</_>
- <_>6 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0258280001580715</threshold>
- <left_val>-0.9813799858093262</left_val>
- <right_val>-0.0198609996587038</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 18 5 -1.</_>
- <_>10 5 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1093619987368584</threshold>
- <left_val>0.0487900003790855</left_val>
- <right_val>0.5311830043792725</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 6 9 -1.</_>
- <_>7 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114249996840954</threshold>
- <left_val>0.2370599955320358</left_val>
- <right_val>-0.2792530059814453</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 15 8 -1.</_>
- <_>12 2 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0575659982860088</threshold>
- <left_val>0.4725539982318878</left_val>
- <right_val>0.0651710033416748</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 15 8 -1.</_>
- <_>7 2 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1027830019593239</threshold>
- <left_val>-0.2076510041952133</left_val>
- <right_val>0.5094770193099976</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 4 9 -1.</_>
- <_>10 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270419996231794</threshold>
- <left_val>0.1642120033502579</left_val>
- <right_val>-1.4508620500564575</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 12 -1.</_>
- <_>3 4 3 6 2.</_>
- <_>6 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136350002139807</threshold>
- <left_val>-0.5654389858245850</left_val>
- <right_val>0.0237889997661114</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 8 18 -1.</_>
- <_>16 0 4 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3215819895267487</threshold>
- <left_val>-3.5602829456329346</left_val>
- <right_val>0.1180130019783974</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 18 -1.</_>
- <_>4 0 4 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2045810073614121</threshold>
- <left_val>-0.0370160005986691</left_val>
- <right_val>-1.0225499868392944</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 24 6 -1.</_>
- <_>0 9 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0703470036387444</threshold>
- <left_val>-0.5649189949035645</left_val>
- <right_val>0.1852519959211350</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 14 3 -1.</_>
- <_>11 7 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378310009837151</threshold>
- <left_val>-0.0299019999802113</left_val>
- <right_val>-0.8292149901390076</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 8 15 -1.</_>
- <_>10 8 4 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0702980011701584</threshold>
- <left_val>-0.5317230224609375</left_val>
- <right_val>0.1443019956350327</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 14 -1.</_>
- <_>12 0 5 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0632210001349449</threshold>
- <left_val>-0.2204120010137558</left_val>
- <right_val>0.4795219898223877</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 8 10 -1.</_>
- <_>17 10 4 5 2.</_>
- <_>13 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0363930016756058</threshold>
- <left_val>0.1422269940376282</left_val>
- <right_val>-0.6119390130043030</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 4 9 -1.</_>
- <_>5 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0099998004734516e-003</threshold>
- <left_val>-0.3456079959869385</left_val>
- <right_val>0.1173869967460632</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 1 6 8 -1.</_>
- <_>16 1 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491060018539429</threshold>
- <left_val>0.9598410129547119</left_val>
- <right_val>0.0649349987506866</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 6 8 -1.</_>
- <_>5 1 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0715830028057098</threshold>
- <left_val>1.7385669946670532</left_val>
- <right_val>-0.1425289958715439</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 12 -1.</_>
- <_>3 10 18 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380089990794659</threshold>
- <left_val>1.3872820138931274</left_val>
- <right_val>0.0661880001425743</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 16 4 -1.</_>
- <_>4 14 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1570000573992729e-003</threshold>
- <left_val>0.0536770001053810</left_val>
- <right_val>-0.5404800176620483</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 16 15 -1.</_>
- <_>4 14 16 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194589998573065</threshold>
- <left_val>-0.0936200022697449</left_val>
- <right_val>0.3913100063800812</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 8 10 -1.</_>
- <_>3 10 4 5 2.</_>
- <_>7 15 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112939998507500</threshold>
- <left_val>0.0372239984571934</left_val>
- <right_val>-0.5425180196762085</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 16 6 -1.</_>
- <_>16 18 8 3 2.</_>
- <_>8 21 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0334950014948845</threshold>
- <left_val>0.9530789852142334</left_val>
- <right_val>0.0376969985663891</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 12 5 -1.</_>
- <_>6 16 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0920350030064583</threshold>
- <left_val>-0.1348839998245239</left_val>
- <right_val>2.2897069454193115</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 9 4 -1.</_>
- <_>14 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7529999390244484e-003</threshold>
- <left_val>0.2282419949769974</left_val>
- <right_val>-0.5998370051383972</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 9 6 -1.</_>
- <_>7 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128480000421405</threshold>
- <left_val>-0.2200520038604736</left_val>
- <right_val>0.3722189962863922</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 16 12 -1.</_>
- <_>4 14 16 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1431619971990585</threshold>
- <left_val>1.2855789661407471</left_val>
- <right_val>0.0472370013594627</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 19 6 -1.</_>
- <_>0 15 19 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0968799963593483</threshold>
- <left_val>-3.9550929069519043</left_val>
- <right_val>-0.0729039981961250</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 9 6 -1.</_>
- <_>10 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8459998369216919e-003</threshold>
- <left_val>0.3767499923706055</left_val>
- <right_val>-0.0464840009808540</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 23 -1.</_>
- <_>6 0 1 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159000009298325</threshold>
- <left_val>-0.0244570001959801</left_val>
- <right_val>-0.8003479838371277</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 24 6 -1.</_>
- <_>0 10 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0703720003366470</threshold>
- <left_val>0.1701900064945221</left_val>
- <right_val>-0.6306899785995483</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 5 12 -1.</_>
- <_>0 9 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0379539988934994</threshold>
- <left_val>-0.9366719722747803</left_val>
- <right_val>-0.0412140004336834</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 19 18 -1.</_>
- <_>3 9 19 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5159789919853210</threshold>
- <left_val>0.1308059990406036</left_val>
- <right_val>-1.5802290439605713</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 6 12 -1.</_>
- <_>9 11 3 6 2.</_>
- <_>12 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0328430011868477</threshold>
- <left_val>-1.1441620588302612</left_val>
- <right_val>-0.0491739995777607</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 24 8 -1.</_>
- <_>12 5 12 4 2.</_>
- <_>0 9 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363570004701614</threshold>
- <left_val>0.4960640072822571</left_val>
- <right_val>-0.0344589985907078</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 9 4 -1.</_>
- <_>6 20 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8080001510679722e-003</threshold>
- <left_val>-0.3099780082702637</left_val>
- <right_val>0.1705480068922043</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 10 6 -1.</_>
- <_>8 10 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161140002310276</threshold>
- <left_val>-0.3790459930896759</left_val>
- <right_val>0.1607899963855743</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 20 3 -1.</_>
- <_>2 8 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4530003368854523e-003</threshold>
- <left_val>-0.1865549981594086</left_val>
- <right_val>0.5636770129203796</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 7 20 -1.</_>
- <_>12 10 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1375239938497543</threshold>
- <left_val>-0.5898990035057068</left_val>
- <right_val>0.1174950003623962</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 7 20 -1.</_>
- <_>5 10 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1768800020217896</threshold>
- <left_val>-0.1542489975690842</left_val>
- <right_val>0.9291110038757324</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 2 2 18 -1.</_>
- <_>14 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9309996217489243e-003</threshold>
- <left_val>0.3219070136547089</left_val>
- <right_val>-0.1639260053634644</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 10 12 -1.</_>
- <_>10 8 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1097180023789406</threshold>
- <left_val>-0.1587650030851364</left_val>
- <right_val>1.0186259746551514</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 12 8 -1.</_>
- <_>12 9 6 4 2.</_>
- <_>6 13 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0302930008620024</threshold>
- <left_val>0.7558730244636536</left_val>
- <right_val>0.0317949987947941</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 3 14 -1.</_>
- <_>7 14 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231180004775524</threshold>
- <left_val>-0.8845149874687195</left_val>
- <right_val>-9.5039997249841690e-003</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 12 16 -1.</_>
- <_>17 2 6 8 2.</_>
- <_>11 10 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0900000128895044e-003</threshold>
- <left_val>0.2383829951286316</left_val>
- <right_val>-0.1160620003938675</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333920009434223</threshold>
- <left_val>-1.8738139867782593</left_val>
- <right_val>-0.0685029998421669</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 14 9 4 -1.</_>
- <_>13 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131900003179908</threshold>
- <left_val>0.1291989982128143</left_val>
- <right_val>-0.6751220226287842</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 22 4 -1.</_>
- <_>0 12 11 2 2.</_>
- <_>11 14 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146610001102090</threshold>
- <left_val>-0.0248290002346039</left_val>
- <right_val>-0.7439680099487305</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 22 6 -1.</_>
- <_>12 12 11 3 2.</_>
- <_>1 15 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132480002939701</threshold>
- <left_val>0.4682019948959351</left_val>
- <right_val>-0.0241650007665157</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 9 6 -1.</_>
- <_>9 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162189994007349</threshold>
- <left_val>0.4008379876613617</left_val>
- <right_val>-0.2125570029020309</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 4 9 -1.</_>
- <_>10 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290520004928112</threshold>
- <left_val>-1.5650019645690918</left_val>
- <right_val>0.1437589973211289</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 18 7 -1.</_>
- <_>9 8 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1015319973230362</threshold>
- <left_val>-1.9220689535140991</left_val>
- <right_val>-0.0695599988102913</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 6 -1.</_>
- <_>0 8 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0377539992332459</threshold>
- <left_val>0.1339679956436157</left_val>
- <right_val>-2.2639141082763672</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 24 10 -1.</_>
- <_>8 11 8 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2855559885501862</threshold>
- <left_val>1.0215270519256592</left_val>
- <right_val>-0.1523219943046570</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 18 21 -1.</_>
- <_>9 3 6 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1536069959402084</threshold>
- <left_val>-0.0974090024828911</left_val>
- <right_val>0.4166240096092224</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 4 10 -1.</_>
- <_>9 12 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1199999901000410e-004</threshold>
- <left_val>0.1127189993858337</left_val>
- <right_val>-0.4165399968624115</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 16 10 8 -1.</_>
- <_>15 16 5 4 2.</_>
- <_>10 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205979999154806</threshold>
- <left_val>0.6054049730300903</left_val>
- <right_val>0.0624679997563362</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 9 -1.</_>
- <_>10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373539999127388</threshold>
- <left_val>-0.1891900002956390</left_val>
- <right_val>0.4646469950675964</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 6 12 -1.</_>
- <_>15 10 3 6 2.</_>
- <_>12 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0572750009596348</threshold>
- <left_val>0.1156530007719994</left_val>
- <right_val>-1.3213009834289551</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 6 12 -1.</_>
- <_>6 10 3 6 2.</_>
- <_>9 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1029999740421772e-003</threshold>
- <left_val>-0.2806150019168854</left_val>
- <right_val>0.1931339949369431</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 12 6 12 -1.</_>
- <_>19 12 3 6 2.</_>
- <_>16 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0546449981629848</threshold>
- <left_val>0.7242850065231323</left_val>
- <right_val>0.0754479989409447</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 6 12 -1.</_>
- <_>2 12 3 6 2.</_>
- <_>5 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0253490004688501</threshold>
- <left_val>-0.1948180049657822</left_val>
- <right_val>0.4603280127048492</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 6 9 -1.</_>
- <_>12 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243110004812479</threshold>
- <left_val>0.1556410044431686</left_val>
- <right_val>-0.4991390109062195</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 6 9 -1.</_>
- <_>10 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0359620004892349</threshold>
- <left_val>-0.0585730001330376</left_val>
- <right_val>-1.5418399572372437</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 20 10 4 -1.</_>
- <_>14 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1000069975852966</threshold>
- <left_val>-1.6100039482116699</left_val>
- <right_val>0.1145050004124641</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 10 4 -1.</_>
- <_>5 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0844359993934631</threshold>
- <left_val>-0.0614069998264313</left_val>
- <right_val>-1.4673349857330322</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 17 9 6 -1.</_>
- <_>11 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159479994326830</threshold>
- <left_val>0.1628790050745010</left_val>
- <right_val>-0.1102640032768250</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 14 4 -1.</_>
- <_>3 4 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0338240005075932</threshold>
- <left_val>-0.1793269962072372</left_val>
- <right_val>0.5721840262413025</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 10 4 -1.</_>
- <_>10 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0619960017502308</threshold>
- <left_val>4.6511812210083008</left_val>
- <right_val>0.0945340022444725</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 10 4 -1.</_>
- <_>5 15 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0698769986629486</threshold>
- <left_val>-0.1698590070009232</left_val>
- <right_val>0.8702899813652039</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 2 3 19 -1.</_>
- <_>20 2 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279169995337725</threshold>
- <left_val>0.9104250073432922</left_val>
- <right_val>0.0568270012736321</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 9 8 -1.</_>
- <_>7 12 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127640003338456</threshold>
- <left_val>0.2206670045852661</left_val>
- <right_val>-0.2776910066604614</right_val></_></_></trees>
- <stage_threshold>-3.3196411132812500</stage_threshold>
- <parent>20</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 22 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 5 12 -1.</_>
- <_>4 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216620005667210</threshold>
- <left_val>-0.8986889719963074</left_val>
- <right_val>0.2943629920482636</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 3 -1.</_>
- <_>8 1 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1004450023174286</threshold>
- <left_val>-0.3765920102596283</left_val>
- <right_val>0.6089100241661072</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 12 4 -1.</_>
- <_>6 10 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0260039996355772</threshold>
- <left_val>-0.3812850117683411</left_val>
- <right_val>0.3921740055084229</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 3 4 10 -1.</_>
- <_>19 3 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0284410007297993</threshold>
- <left_val>-0.1818230003118515</left_val>
- <right_val>0.5892720222473145</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 9 6 -1.</_>
- <_>3 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0386120006442070</threshold>
- <left_val>-0.2239959985017777</left_val>
- <right_val>0.6377999782562256</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 6 22 -1.</_>
- <_>20 0 2 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0465949997305870</threshold>
- <left_val>0.7081220149993897</left_val>
- <right_val>-0.1466619968414307</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 22 -1.</_>
- <_>2 0 2 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0427919998764992</threshold>
- <left_val>0.4768039882183075</left_val>
- <right_val>-0.2923319935798645</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 19 3 -1.</_>
- <_>5 16 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7960000336170197e-003</threshold>
- <left_val>-0.1851029992103577</left_val>
- <right_val>0.5262669920921326</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 15 -1.</_>
- <_>10 12 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0423489995300770</threshold>
- <left_val>0.0392449982464314</left_val>
- <right_val>-0.8919770121574402</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195989999920130</threshold>
- <left_val>-0.2335840016603470</left_val>
- <right_val>0.4414649903774262</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 18 3 -1.</_>
- <_>0 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7400001939386129e-004</threshold>
- <left_val>-0.4606359899044037</left_val>
- <right_val>0.1768960058689117</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 10 15 -1.</_>
- <_>7 8 10 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3629999272525311e-003</threshold>
- <left_val>0.3349319994449616</left_val>
- <right_val>-0.2989340126514435</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 18 3 -1.</_>
- <_>1 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169730000197887</threshold>
- <left_val>-0.1640869975090027</left_val>
- <right_val>1.5993679761886597</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 9 6 -1.</_>
- <_>11 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0360639989376068</threshold>
- <left_val>0.2260169982910156</left_val>
- <right_val>-0.5318610072135925</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 24 14 -1.</_>
- <_>0 17 24 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0708649978041649</threshold>
- <left_val>0.1522050052881241</left_val>
- <right_val>-0.4191460013389587</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 8 10 -1.</_>
- <_>17 9 4 5 2.</_>
- <_>13 14 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0630759969353676</threshold>
- <left_val>-1.4874019622802734</left_val>
- <right_val>0.1295370012521744</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 9 -1.</_>
- <_>12 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0296700000762939</threshold>
- <left_val>-0.1914590001106262</left_val>
- <right_val>0.9818490147590637</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 8 10 -1.</_>
- <_>17 9 4 5 2.</_>
- <_>13 14 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378739982843399</threshold>
- <left_val>0.1345950067043304</left_val>
- <right_val>-0.5631629824638367</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 10 10 -1.</_>
- <_>7 11 5 5 2.</_>
- <_>12 16 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0332890003919601</threshold>
- <left_val>-1.0828030109405518</left_val>
- <right_val>-0.0115040000528097</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 18 4 -1.</_>
- <_>13 13 9 2 2.</_>
- <_>4 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0316089987754822</threshold>
- <left_val>-0.5922449827194214</left_val>
- <right_val>0.1339479982852936</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 19 2 -1.</_>
- <_>0 1 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0740000288933516e-003</threshold>
- <left_val>-0.4918580055236816</left_val>
- <right_val>0.0944460034370422</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 24 6 -1.</_>
- <_>8 18 8 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0715560019016266</threshold>
- <left_val>0.5971019864082336</left_val>
- <right_val>-0.0395530015230179</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 8 16 -1.</_>
- <_>6 12 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0811700001358986</threshold>
- <left_val>-1.1817820072174072</left_val>
- <right_val>-0.0282540004700422</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 4 -1.</_>
- <_>7 10 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4860001653432846e-003</threshold>
- <left_val>-0.6102809906005859</left_val>
- <right_val>0.2261909991502762</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 9 -1.</_>
- <_>0 6 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0421760007739067</threshold>
- <left_val>-1.1435619592666626</left_val>
- <right_val>-0.0290019996464252</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 15 7 9 -1.</_>
- <_>13 18 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0656400024890900</threshold>
- <left_val>-1.6470279693603516</left_val>
- <right_val>0.1281030029058456</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 12 6 -1.</_>
- <_>3 18 6 3 2.</_>
- <_>9 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181889999657869</threshold>
- <left_val>-0.3114939928054810</left_val>
- <right_val>0.2573960125446320</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 6 9 -1.</_>
- <_>12 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0515200011432171</threshold>
- <left_val>-0.6920689940452576</left_val>
- <right_val>0.1527079939842224</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 15 8 -1.</_>
- <_>2 19 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0471509993076324</threshold>
- <left_val>-0.7186830043792725</left_val>
- <right_val>2.6879999786615372e-003</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 16 -1.</_>
- <_>9 14 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174889992922544</threshold>
- <left_val>0.2237119972705841</left_val>
- <right_val>-0.5538179874420166</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 7 12 -1.</_>
- <_>6 10 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252640005201101</threshold>
- <left_val>1.0319819450378418</left_val>
- <right_val>-0.1749649941921234</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 9 -1.</_>
- <_>14 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0407450012862682</threshold>
- <left_val>0.4496159851551056</left_val>
- <right_val>0.0393490009009838</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 6 9 -1.</_>
- <_>5 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376669988036156</threshold>
- <left_val>-0.8547570109367371</left_val>
- <right_val>-0.0124639999121428</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 6 9 -1.</_>
- <_>12 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134110003709793</threshold>
- <left_val>0.5784559845924377</left_val>
- <right_val>-0.0174679998308420</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 4 18 -1.</_>
- <_>6 6 2 9 2.</_>
- <_>8 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8999997640494257e-005</threshold>
- <left_val>-0.3774920105934143</left_val>
- <right_val>0.1396179944276810</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 9 6 12 -1.</_>
- <_>17 9 3 6 2.</_>
- <_>14 15 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114150000736117</threshold>
- <left_val>-0.2618660032749176</left_val>
- <right_val>0.2371249943971634</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 12 -1.</_>
- <_>4 9 3 6 2.</_>
- <_>7 15 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0372000001370907</threshold>
- <left_val>-0.0286260005086660</left_val>
- <right_val>-1.2945239543914795</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 15 9 6 -1.</_>
- <_>14 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4050000831484795e-003</threshold>
- <left_val>0.2053139954805374</left_val>
- <right_val>-0.1874749958515167</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 18 4 -1.</_>
- <_>0 20 9 2 2.</_>
- <_>9 22 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0224830005317926</threshold>
- <left_val>0.6702719926834106</left_val>
- <right_val>-0.1959400027990341</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 18 9 6 -1.</_>
- <_>13 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232749991118908</threshold>
- <left_val>0.1740539968013763</left_val>
- <right_val>-0.3274630010128021</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 9 6 -1.</_>
- <_>2 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139170000329614</threshold>
- <left_val>-0.8395429849624634</left_val>
- <right_val>-6.3760001212358475e-003</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5429999269545078e-003</threshold>
- <left_val>-0.0341949984431267</left_val>
- <right_val>0.5899819731712341</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 3 -1.</_>
- <_>0 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115390000864863</threshold>
- <left_val>0.4214279949665070</left_val>
- <right_val>-0.2351049929857254</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 2 4 22 -1.</_>
- <_>21 2 2 11 2.</_>
- <_>19 13 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0525019988417625</threshold>
- <left_val>0.0693039968609810</left_val>
- <right_val>0.7322649955749512</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 4 22 -1.</_>
- <_>1 2 2 11 2.</_>
- <_>3 13 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0527159981429577</threshold>
- <left_val>-0.1568810045719147</left_val>
- <right_val>1.0907289981842041</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 24 -1.</_>
- <_>15 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117260003462434</threshold>
- <left_val>-0.7093430161476135</left_val>
- <right_val>0.1682880073785782</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 16 4 -1.</_>
- <_>11 20 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0959459990262985</threshold>
- <left_val>-0.1619289964437485</left_val>
- <right_val>1.0072519779205322</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 18 -1.</_>
- <_>13 6 2 9 2.</_>
- <_>11 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158719997853041</threshold>
- <left_val>0.3900839984416962</left_val>
- <right_val>-0.0537770017981529</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 10 14 -1.</_>
- <_>7 9 5 7 2.</_>
- <_>12 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0348180010914803</threshold>
- <left_val>0.0171799995005131</left_val>
- <right_val>-0.9394180178642273</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 6 9 -1.</_>
- <_>14 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0347919985651970</threshold>
- <left_val>0.0504629984498024</left_val>
- <right_val>0.5446569919586182</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 7 9 -1.</_>
- <_>3 9 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162840001285076</threshold>
- <left_val>-0.2698130011558533</left_val>
- <right_val>0.4036529958248138</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 4 4 20 -1.</_>
- <_>22 4 2 10 2.</_>
- <_>20 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443190000951290</threshold>
- <left_val>0.8439999818801880</left_val>
- <right_val>0.0328829996287823</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 9 -1.</_>
- <_>7 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5689997971057892e-003</threshold>
- <left_val>0.1530939936637878</left_val>
- <right_val>-0.3495979905128479</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 14 -1.</_>
- <_>12 0 5 7 2.</_>
- <_>7 7 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0658420026302338</threshold>
- <left_val>-0.9271119832992554</left_val>
- <right_val>0.1680099964141846</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 18 6 -1.</_>
- <_>11 1 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0733370035886765</threshold>
- <left_val>0.5161449909210205</left_val>
- <right_val>-0.2023600041866303</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 2 24 -1.</_>
- <_>15 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164500009268522</threshold>
- <left_val>0.1395059973001480</left_val>
- <right_val>-0.4930129945278168</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 2 24 -1.</_>
- <_>8 0 1 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2630004510283470e-003</threshold>
- <left_val>-0.9010199904441834</left_val>
- <right_val>-0.0161160007119179</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 7 -1.</_>
- <_>13 12 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9139998629689217e-003</threshold>
- <left_val>0.1985819935798645</left_val>
- <right_val>-0.1673129945993424</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 6 7 -1.</_>
- <_>8 12 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4699998842552304e-004</threshold>
- <left_val>0.0940050035715103</left_val>
- <right_val>-0.4157089889049530</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 18 19 -1.</_>
- <_>9 5 6 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2053290009498596</threshold>
- <left_val>-0.0600220002233982</left_val>
- <right_val>0.7099360227584839</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 9 6 -1.</_>
- <_>8 6 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168830007314682</threshold>
- <left_val>0.2439219951629639</left_val>
- <right_val>-0.3055180013179779</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 9 6 -1.</_>
- <_>12 5 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191110000014305</threshold>
- <left_val>0.6122990250587463</left_val>
- <right_val>0.0242529995739460</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 10 8 -1.</_>
- <_>3 16 5 4 2.</_>
- <_>8 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0259629990905523</threshold>
- <left_val>0.9076499938964844</left_val>
- <right_val>-0.1672209948301315</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 8 5 15 -1.</_>
- <_>19 13 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217620003968477</threshold>
- <left_val>-0.3138470053672791</left_val>
- <right_val>0.2013459950685501</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 5 15 -1.</_>
- <_>0 13 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241199992597103</threshold>
- <left_val>-0.6658840179443359</left_val>
- <right_val>7.4559999629855156e-003</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 4 4 20 -1.</_>
- <_>22 4 2 10 2.</_>
- <_>20 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0471299998462200</threshold>
- <left_val>0.0595339983701706</left_val>
- <right_val>0.8780450224876404</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 20 -1.</_>
- <_>0 4 2 10 2.</_>
- <_>2 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459849983453751</threshold>
- <left_val>0.8006799817085266</left_val>
- <right_val>-0.1725230067968369</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 10 4 -1.</_>
- <_>7 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0265079997479916</threshold>
- <left_val>0.1877409964799881</left_val>
- <right_val>-0.6085060238838196</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 14 4 -1.</_>
- <_>11 19 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0486150011420250</threshold>
- <left_val>0.5864409804344177</left_val>
- <right_val>-0.1942770034074783</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 12 3 -1.</_>
- <_>10 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185620002448559</threshold>
- <left_val>-0.2558790147304535</left_val>
- <right_val>0.1632619947195053</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 3 -1.</_>
- <_>0 2 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126780001446605</threshold>
- <left_val>-0.0142280003055930</left_val>
- <right_val>-0.7673810124397278</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 14 20 -1.</_>
- <_>14 2 7 10 2.</_>
- <_>7 12 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1919999960809946e-003</threshold>
- <left_val>0.2049500048160553</left_val>
- <right_val>-0.1140429973602295</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 6 9 -1.</_>
- <_>2 13 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0490889996290207</threshold>
- <left_val>-1.0740849971771240</left_val>
- <right_val>-0.0389409996569157</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 19 -1.</_>
- <_>13 0 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174369998276234</threshold>
- <left_val>-0.5797380208969116</left_val>
- <right_val>0.1858450025320053</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 14 3 -1.</_>
- <_>8 11 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147700002416968</threshold>
- <left_val>-0.6615030169487000</left_val>
- <right_val>5.3119999356567860e-003</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 16 20 -1.</_>
- <_>15 1 8 10 2.</_>
- <_>7 11 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2290520071983337</threshold>
- <left_val>-0.4830510020256043</left_val>
- <right_val>0.1232639998197556</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 21 9 -1.</_>
- <_>7 10 7 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1270709931850433</threshold>
- <left_val>0.5745260119438171</left_val>
- <right_val>-0.1942040026187897</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 19 15 5 -1.</_>
- <_>11 19 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103390002623200</threshold>
- <left_val>-0.0546419993042946</left_val>
- <right_val>0.2450180053710938</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 6 6 -1.</_>
- <_>11 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9010001607239246e-003</threshold>
- <left_val>0.1218060031533241</left_val>
- <right_val>-0.3879739940166473</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 16 20 -1.</_>
- <_>15 1 8 10 2.</_>
- <_>7 11 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2902539968490601</threshold>
- <left_val>0.1096619963645935</left_val>
- <right_val>-30.</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 16 20 -1.</_>
- <_>1 1 8 10 2.</_>
- <_>9 11 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2380499988794327</threshold>
- <left_val>-1.7352679967880249</left_val>
- <right_val>-0.0638099983334541</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 4 3 12 -1.</_>
- <_>16 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0624810010194778</threshold>
- <left_val>0.1352300047874451</left_val>
- <right_val>-0.7030109763145447</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 3 12 -1.</_>
- <_>5 10 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7109997831285000e-003</threshold>
- <left_val>-0.4698410034179688</left_val>
- <right_val>0.0603419989347458</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 8 -1.</_>
- <_>12 6 5 4 2.</_>
- <_>7 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278159994632006</threshold>
- <left_val>0.6980760097503662</left_val>
- <right_val>1.3719999697059393e-003</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 6 -1.</_>
- <_>4 12 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170200001448393</threshold>
- <left_val>1.6870440244674683</left_val>
- <right_val>-0.1431480050086975</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 4 -1.</_>
- <_>6 7 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0497549995779991</threshold>
- <left_val>0.7949770092964172</left_val>
- <right_val>7.7199999941512942e-004</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 5 15 -1.</_>
- <_>9 7 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0747329965233803</threshold>
- <left_val>-1.0132360458374023</left_val>
- <right_val>-0.0193889997899532</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 9 6 -1.</_>
- <_>15 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0320090018212795</threshold>
- <left_val>0.1441210061311722</left_val>
- <right_val>-0.4213910102844238</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 11 10 -1.</_>
- <_>6 5 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0944639965891838</threshold>
- <left_val>0.5068259835243225</left_val>
- <right_val>-0.2047889977693558</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 4 12 -1.</_>
- <_>12 13 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154269998893142</threshold>
- <left_val>-0.1581130027770996</left_val>
- <right_val>0.1780689954757690</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 9 4 -1.</_>
- <_>7 4 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0540001355111599e-003</threshold>
- <left_val>-0.5436670184135437</left_val>
- <right_val>0.0312350001186132</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 13 6 -1.</_>
- <_>6 2 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0080000869929790e-003</threshold>
- <left_val>-0.1737679988145828</left_val>
- <right_val>0.3044170141220093</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>10 6 2 9 2.</_>
- <_>12 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100919995456934</threshold>
- <left_val>0.2510380148887634</left_val>
- <right_val>-0.2622410058975220</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 6 9 -1.</_>
- <_>12 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0388180017471313</threshold>
- <left_val>0.9322670102119446</left_val>
- <right_val>0.0726599991321564</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 10 6 -1.</_>
- <_>3 20 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0346519984304905</threshold>
- <left_val>-0.0339349992573261</left_val>
- <right_val>-0.8570790290832520</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 20 3 -1.</_>
- <_>4 15 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6729999594390392e-003</threshold>
- <left_val>0.3496930003166199</left_val>
- <right_val>-0.0485179983079433</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 9 6 -1.</_>
- <_>2 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8499997723847628e-004</threshold>
- <left_val>0.0665730014443398</left_val>
- <right_val>-0.4497379958629608</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 19 -1.</_>
- <_>13 0 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0353170000016689</threshold>
- <left_val>0.1427579969167709</left_val>
- <right_val>-0.4672639966011047</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 19 -1.</_>
- <_>9 0 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235699992626905</threshold>
- <left_val>-1.0286079645156860</left_val>
- <right_val>-0.0452880002558231</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 22 2 -1.</_>
- <_>1 5 22 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9109999993816018e-003</threshold>
- <left_val>-0.1965219974517822</left_val>
- <right_val>0.2866100072860718</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 9 6 -1.</_>
- <_>0 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166590008884668</threshold>
- <left_val>-0.7753220200538635</left_val>
- <right_val>-8.3280000835657120e-003</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 24 18 -1.</_>
- <_>0 9 24 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6606220006942749</threshold>
- <left_val>0.1323249936103821</left_val>
- <right_val>-3.5266680717468262</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 16 8 -1.</_>
- <_>3 6 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1097059994935989</threshold>
- <left_val>-0.1554719954729080</left_val>
- <right_val>1.4674140214920044</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 18 6 -1.</_>
- <_>3 8 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135009996592999</threshold>
- <left_val>0.1523340046405792</left_val>
- <right_val>-1.3020930290222168</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 10 -1.</_>
- <_>5 1 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228719990700483</threshold>
- <left_val>-0.7132599949836731</left_val>
- <right_val>-8.7040001526474953e-003</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 9 6 -1.</_>
- <_>16 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0818210020661354</threshold>
- <left_val>1.1127580404281616</left_val>
- <right_val>0.0832199975848198</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 9 6 -1.</_>
- <_>5 0 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0527280010282993</threshold>
- <left_val>0.9316509962081909</left_val>
- <right_val>-0.1710399985313416</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252420008182526</threshold>
- <left_val>-0.1973379999399185</left_val>
- <right_val>0.2535940110683441</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 10 -1.</_>
- <_>6 5 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0438189990818501</threshold>
- <left_val>0.4181520044803619</left_val>
- <right_val>-0.2458550035953522</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 20 4 -1.</_>
- <_>12 2 10 2 2.</_>
- <_>2 4 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181889999657869</threshold>
- <left_val>-0.5174319744110107</left_val>
- <right_val>0.2017419934272766</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 19 3 -1.</_>
- <_>2 12 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234660003334284</threshold>
- <left_val>-0.0430710017681122</left_val>
- <right_val>-1.0636579990386963</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 6 9 -1.</_>
- <_>12 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0342160016298294</threshold>
- <left_val>0.0537809990346432</left_val>
- <right_val>0.4970720112323761</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 6 9 -1.</_>
- <_>10 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0256929993629456</threshold>
- <left_val>-0.2380010038614273</left_val>
- <right_val>0.4165149927139282</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 4 9 -1.</_>
- <_>13 8 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265650004148483</threshold>
- <left_val>-0.8857480287551880</left_val>
- <right_val>0.1336590051651001</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 9 9 -1.</_>
- <_>6 11 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0609420016407967</threshold>
- <left_val>-0.2066970020532608</left_val>
- <right_val>0.5830900073051453</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 18 5 -1.</_>
- <_>9 9 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1447450071573257</threshold>
- <left_val>0.1328230053186417</left_val>
- <right_val>-3.1449348926544189</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 2 20 -1.</_>
- <_>2 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0534109994769096</threshold>
- <left_val>-0.1732520014047623</left_val>
- <right_val>0.6919069886207581</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 17 8 6 -1.</_>
- <_>14 20 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114080002531409</threshold>
- <left_val>0.0548220016062260</left_val>
- <right_val>0.3024039864540100</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 2 -1.</_>
- <_>3 22 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3179999552667141e-003</threshold>
- <left_val>0.1582089960575104</left_val>
- <right_val>-0.3197320103645325</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 15 6 -1.</_>
- <_>10 4 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296950004994869</threshold>
- <left_val>0.7127479910850525</left_val>
- <right_val>0.0581360012292862</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 12 6 -1.</_>
- <_>2 17 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0272499993443489</threshold>
- <left_val>-0.1575410068035126</left_val>
- <right_val>0.9214379787445068</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 8 6 9 -1.</_>
- <_>17 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6200000904500484e-003</threshold>
- <left_val>-0.3454839885234833</left_val>
- <right_val>0.2022099941968918</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 20 4 -1.</_>
- <_>2 12 10 2 2.</_>
- <_>12 14 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125789996236563</threshold>
- <left_val>-0.5565029978752136</left_val>
- <right_val>0.0203889999538660</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 24 6 -1.</_>
- <_>0 19 24 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0888490006327629</threshold>
- <left_val>-3.6100010871887207</left_val>
- <right_val>0.1316419988870621</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 9 4 -1.</_>
- <_>7 18 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192569997161627</threshold>
- <left_val>0.5190899968147278</left_val>
- <right_val>-0.1928430050611496</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 4 22 -1.</_>
- <_>17 1 2 11 2.</_>
- <_>15 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166669990867376</threshold>
- <left_val>-0.0874999985098839</left_val>
- <right_val>0.1581249982118607</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 22 -1.</_>
- <_>5 1 2 11 2.</_>
- <_>7 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129319997504354</threshold>
- <left_val>0.0274059996008873</left_val>
- <right_val>-0.5512390136718750</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 13 8 9 -1.</_>
- <_>11 16 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134319998323917</threshold>
- <left_val>0.2345779985189438</left_val>
- <right_val>-0.0432350002229214</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 9 -1.</_>
- <_>8 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188100002706051</threshold>
- <left_val>-0.0396809987723827</left_val>
- <right_val>-0.9437329769134522</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 3 18 -1.</_>
- <_>11 10 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4349998719990253e-003</threshold>
- <left_val>0.4570370018482208</left_val>
- <right_val>-4.0520001202821732e-003</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 6 -1.</_>
- <_>5 8 6 3 2.</_>
- <_>11 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0242490004748106</threshold>
- <left_val>-0.7624800205230713</left_val>
- <right_val>-0.0198570005595684</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 5 8 -1.</_>
- <_>15 11 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296679995954037</threshold>
- <left_val>-3.7412509918212891</left_val>
- <right_val>0.1125060021877289</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 5 8 -1.</_>
- <_>4 11 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1150000654160976e-003</threshold>
- <left_val>-0.6378179788589478</left_val>
- <right_val>0.0112239997833967</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 12 -1.</_>
- <_>15 6 3 6 2.</_>
- <_>12 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7819997891783714e-003</threshold>
- <left_val>0.1937440037727356</left_val>
- <right_val>-0.0820420011878014</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 12 -1.</_>
- <_>6 6 3 6 2.</_>
- <_>9 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166069995611906</threshold>
- <left_val>-0.1619209945201874</left_val>
- <right_val>1.1334990262985229</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 14 8 -1.</_>
- <_>12 9 7 4 2.</_>
- <_>5 13 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0382280014455318</threshold>
- <left_val>0.0211050007492304</left_val>
- <right_val>0.7626420259475708</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 3 14 -1.</_>
- <_>9 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0570940002799034</threshold>
- <left_val>-1.6974929571151733</left_val>
- <right_val>-0.0597620010375977</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 12 -1.</_>
- <_>12 10 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0538830012083054</threshold>
- <left_val>1.1850190162658691</left_val>
- <right_val>0.0909669995307922</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 4 18 -1.</_>
- <_>4 5 2 9 2.</_>
- <_>6 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6110000908374786e-003</threshold>
- <left_val>-0.4094119966030121</left_val>
- <right_val>0.0838209986686707</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 16 18 -1.</_>
- <_>4 12 16 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2971439957618713</threshold>
- <left_val>0.1552989929914475</left_val>
- <right_val>-1.0995409488677979</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 7 20 -1.</_>
- <_>5 14 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0890630036592484</threshold>
- <left_val>0.4894720017910004</left_val>
- <right_val>-0.2004120051860809</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 8 8 12 -1.</_>
- <_>14 14 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0561930015683174</threshold>
- <left_val>-0.2458139955997467</left_val>
- <right_val>0.1436550021171570</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 6 14 -1.</_>
- <_>9 10 3 7 2.</_>
- <_>12 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0370049998164177</threshold>
- <left_val>-0.0481689982116222</left_val>
- <right_val>-1.2310709953308105</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 9 6 -1.</_>
- <_>12 5 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4840003401041031e-003</threshold>
- <left_val>0.4337260127067566</left_val>
- <right_val>0.0137799996882677</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 3 18 -1.</_>
- <_>10 4 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4379999376833439e-003</threshold>
- <left_val>0.1894969940185547</left_val>
- <right_val>-0.3229419887065888</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 22 14 -1.</_>
- <_>12 4 11 7 2.</_>
- <_>1 11 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0716399997472763</threshold>
- <left_val>-0.4397900104522705</left_val>
- <right_val>0.2273019999265671</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 18 2 -1.</_>
- <_>2 8 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2260002121329308e-003</threshold>
- <left_val>-0.2054840028285980</left_val>
- <right_val>0.5093330144882202</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 12 -1.</_>
- <_>12 10 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1360001564025879e-003</threshold>
- <left_val>0.3115719854831696</left_val>
- <right_val>0.0706809982657433</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 9 7 -1.</_>
- <_>9 5 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155950002372265</threshold>
- <left_val>-0.3093479871749878</left_val>
- <right_val>0.1562770009040833</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 4 12 -1.</_>
- <_>12 13 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259959995746613</threshold>
- <left_val>0.1382160037755966</left_val>
- <right_val>-0.1761659979820252</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 12 -1.</_>
- <_>8 13 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120850000530481</threshold>
- <left_val>-0.5107020139694214</left_val>
- <right_val>0.0584409981966019</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 10 22 -1.</_>
- <_>7 13 10 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0678360015153885</threshold>
- <left_val>0.4775710105895996</left_val>
- <right_val>-0.0714460015296936</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 3 20 -1.</_>
- <_>1 1 1 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147150000557303</threshold>
- <left_val>0.4523890018463135</left_val>
- <right_val>-0.1986140012741089</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 18 4 -1.</_>
- <_>13 13 9 2 2.</_>
- <_>4 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0251189991831779</threshold>
- <left_val>0.1295489966869354</left_val>
- <right_val>-0.8626639842987061</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 18 4 -1.</_>
- <_>2 13 9 2 2.</_>
- <_>11 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188260003924370</threshold>
- <left_val>-0.0415700003504753</left_val>
- <right_val>-1.1354700326919556</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 6 -1.</_>
- <_>15 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0212639998644590</threshold>
- <left_val>-0.3473800122737885</left_val>
- <right_val>0.1577949970960617</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 6 -1.</_>
- <_>0 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4609996303915977e-003</threshold>
- <left_val>4.8639997839927673e-003</left_val>
- <right_val>-0.6165480017662048</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 24 -1.</_>
- <_>15 0 9 12 2.</_>
- <_>6 12 9 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2295770049095154</threshold>
- <left_val>0.0813729986548424</left_val>
- <right_val>0.6984140276908875</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 12 -1.</_>
- <_>6 10 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380619987845421</threshold>
- <left_val>1.1616369485855103</left_val>
- <right_val>-0.1497669965028763</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 10 4 -1.</_>
- <_>8 9 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134849995374680</threshold>
- <left_val>-0.3203639984130859</left_val>
- <right_val>0.1736509948968887</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 18 6 -1.</_>
- <_>1 9 9 3 2.</_>
- <_>10 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362389981746674</threshold>
- <left_val>-0.1815849989652634</left_val>
- <right_val>0.6195669770240784</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 18 3 -1.</_>
- <_>6 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7210001870989799e-003</threshold>
- <left_val>7.9600000753998756e-004</left_val>
- <right_val>0.4244140088558197</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 9 8 -1.</_>
- <_>10 7 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0965259969234467</threshold>
- <left_val>-0.1469680070877075</left_val>
- <right_val>1.2525680065155029</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 6 12 -1.</_>
- <_>12 12 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0356569997966290</threshold>
- <left_val>-0.3978169858455658</left_val>
- <right_val>0.1419139951467514</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 18 3 -1.</_>
- <_>3 15 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107720000669360</threshold>
- <left_val>-0.1819400042295456</left_val>
- <right_val>0.5976219773292542</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 7 -1.</_>
- <_>18 17 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0792799964547157</threshold>
- <left_val>0.1464249938726425</left_val>
- <right_val>-0.7883689999580383</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 10 6 -1.</_>
- <_>1 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0328410007059574</threshold>
- <left_val>-0.0624080002307892</left_val>
- <right_val>-1.4227490425109863</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 7 -1.</_>
- <_>18 17 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277810003608465</threshold>
- <left_val>0.3403309881687164</left_val>
- <right_val>0.0306700002402067</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 3 19 -1.</_>
- <_>11 3 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0339999832212925e-003</threshold>
- <left_val>0.3108470141887665</left_val>
- <right_val>-0.2259570062160492</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 7 -1.</_>
- <_>18 17 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4260002002120018e-003</threshold>
- <left_val>-0.0389369986951351</left_val>
- <right_val>0.3170210123062134</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 11 9 -1.</_>
- <_>6 4 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1121399998664856</threshold>
- <left_val>-0.1757829934358597</left_val>
- <right_val>0.6505659818649292</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 7 -1.</_>
- <_>18 17 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1187810003757477</threshold>
- <left_val>-1.0092990398406982</left_val>
- <right_val>0.1106970012187958</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 11 6 -1.</_>
- <_>6 8 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415849983692169</threshold>
- <left_val>-0.5380640029907227</left_val>
- <right_val>0.0199050009250641</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 8 5 -1.</_>
- <_>16 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279660001397133</threshold>
- <left_val>0.4814319908618927</left_val>
- <right_val>0.0335909985005856</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 20 19 -1.</_>
- <_>12 4 10 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1250640004873276</threshold>
- <left_val>0.2635219991207123</left_val>
- <right_val>-0.2573789954185486</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 21 6 -1.</_>
- <_>9 1 7 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2366690039634705</threshold>
- <left_val>0.0365080013871193</left_val>
- <right_val>0.9065560102462769</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 14 -1.</_>
- <_>6 5 6 7 2.</_>
- <_>12 12 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0294759999960661</threshold>
- <left_val>-0.6004880070686340</left_val>
- <right_val>9.5880003646016121e-003</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0377929992973804</threshold>
- <left_val>0.1550620049238205</left_val>
- <right_val>-0.9573349952697754</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 8 5 -1.</_>
- <_>6 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0720440000295639</threshold>
- <left_val>-0.1452589929103851</left_val>
- <right_val>1.3676730394363403</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 8 5 -1.</_>
- <_>16 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7759999334812164e-003</threshold>
- <left_val>0.0129159996286035</left_val>
- <right_val>0.2164089977741242</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 8 5 -1.</_>
- <_>4 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0521540008485317</threshold>
- <left_val>-0.0163599997758865</left_val>
- <right_val>-0.8835629820823669</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 7 -1.</_>
- <_>18 17 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0437909997999668</threshold>
- <left_val>0.3582960069179535</left_val>
- <right_val>0.0651310011744499</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 10 -1.</_>
- <_>8 6 4 5 2.</_>
- <_>12 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383789986371994</threshold>
- <left_val>1.1961040496826172</left_val>
- <right_val>-0.1497150063514710</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 9 9 -1.</_>
- <_>18 15 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0988389998674393</threshold>
- <left_val>-0.6183400154113770</left_val>
- <right_val>0.1278620064258575</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 9 -1.</_>
- <_>3 15 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1219070032238960</threshold>
- <left_val>-1.8276120424270630</left_val>
- <right_val>-0.0648629963397980</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 9 7 -1.</_>
- <_>15 10 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1198170036077499</threshold>
- <left_val>-30.</left_val>
- <right_val>0.1132330000400543</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 9 7 -1.</_>
- <_>6 10 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309100002050400</threshold>
- <left_val>-0.2393400073051453</left_val>
- <right_val>0.3633289933204651</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 15 10 8 -1.</_>
- <_>18 15 5 4 2.</_>
- <_>13 19 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108009995892644</threshold>
- <left_val>-0.0351400002837181</left_val>
- <right_val>0.2770789861679077</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 12 -1.</_>
- <_>0 1 3 6 2.</_>
- <_>3 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0568449981510639</threshold>
- <left_val>-0.1552429944276810</left_val>
- <right_val>1.0802700519561768</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 12 -1.</_>
- <_>13 0 3 6 2.</_>
- <_>10 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0280000278726220e-003</threshold>
- <left_val>-0.0612029992043972</left_val>
- <right_val>0.2050800025463104</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 10 12 -1.</_>
- <_>7 0 5 6 2.</_>
- <_>12 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0282739996910095</threshold>
- <left_val>-0.6477800011634827</left_val>
- <right_val>0.0239170007407665</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 16 8 -1.</_>
- <_>4 1 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1601359993219376</threshold>
- <left_val>1.0892050266265869</left_val>
- <right_val>0.0583890005946159</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 19 3 -1.</_>
- <_>0 22 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9629998393356800e-003</threshold>
- <left_val>-0.2580629885196686</left_val>
- <right_val>0.2083459943532944</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 18 4 -1.</_>
- <_>15 9 9 2 2.</_>
- <_>6 11 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0469370000064373</threshold>
- <left_val>0.1388629972934723</left_val>
- <right_val>-1.5662620067596436</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 9 6 -1.</_>
- <_>3 6 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0242860000580549</threshold>
- <left_val>-0.2072830051183701</left_val>
- <right_val>0.5243099927902222</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 15 -1.</_>
- <_>9 6 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0702020004391670</threshold>
- <left_val>0.1479689925909042</left_val>
- <right_val>-1.3095090389251709</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 6 6 -1.</_>
- <_>8 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8120002076029778e-003</threshold>
- <left_val>0.0279060006141663</left_val>
- <right_val>-0.5086460113525391</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 14 9 -1.</_>
- <_>5 4 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0562009997665882</threshold>
- <left_val>1.2618130445480347</left_val>
- <right_val>0.0638019964098930</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 8 20 -1.</_>
- <_>3 0 4 10 2.</_>
- <_>7 10 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1098280027508736</threshold>
- <left_val>-0.1285009980201721</left_val>
- <right_val>3.0776169300079346</right_val></_></_></trees>
- <stage_threshold>-3.2573320865631104</stage_threshold>
- <parent>21</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 23 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 7 9 -1.</_>
- <_>5 3 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209100004285574</threshold>
- <left_val>-0.6855940222740173</left_val>
- <right_val>0.3898429870605469</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 5 -1.</_>
- <_>10 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0350320003926754</threshold>
- <left_val>-0.4772439897060394</left_val>
- <right_val>0.4502719938755035</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 8 14 -1.</_>
- <_>4 1 4 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0397990010678768</threshold>
- <left_val>-0.4701110124588013</left_val>
- <right_val>0.4270249903202057</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 22 4 -1.</_>
- <_>2 14 22 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8409998416900635e-003</threshold>
- <left_val>0.2561430037021637</left_val>
- <right_val>-0.6655629873275757</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 17 6 6 -1.</_>
- <_>8 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3439999204128981e-003</threshold>
- <left_val>-0.4808349907398224</left_val>
- <right_val>0.2801379859447479</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 7 -1.</_>
- <_>18 1 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0253129992634058</threshold>
- <left_val>-0.2394820004701614</left_val>
- <right_val>0.4419179856777191</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 6 -1.</_>
- <_>3 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321930013597012</threshold>
- <left_val>0.7608669996261597</left_val>
- <right_val>-0.2505910098552704</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 17 18 -1.</_>
- <_>4 12 17 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0754090026021004</threshold>
- <left_val>-0.3497459888458252</left_val>
- <right_val>0.3438029885292053</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 12 6 -1.</_>
- <_>6 0 6 3 2.</_>
- <_>12 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184690002351999</threshold>
- <left_val>-0.7908560037612915</left_val>
- <right_val>0.0347880013287067</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 18 4 -1.</_>
- <_>13 7 9 2 2.</_>
- <_>4 9 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128020001575351</threshold>
- <left_val>0.4710780084133148</left_val>
- <right_val>-0.0600060001015663</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 10 6 -1.</_>
- <_>4 14 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265980008989573</threshold>
- <left_val>0.6711609959602356</left_val>
- <right_val>-0.2425750046968460</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 10 12 -1.</_>
- <_>12 9 5 6 2.</_>
- <_>7 15 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219889990985394</threshold>
- <left_val>0.2471749931573868</left_val>
- <right_val>-0.4830169975757599</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 3 -1.</_>
- <_>8 1 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1465409994125366</threshold>
- <left_val>-0.2150409966707230</left_val>
- <right_val>0.7205590009689331</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 6 -1.</_>
- <_>13 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5310001112520695e-003</threshold>
- <left_val>0.2793099880218506</left_val>
- <right_val>-0.3433989882469177</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 6 6 -1.</_>
- <_>8 11 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4010001048445702e-003</threshold>
- <left_val>0.0558619983494282</left_val>
- <right_val>-0.8214359879493713</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 19 3 -1.</_>
- <_>3 11 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6390003561973572e-003</threshold>
- <left_val>-0.9962059855461121</left_val>
- <right_val>0.1887499988079071</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 9 -1.</_>
- <_>0 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391930006444454</threshold>
- <left_val>-1.1945559978485107</left_val>
- <right_val>-0.0291980002075434</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 16 10 6 -1.</_>
- <_>14 18 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0248550008982420</threshold>
- <left_val>0.1498759984970093</left_val>
- <right_val>-0.5413780212402344</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 10 6 -1.</_>
- <_>0 18 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349950008094311</threshold>
- <left_val>-1.4210180044174194</left_val>
- <right_val>-0.0423140004277229</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 9 6 -1.</_>
- <_>14 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0183789990842342</threshold>
- <left_val>-0.2824259996414185</left_val>
- <right_val>0.1558180004358292</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 3 -1.</_>
- <_>0 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135920001193881</threshold>
- <left_val>0.4731709957122803</left_val>
- <right_val>-0.2193720042705536</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2629999592900276e-003</threshold>
- <left_val>-0.0597140006721020</left_val>
- <right_val>0.6062589883804321</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 9 6 -1.</_>
- <_>0 20 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184780005365610</threshold>
- <left_val>-0.8564720153808594</left_val>
- <right_val>-0.0137839997187257</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 9 6 -1.</_>
- <_>14 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142360003665090</threshold>
- <left_val>0.1665479987859726</left_val>
- <right_val>-0.2771399915218353</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 6 9 -1.</_>
- <_>8 2 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0325470007956028</threshold>
- <left_val>-1.1728240251541138</left_val>
- <right_val>-0.0401850007474422</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 4 12 -1.</_>
- <_>15 8 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6410000864416361e-003</threshold>
- <left_val>0.2651430070400238</left_val>
- <right_val>-0.0563430003821850</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 8 8 -1.</_>
- <_>8 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7799999164417386e-004</threshold>
- <left_val>0.0365560017526150</left_val>
- <right_val>-0.5507519841194153</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 18 3 -1.</_>
- <_>10 20 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0473719984292984</threshold>
- <left_val>-0.0426140017807484</left_val>
- <right_val>0.4819490015506744</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 12 -1.</_>
- <_>7 8 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0790001191198826e-003</threshold>
- <left_val>0.2869899868965149</left_val>
- <right_val>-0.3292300105094910</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 12 3 -1.</_>
- <_>7 7 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0431459993124008</threshold>
- <left_val>-1.4065419435501099</left_val>
- <right_val>0.1283639967441559</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 9 -1.</_>
- <_>12 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0205920003354549</threshold>
- <left_val>-0.2143529951572418</left_val>
- <right_val>0.5398179888725281</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 18 3 -1.</_>
- <_>11 20 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223670005798340</threshold>
- <left_val>0.3371829986572266</left_val>
- <right_val>0.0452120006084442</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 18 3 -1.</_>
- <_>7 20 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0500399991869926</threshold>
- <left_val>-0.2512170076370239</left_val>
- <right_val>0.4175049960613251</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 1 6 20 -1.</_>
- <_>21 1 3 10 2.</_>
- <_>18 11 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0617949999868870</threshold>
- <left_val>0.0400849990546703</left_val>
- <right_val>0.6877980232238770</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 20 -1.</_>
- <_>0 1 3 10 2.</_>
- <_>3 11 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0418619997799397</threshold>
- <left_val>0.5302739739418030</left_val>
- <right_val>-0.2290199995040894</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 3 4 18 -1.</_>
- <_>15 3 2 9 2.</_>
- <_>13 12 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1959998887032270e-003</threshold>
- <left_val>0.2516149878501892</left_val>
- <right_val>-0.2151460051536560</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 12 -1.</_>
- <_>0 6 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0242550000548363</threshold>
- <left_val>7.2320001199841499e-003</left_val>
- <right_val>-0.7251909971237183</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 12 6 -1.</_>
- <_>18 9 6 3 2.</_>
- <_>12 12 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173039995133877</threshold>
- <left_val>-0.4995819926261902</left_val>
- <right_val>0.1839450001716614</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 18 -1.</_>
- <_>7 3 2 9 2.</_>
- <_>9 12 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1470001451671124e-003</threshold>
- <left_val>0.0852119997143745</left_val>
- <right_val>-0.4636470079421997</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 6 9 -1.</_>
- <_>16 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143699999898672</threshold>
- <left_val>-0.5225890278816223</left_val>
- <right_val>0.2389259934425354</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 12 6 -1.</_>
- <_>0 9 6 3 2.</_>
- <_>6 12 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0399999171495438e-003</threshold>
- <left_val>-0.6325039863586426</left_val>
- <right_val>0.0325510017573833</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 4 8 20 -1.</_>
- <_>18 4 4 10 2.</_>
- <_>14 14 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1237310022115707</threshold>
- <left_val>1.2856210470199585</left_val>
- <right_val>0.0765450000762939</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 8 20 -1.</_>
- <_>2 4 4 10 2.</_>
- <_>6 14 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0822219997644424</threshold>
- <left_val>0.8320819735527039</left_val>
- <right_val>-0.1859059929847717</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 9 6 -1.</_>
- <_>14 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0656590014696121</threshold>
- <left_val>0.1129880025982857</left_val>
- <right_val>-30.</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 9 6 -1.</_>
- <_>1 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0315829999744892</threshold>
- <left_val>-1.3485900163650513</left_val>
- <right_val>-0.0470970012247562</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 18 3 -1.</_>
- <_>9 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0796360000967979</threshold>
- <left_val>-1.3533639907836914</left_val>
- <right_val>0.1566880047321320</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 9 6 -1.</_>
- <_>5 15 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0188800003379583</threshold>
- <left_val>0.4030030071735382</left_val>
- <right_val>-0.2514890134334564</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 18 3 -1.</_>
- <_>5 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0149997696280479e-003</threshold>
- <left_val>-0.2628709971904755</left_val>
- <right_val>0.1858250051736832</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 7 -1.</_>
- <_>11 2 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122180003672838</threshold>
- <left_val>0.5869240164756775</left_val>
- <right_val>-0.1942770034074783</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 9 6 -1.</_>
- <_>12 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2710000155493617e-003</threshold>
- <left_val>-0.1668899953365326</left_val>
- <right_val>0.2300689965486527</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 9 6 -1.</_>
- <_>9 1 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297439992427826</threshold>
- <left_val>0.0125200003385544</left_val>
- <right_val>-0.6672359704971314</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 14 6 -1.</_>
- <_>12 6 7 3 2.</_>
- <_>5 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0281750001013279</threshold>
- <left_val>-0.0170600004494190</left_val>
- <right_val>0.6457939743995667</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 13 -1.</_>
- <_>10 2 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303450003266335</threshold>
- <left_val>-0.2417870014905930</left_val>
- <right_val>0.3487890064716339</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 12 6 -1.</_>
- <_>12 11 6 3 2.</_>
- <_>6 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173259992152452</threshold>
- <left_val>-0.5359939932823181</left_val>
- <right_val>0.2099599987268448</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 15 -1.</_>
- <_>9 1 6 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0841780006885529</threshold>
- <left_val>0.7509329915046692</left_val>
- <right_val>-0.1759320050477982</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 7 -1.</_>
- <_>13 0 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4950000271201134e-003</threshold>
- <left_val>-0.1618809998035431</left_val>
- <right_val>0.3065750002861023</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 16 6 -1.</_>
- <_>3 6 16 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0564949996769428</threshold>
- <left_val>-0.1731880009174347</left_val>
- <right_val>1.0016150474548340</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2939997985959053e-003</threshold>
- <left_val>0.2341759949922562</left_val>
- <right_val>-0.0653470009565353</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 6 9 -1.</_>
- <_>9 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149450004100800</threshold>
- <left_val>0.2501890063285828</left_val>
- <right_val>-0.3059119880199432</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 24 -1.</_>
- <_>13 0 2 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0549190007150173</threshold>
- <left_val>0.1312199980020523</left_val>
- <right_val>-0.9376509785652161</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 24 -1.</_>
- <_>9 0 2 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197219997644424</threshold>
- <left_val>-0.8397849798202515</left_val>
- <right_val>-0.0234730001538992</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 5 12 -1.</_>
- <_>11 13 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0671589970588684</threshold>
- <left_val>2.3586840629577637</left_val>
- <right_val>0.0829709991812706</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 9 6 -1.</_>
- <_>7 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143259996548295</threshold>
- <left_val>0.1881449967622757</left_val>
- <right_val>-0.3122160136699677</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 18 6 -1.</_>
- <_>5 9 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0298410002142191</threshold>
- <left_val>0.1482509970664978</left_val>
- <right_val>-0.8468170166015625</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 5 12 -1.</_>
- <_>8 13 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0518830008804798</threshold>
- <left_val>-0.0437310002744198</left_val>
- <right_val>-1.3366169929504395</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 17 6 -1.</_>
- <_>4 19 17 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0411270000040531</threshold>
- <left_val>0.1766009926795960</left_val>
- <right_val>-0.6090409755706787</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 18 14 -1.</_>
- <_>0 3 9 7 2.</_>
- <_>9 10 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1286509931087494</threshold>
- <left_val>-0.9870100021362305</left_val>
- <right_val>-0.0377850010991097</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 24 2 -1.</_>
- <_>0 2 24 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4170000106096268e-003</threshold>
- <left_val>-0.1611959934234619</left_val>
- <right_val>0.3267570137977600</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 18 3 -1.</_>
- <_>0 16 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7030002139508724e-003</threshold>
- <left_val>-0.2384150028228760</left_val>
- <right_val>0.2931939959526062</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0455200001597404</threshold>
- <left_val>0.1442459970712662</left_val>
- <right_val>-1.5010160207748413</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 14 12 -1.</_>
- <_>3 9 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0787009969353676</threshold>
- <left_val>-1.0394560098648071</left_val>
- <right_val>-0.0453759990632534</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8619997948408127e-003</threshold>
- <left_val>0.1963360011577606</left_val>
- <right_val>-0.1447239965200424</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 9 -1.</_>
- <_>10 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134589998051524</threshold>
- <left_val>-0.9063469767570496</left_val>
- <right_val>-0.0380490012466908</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 6 10 -1.</_>
- <_>12 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288270004093647</threshold>
- <left_val>-0.0294739995151758</left_val>
- <right_val>0.6005839705467224</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 9 -1.</_>
- <_>7 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0273659992963076</threshold>
- <left_val>-0.9980400204658508</left_val>
- <right_val>-0.0386530011892319</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 21 7 -1.</_>
- <_>9 0 7 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0729179978370667</threshold>
- <left_val>0.7336149811744690</left_val>
- <right_val>0.0574400015175343</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 12 5 -1.</_>
- <_>10 11 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139889996498823</threshold>
- <left_val>0.2789260149002075</left_val>
- <right_val>-0.2651630043983460</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 9 8 -1.</_>
- <_>11 7 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0432429984211922</threshold>
- <left_val>4.7760000452399254e-003</left_val>
- <right_val>0.3592590093612671</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 18 -1.</_>
- <_>9 6 3 9 2.</_>
- <_>12 15 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0295330006629229</threshold>
- <left_val>-0.2008399963378906</left_val>
- <right_val>0.5120289921760559</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 14 8 10 -1.</_>
- <_>19 14 4 5 2.</_>
- <_>15 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0318970009684563</threshold>
- <left_val>0.6472169756889343</left_val>
- <right_val>-1.3760000001639128e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 8 10 -1.</_>
- <_>1 14 4 5 2.</_>
- <_>5 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378689989447594</threshold>
- <left_val>-0.1836380064487457</left_val>
- <right_val>0.6134309768676758</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 10 -1.</_>
- <_>15 0 4 5 2.</_>
- <_>11 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0224179998040199</threshold>
- <left_val>-0.2918789982795715</left_val>
- <right_val>0.1819480061531067</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 8 10 -1.</_>
- <_>5 0 4 5 2.</_>
- <_>9 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589589998126030</threshold>
- <left_val>-0.0664519965648651</left_val>
- <right_val>-1.9290030002593994</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 5 -1.</_>
- <_>6 1 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312229990959167</threshold>
- <left_val>-0.0127320000901818</left_val>
- <right_val>0.6156079769134522</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 18 2 -1.</_>
- <_>10 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0374849997460842</threshold>
- <left_val>-0.2085690051317215</left_val>
- <right_val>0.4436399936676025</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 20 6 -1.</_>
- <_>12 8 10 3 2.</_>
- <_>2 11 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209660008549690</threshold>
- <left_val>-0.3571279942989349</left_val>
- <right_val>0.2425220012664795</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 9 7 -1.</_>
- <_>10 6 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254779998213053</threshold>
- <left_val>1.0846560001373291</left_val>
- <right_val>-0.1505440026521683</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 8 16 -1.</_>
- <_>14 5 4 8 2.</_>
- <_>10 13 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2570000775158405e-003</threshold>
- <left_val>0.2130260020494461</left_val>
- <right_val>-0.1830819994211197</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 16 8 -1.</_>
- <_>3 9 8 4 2.</_>
- <_>11 13 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0509830005466938</threshold>
- <left_val>0.5173680186271668</left_val>
- <right_val>-0.1883309930562973</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 10 4 -1.</_>
- <_>7 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206400007009506</threshold>
- <left_val>-0.4403020143508911</left_val>
- <right_val>0.2274599969387054</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 10 8 -1.</_>
- <_>7 12 5 4 2.</_>
- <_>12 16 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106729995459318</threshold>
- <left_val>0.0350599996745586</left_val>
- <right_val>-0.5166500210762024</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 15 4 -1.</_>
- <_>14 19 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318959988653660</threshold>
- <left_val>0.0132280001416802</left_val>
- <right_val>0.3491519987583160</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 18 9 -1.</_>
- <_>7 0 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238249991089106</threshold>
- <left_val>0.3411880135536194</left_val>
- <right_val>-0.2151020020246506</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 10 8 -1.</_>
- <_>18 4 5 4 2.</_>
- <_>13 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0680001042783260e-003</threshold>
- <left_val>0.3293739855289459</left_val>
- <right_val>-0.2852379977703095</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 18 4 -1.</_>
- <_>9 16 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238819997757673</threshold>
- <left_val>-0.2533380091190338</left_val>
- <right_val>0.2629610002040863</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 10 12 -1.</_>
- <_>13 7 5 6 2.</_>
- <_>8 13 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0279660001397133</threshold>
- <left_val>0.1404909938573837</left_val>
- <right_val>-0.4988709986209869</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 10 12 -1.</_>
- <_>6 7 5 6 2.</_>
- <_>11 13 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146030001342297</threshold>
- <left_val>-0.0153959998860955</left_val>
- <right_val>-0.7695800065994263</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 18 7 -1.</_>
- <_>10 6 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1087239980697632</threshold>
- <left_val>0.1906960010528565</left_val>
- <right_val>-0.3239310085773468</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 18 3 -1.</_>
- <_>0 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140380002558231</threshold>
- <left_val>0.3492470085620880</left_val>
- <right_val>-0.2235870063304901</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 18 3 -1.</_>
- <_>3 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0440000593662262e-003</threshold>
- <left_val>-0.0383290015161037</left_val>
- <right_val>0.5117729902267456</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 6 10 -1.</_>
- <_>4 4 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9769999459385872e-003</threshold>
- <left_val>-0.4288829863071442</left_val>
- <right_val>0.0491739995777607</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 8 24 -1.</_>
- <_>16 0 4 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0851830020546913</threshold>
- <left_val>0.6662459969520569</left_val>
- <right_val>7.8079998493194580e-003</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 8 15 -1.</_>
- <_>8 0 4 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1559998858720064e-003</threshold>
- <left_val>-0.4913519918918610</left_val>
- <right_val>0.0695559978485107</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 8 24 -1.</_>
- <_>16 0 4 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3638449907302856</threshold>
- <left_val>0.1299709975719452</left_val>
- <right_val>-1.8949509859085083</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 18 9 -1.</_>
- <_>7 4 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2208250015974045</threshold>
- <left_val>-0.0572119988501072</left_val>
- <right_val>-1.4281120300292969</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 9 6 -1.</_>
- <_>15 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161400008946657</threshold>
- <left_val>-0.5758939981460571</left_val>
- <right_val>0.1806250065565109</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 18 6 -1.</_>
- <_>3 9 9 3 2.</_>
- <_>12 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0483300015330315</threshold>
- <left_val>0.9730849862098694</left_val>
- <right_val>-0.1651300042867661</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 5 6 9 -1.</_>
- <_>18 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175299998372793</threshold>
- <left_val>0.1793269962072372</left_val>
- <right_val>-0.2794890105724335</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 6 9 -1.</_>
- <_>0 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0343099981546402</threshold>
- <left_val>-0.8107249736785889</left_val>
- <right_val>-0.0165960006415844</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 18 4 -1.</_>
- <_>13 7 9 2 2.</_>
- <_>4 9 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5830002054572105e-003</threshold>
- <left_val>0.2790899872779846</left_val>
- <right_val>-7.4519999325275421e-003</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 12 20 -1.</_>
- <_>2 1 6 10 2.</_>
- <_>8 11 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1289640069007874</threshold>
- <left_val>-0.1350850015878677</left_val>
- <right_val>2.5411539077758789</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 6 23 -1.</_>
- <_>17 0 3 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303610004484653</threshold>
- <left_val>-0.0684190019965172</left_val>
- <right_val>0.2873409986495972</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 2 18 -1.</_>
- <_>1 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0440860018134117</threshold>
- <left_val>-0.1813589930534363</left_val>
- <right_val>0.6541320085525513</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 10 6 -1.</_>
- <_>8 10 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0159999150782824e-003</threshold>
- <left_val>-0.1569049954414368</left_val>
- <right_val>0.2696380019187927</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 20 6 -1.</_>
- <_>0 6 10 3 2.</_>
- <_>10 9 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0263369996100664</threshold>
- <left_val>0.2917560040950775</left_val>
- <right_val>-0.2527410089969635</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 12 5 -1.</_>
- <_>15 12 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278660003095865</threshold>
- <left_val>0.4438750147819519</left_val>
- <right_val>0.0550380013883114</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 3 19 -1.</_>
- <_>1 4 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117250001057982</threshold>
- <left_val>-0.1934649944305420</left_val>
- <right_val>0.4665670096874237</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 1 3 18 -1.</_>
- <_>20 1 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5689999563619494e-003</threshold>
- <left_val>-8.2360003143548965e-003</left_val>
- <right_val>0.2570089995861054</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 3 18 -1.</_>
- <_>3 1 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5550000611692667e-003</threshold>
- <left_val>-0.4243089854717255</left_val>
- <right_val>0.0711740031838417</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 18 3 -1.</_>
- <_>9 10 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0316950008273125</threshold>
- <left_val>-0.8539350032806397</left_val>
- <right_val>0.1691620051860809</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 10 9 -1.</_>
- <_>9 4 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0320970006287098</threshold>
- <left_val>0.8378490209579468</left_val>
- <right_val>-0.1759729981422424</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 14 7 -1.</_>
- <_>7 13 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1554419994354248</threshold>
- <left_val>0.0995500013232231</left_val>
- <right_val>2.3873300552368164</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 14 7 -1.</_>
- <_>10 13 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0880459994077683</threshold>
- <left_val>-0.1872529983520508</left_val>
- <right_val>0.6238430142402649</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 9 6 -1.</_>
- <_>11 15 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6720000421628356e-003</threshold>
- <left_val>0.2500869929790497</left_val>
- <right_val>-0.0651189982891083</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 8 10 -1.</_>
- <_>4 14 4 5 2.</_>
- <_>8 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3409996479749680e-003</threshold>
- <left_val>-0.3537890017032623</left_val>
- <right_val>0.1071500033140183</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 4 10 -1.</_>
- <_>10 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0371380001306534</threshold>
- <left_val>0.1638700067996979</left_val>
- <right_val>-0.9171839952468872</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 5 16 -1.</_>
- <_>3 16 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0801839977502823</threshold>
- <left_val>-0.1481299996376038</left_val>
- <right_val>1.4895190000534058</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 10 9 6 -1.</_>
- <_>15 12 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9100002767518163e-004</threshold>
- <left_val>-0.2132689952850342</left_val>
- <right_val>0.1967640072107315</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 9 6 -1.</_>
- <_>0 12 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0400001928210258e-003</threshold>
- <left_val>-0.7131869792938232</left_val>
- <right_val>1.8240000354126096e-003</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 9 -1.</_>
- <_>6 10 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1196239963173866</threshold>
- <left_val>0.0330989994108677</left_val>
- <right_val>1.0441709756851196</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 5 8 -1.</_>
- <_>9 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5280000194907188e-003</threshold>
- <left_val>-0.2730849981307983</left_val>
- <right_val>0.2722980082035065</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296390000730753</threshold>
- <left_val>0.3622579872608185</left_val>
- <right_val>0.0567950010299683</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 6 9 -1.</_>
- <_>10 15 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0266500003635883</threshold>
- <left_val>-0.0480410009622574</left_val>
- <right_val>-0.9672350287437439</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 6 7 6 -1.</_>
- <_>16 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0444220006465912</threshold>
- <left_val>0.1305290013551712</left_val>
- <right_val>-0.3507730066776276</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 22 -1.</_>
- <_>10 1 2 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0243599992245436</threshold>
- <left_val>-1.0766899585723877</left_val>
- <right_val>-0.0512229986488819</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 14 3 -1.</_>
- <_>6 6 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0197349991649389</threshold>
- <left_val>0.0262380000203848</left_val>
- <right_val>0.2807050049304962</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 19 3 -1.</_>
- <_>0 19 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4930001497268677e-003</threshold>
- <left_val>-0.2611129879951477</left_val>
- <right_val>0.2101140022277832</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 6 24 -1.</_>
- <_>17 0 3 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2320030033588409</threshold>
- <left_val>-1.7748440504074097</left_val>
- <right_val>0.1148260012269020</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 15 6 -1.</_>
- <_>5 13 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0256140008568764</threshold>
- <left_val>0.2990080118179321</left_val>
- <right_val>-0.2250249981880188</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 10 14 -1.</_>
- <_>14 6 5 7 2.</_>
- <_>9 13 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4949998632073402e-003</threshold>
- <left_val>0.1956380009651184</left_val>
- <right_val>-0.0997629985213280</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 8 10 -1.</_>
- <_>1 6 4 5 2.</_>
- <_>5 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9840000681579113e-003</threshold>
- <left_val>-0.4302150011062622</left_val>
- <right_val>0.0812610015273094</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 12 5 -1.</_>
- <_>7 6 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0358130000531673</threshold>
- <left_val>-0.5098739862442017</left_val>
- <right_val>0.1634590029716492</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 9 6 -1.</_>
- <_>10 7 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141690000891685</threshold>
- <left_val>0.7797809839248657</left_val>
- <right_val>-0.1747629940509796</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 14 14 -1.</_>
- <_>14 8 7 7 2.</_>
- <_>7 15 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1264210045337677</threshold>
- <left_val>-0.6304789781570435</left_val>
- <right_val>0.1272830069065094</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 14 14 -1.</_>
- <_>3 8 7 7 2.</_>
- <_>10 15 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0686779990792274</threshold>
- <left_val>-0.0464479997754097</left_val>
- <right_val>-1.1128979921340942</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 13 4 -1.</_>
- <_>9 10 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0858649984002113</threshold>
- <left_val>0.1183540001511574</left_val>
- <right_val>-4.8235158920288086</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 6 12 -1.</_>
- <_>3 2 3 6 2.</_>
- <_>6 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155119998380542</threshold>
- <left_val>-0.0174679998308420</left_val>
- <right_val>-0.6369339823722839</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 17 6 -1.</_>
- <_>6 13 17 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0810910016298294</threshold>
- <left_val>0.0861330032348633</left_val>
- <right_val>2.4559431076049805</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 17 6 -1.</_>
- <_>1 13 17 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184950008988380</threshold>
- <left_val>0.0402290001511574</left_val>
- <right_val>-0.5085819959640503</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 7 8 9 -1.</_>
- <_>16 10 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0863209962844849</threshold>
- <left_val>-1.9006760120391846</left_val>
- <right_val>0.1101910024881363</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 8 9 -1.</_>
- <_>0 10 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0723550021648407</threshold>
- <left_val>-0.0621119998395443</left_val>
- <right_val>-1.4165179729461670</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 24 10 -1.</_>
- <_>12 9 12 5 2.</_>
- <_>0 14 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0781790018081665</threshold>
- <left_val>0.8884930014610291</left_val>
- <right_val>0.0423699989914894</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 15 8 -1.</_>
- <_>8 2 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0966819971799850</threshold>
- <left_val>-0.2209420055150986</left_val>
- <right_val>0.3357509970664978</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 18 8 -1.</_>
- <_>10 2 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398759990930557</threshold>
- <left_val>0.5780479907989502</left_val>
- <right_val>0.0453479997813702</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 18 4 -1.</_>
- <_>0 1 9 2 2.</_>
- <_>9 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5349997282028198e-003</threshold>
- <left_val>-0.5417569875717163</left_val>
- <right_val>3.2399999909102917e-003</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>20 2 3 18 -1.</_>
- <_>21 2 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0600000647827983e-004</threshold>
- <left_val>-0.0815490037202835</left_val>
- <right_val>0.3583790063858032</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 3 19 -1.</_>
- <_>2 3 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121079999953508</threshold>
- <left_val>-0.2028039991855621</left_val>
- <right_val>0.4376800060272217</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 8 6 16 -1.</_>
- <_>20 8 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0208739992231131</threshold>
- <left_val>0.4146989881992340</left_val>
- <right_val>-0.0455680005252361</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 16 -1.</_>
- <_>2 8 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0578880012035370</threshold>
- <left_val>-0.0290099997073412</left_val>
- <right_val>-0.9182230234146118</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 11 6 -1.</_>
- <_>8 20 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3200000103097409e-004</threshold>
- <left_val>-0.1177240014076233</left_val>
- <right_val>0.2000000029802322</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 12 5 -1.</_>
- <_>8 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171370003372431</threshold>
- <left_val>0.3300479948520660</left_val>
- <right_val>-0.2305520027875900</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 12 5 -1.</_>
- <_>11 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0306550003588200</threshold>
- <left_val>-0.0215450003743172</left_val>
- <right_val>0.2687819898128510</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 9 6 -1.</_>
- <_>9 3 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8699999721720815e-004</threshold>
- <left_val>-0.4410069882869721</left_val>
- <right_val>0.0491579994559288</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 12 5 -1.</_>
- <_>7 6 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0880369991064072</threshold>
- <left_val>0.1178200021386147</left_val>
- <right_val>-2.8293309211730957</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 6 7 -1.</_>
- <_>12 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0390289984643459</threshold>
- <left_val>0.9177719950675964</left_val>
- <right_val>-0.1582739949226379</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 9 6 -1.</_>
- <_>11 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0801059976220131</threshold>
- <left_val>0.1128920018672943</left_val>
- <right_val>-1.9937280416488647</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 6 9 -1.</_>
- <_>8 17 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0395389981567860</threshold>
- <left_val>-0.1435739994049072</left_val>
- <right_val>1.3085240125656128</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 9 6 -1.</_>
- <_>11 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0206840001046658</threshold>
- <left_val>0.2004809975624085</left_val>
- <right_val>-0.0441869981586933</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 16 20 -1.</_>
- <_>4 3 8 10 2.</_>
- <_>12 13 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0670379996299744</threshold>
- <left_val>0.3261860013008118</left_val>
- <right_val>-0.2055040001869202</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 10 12 -1.</_>
- <_>12 6 5 6 2.</_>
- <_>7 12 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0468150004744530</threshold>
- <left_val>0.1582529991865158</left_val>
- <right_val>-0.9553509950637817</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 7 12 -1.</_>
- <_>0 6 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0784439966082573</threshold>
- <left_val>-0.0746510028839111</left_val>
- <right_val>-2.1161499023437500</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 11 6 -1.</_>
- <_>12 19 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0663800016045570</threshold>
- <left_val>0.1164190024137497</left_val>
- <right_val>-1.6113519668579102</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 12 8 -1.</_>
- <_>4 7 6 4 2.</_>
- <_>10 11 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0300539992749691</threshold>
- <left_val>-0.1656260043382645</left_val>
- <right_val>0.7002540230751038</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 8 10 -1.</_>
- <_>12 11 4 5 2.</_>
- <_>8 16 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0171199999749660</threshold>
- <left_val>0.2262769937515259</left_val>
- <right_val>-0.4011499881744385</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 9 -1.</_>
- <_>11 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200730003416538</threshold>
- <left_val>-0.1938969939947128</left_val>
- <right_val>0.4442029893398285</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 3 22 -1.</_>
- <_>15 0 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0331019982695580</threshold>
- <left_val>0.1163749992847443</left_val>
- <right_val>-1.5771679878234863</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 3 22 -1.</_>
- <_>8 0 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148820001631975</threshold>
- <left_val>-0.8968030214309692</left_val>
- <right_val>-0.0420100018382072</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 18 4 -1.</_>
- <_>13 7 9 2 2.</_>
- <_>4 9 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0102810002863407</threshold>
- <left_val>0.3560299873352051</left_val>
- <right_val>-0.0131240002810955</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 15 -1.</_>
- <_>10 7 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286950003355742</threshold>
- <left_val>-0.4603959918022156</left_val>
- <right_val>0.0268019996583462</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7189998440444469e-003</threshold>
- <left_val>0.2378879934549332</left_val>
- <right_val>-0.0655189976096153</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 13 -1.</_>
- <_>9 0 9 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3220160007476807</threshold>
- <left_val>-0.0284899994730949</left_val>
- <right_val>-0.8423460125923157</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 0 3 24 -1.</_>
- <_>17 0 1 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170450005680323</threshold>
- <left_val>-0.5093880295753479</left_val>
- <right_val>0.1605760008096695</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 24 -1.</_>
- <_>6 0 1 24 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3469998314976692e-003</threshold>
- <left_val>-0.5415499806404114</left_val>
- <right_val>4.7320001758635044e-003</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 5 8 -1.</_>
- <_>10 19 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300019998103380</threshold>
- <left_val>-0.8878579735755920</left_val>
- <right_val>0.1362179964780808</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 18 2 -1.</_>
- <_>2 19 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112929996103048</threshold>
- <left_val>0.8061519861221314</left_val>
- <right_val>-0.1615950018167496</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 20 3 -1.</_>
- <_>2 9 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7749998047947884e-003</threshold>
- <left_val>0.0129680000245571</left_val>
- <right_val>0.5507990121841431</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 9 6 -1.</_>
- <_>7 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0710001960396767e-003</threshold>
- <left_val>-0.0457280017435551</left_val>
- <right_val>-1.0766259431838989</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 19 10 -1.</_>
- <_>3 7 19 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1934410035610199</threshold>
- <left_val>0.0712620019912720</left_val>
- <right_val>1.1694519519805908</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 19 3 -1.</_>
- <_>2 8 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3750001825392246e-003</threshold>
- <left_val>-0.1973620057106018</left_val>
- <right_val>0.3820689916610718</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 9 4 -1.</_>
- <_>15 8 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0682760030031204</threshold>
- <left_val>-5.4372339248657227</left_val>
- <right_val>0.1115190014243126</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 18 8 -1.</_>
- <_>8 2 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349330008029938</threshold>
- <left_val>0.4479340016841888</left_val>
- <right_val>-0.1865790039300919</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 14 4 -1.</_>
- <_>10 9 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1219998858869076e-003</threshold>
- <left_val>-0.0148719996213913</left_val>
- <right_val>0.1841389983892441</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 16 -1.</_>
- <_>7 4 3 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0953119993209839</threshold>
- <left_val>-0.1511709988117218</left_val>
- <right_val>0.9499149918556213</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 9 16 -1.</_>
- <_>18 8 3 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0628490000963211</threshold>
- <left_val>0.4647360146045685</left_val>
- <right_val>0.0384050011634827</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 9 16 -1.</_>
- <_>3 8 3 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1704069972038269</threshold>
- <left_val>-1.6499999761581421</left_val>
- <right_val>-0.0632369965314865</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 0 6 14 -1.</_>
- <_>20 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105839995667338</threshold>
- <left_val>-0.0383489988744259</left_val>
- <right_val>0.4191380143165588</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 14 -1.</_>
- <_>2 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415790006518364</threshold>
- <left_val>0.3446190059185028</left_val>
- <right_val>-0.2118770033121109</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 6 22 -1.</_>
- <_>17 0 2 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1271860003471375</threshold>
- <left_val>0.1239819973707199</left_val>
- <right_val>-2.1254889965057373</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 22 -1.</_>
- <_>5 0 2 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0825570002198219</threshold>
- <left_val>-0.0620240010321140</left_val>
- <right_val>-1.4875819683074951</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 2 12 20 -1.</_>
- <_>16 2 4 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0852930024266243</threshold>
- <left_val>0.0170879997313023</left_val>
- <right_val>0.3207660019397736</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 12 20 -1.</_>
- <_>4 2 4 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0555440001189709</threshold>
- <left_val>-0.2741400003433228</left_val>
- <right_val>0.1897639930248261</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 9 -1.</_>
- <_>11 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5650000683963299e-003</threshold>
- <left_val>-0.1792020052671433</left_val>
- <right_val>0.2796730101108551</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 16 -1.</_>
- <_>12 0 3 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129979997873306</threshold>
- <left_val>-0.3229750096797943</left_val>
- <right_val>0.2694180011749268</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 12 -1.</_>
- <_>12 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0578919984400272</threshold>
- <left_val>0.1264439970254898</left_val>
- <right_val>-0.6071349978446960</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 18 6 -1.</_>
- <_>3 4 9 3 2.</_>
- <_>12 7 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228240005671978</threshold>
- <left_val>-0.4968209862709045</left_val>
- <right_val>0.0223769992589951</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 16 8 -1.</_>
- <_>13 5 8 4 2.</_>
- <_>5 9 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0483120009303093</threshold>
- <left_val>0.0436070002615452</left_val>
- <right_val>0.4853779971599579</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 10 6 -1.</_>
- <_>0 15 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0257140006870031</threshold>
- <left_val>-0.0429509989917278</left_val>
- <right_val>-0.9302350282669067</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 9 6 -1.</_>
- <_>8 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9269998930394650e-003</threshold>
- <left_val>-2.9680000152438879e-003</left_val>
- <right_val>0.3429630100727081</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 9 6 -1.</_>
- <_>9 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0344469994306564</threshold>
- <left_val>-1.5299769639968872</left_val>
- <right_val>-0.0610149987041950</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 1 10 8 -1.</_>
- <_>19 1 5 4 2.</_>
- <_>14 5 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0293879993259907</threshold>
- <left_val>0.0375959984958172</left_val>
- <right_val>0.6417239904403687</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 3 12 -1.</_>
- <_>9 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4319998919963837e-003</threshold>
- <left_val>0.0990889966487885</left_val>
- <right_val>-0.3968810141086578</right_val></_></_></trees>
- <stage_threshold>-3.3703000545501709</stage_threshold>
- <parent>22</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 24 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 9 -1.</_>
- <_>6 7 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0959440022706985</threshold>
- <left_val>0.6241909861564636</left_val>
- <right_val>-0.4587520062923431</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 6 -1.</_>
- <_>10 5 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168340001255274</threshold>
- <left_val>-0.9307280182838440</left_val>
- <right_val>0.2156360000371933</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 8 5 -1.</_>
- <_>5 1 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0260499995201826</threshold>
- <left_val>-0.4053229987621307</left_val>
- <right_val>0.4225659966468811</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 6 8 -1.</_>
- <_>12 16 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6500001442618668e-004</threshold>
- <left_val>0.0952880010008812</left_val>
- <right_val>-0.6329810023307800</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 12 6 -1.</_>
- <_>3 14 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6940002143383026e-003</threshold>
- <left_val>0.3724380135536194</left_val>
- <right_val>-0.3033240139484406</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 12 6 -1.</_>
- <_>15 18 6 3 2.</_>
- <_>9 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188740007579327</threshold>
- <left_val>-0.2335720062255859</left_val>
- <right_val>0.4033069908618927</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 6 -1.</_>
- <_>4 16 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6300000424962491e-004</threshold>
- <left_val>0.0428869985044003</left_val>
- <right_val>-0.7779679894447327</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 7 18 -1.</_>
- <_>11 12 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0762590020895004</threshold>
- <left_val>-0.4962849915027618</left_val>
- <right_val>0.1633539944887161</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 18 3 -1.</_>
- <_>9 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0501490011811256</threshold>
- <left_val>0.0327470004558563</left_val>
- <right_val>-0.8004789948463440</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 19 2 -1.</_>
- <_>5 4 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9239999130368233e-003</threshold>
- <left_val>-0.5000280141830444</left_val>
- <right_val>0.2548060119152069</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 12 6 -1.</_>
- <_>4 2 6 3 2.</_>
- <_>10 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162439998239279</threshold>
- <left_val>0.0389130003750324</left_val>
- <right_val>-0.7072489857673645</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 9 -1.</_>
- <_>11 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378119982779026</threshold>
- <left_val>-0.0662679970264435</left_val>
- <right_val>0.7386879920959473</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 6 9 -1.</_>
- <_>10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123199997469783</threshold>
- <left_val>0.4869639873504639</left_val>
- <right_val>-0.2448559999465942</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 9 5 15 -1.</_>
- <_>16 14 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0580039992928505</threshold>
- <left_val>0.1345909982919693</left_val>
- <right_val>-0.1323210000991821</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 5 15 -1.</_>
- <_>3 14 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8630000092089176e-003</threshold>
- <left_val>-0.4417290091514587</left_val>
- <right_val>0.1400559991598129</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 14 6 -1.</_>
- <_>13 6 7 3 2.</_>
- <_>6 9 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0456909984350204</threshold>
- <left_val>0.0312179997563362</left_val>
- <right_val>0.8981829881668091</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 14 -1.</_>
- <_>8 13 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213210005313158</threshold>
- <left_val>0.0120080001652241</left_val>
- <right_val>-0.8606619834899902</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 24 5 -1.</_>
- <_>8 16 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1567910015583038</threshold>
- <left_val>0.0140559999272227</left_val>
- <right_val>0.8533290028572083</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 20 3 -1.</_>
- <_>10 20 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103289997205138</threshold>
- <left_val>0.2902280092239380</left_val>
- <right_val>-0.2947880029678345</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 18 2 -1.</_>
- <_>5 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4290001019835472e-003</threshold>
- <left_val>-0.4043990075588226</left_val>
- <right_val>0.1940020024776459</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 6 10 -1.</_>
- <_>2 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0233389995992184</threshold>
- <left_val>0.3294520080089569</left_val>
- <right_val>-0.2571269869804382</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 20 3 -1.</_>
- <_>2 2 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8970001302659512e-003</threshold>
- <left_val>-0.5335299968719482</left_val>
- <right_val>0.2163520008325577</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 6 11 -1.</_>
- <_>11 13 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0344030000269413</threshold>
- <left_val>-1.4425489902496338</left_val>
- <right_val>-0.0446829982101917</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 6 8 -1.</_>
- <_>9 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0212350003421307</threshold>
- <left_val>-0.7901750206947327</left_val>
- <right_val>0.1908410042524338</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 9 -1.</_>
- <_>9 15 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0620001014322042e-003</threshold>
- <left_val>-0.2693119943141937</left_val>
- <right_val>0.3148800134658814</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 18 2 -1.</_>
- <_>5 12 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2190002277493477e-003</threshold>
- <left_val>-0.5446439981460571</left_val>
- <right_val>0.1657460033893585</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 15 6 -1.</_>
- <_>2 8 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0143349999561906</threshold>
- <left_val>0.0221050009131432</left_val>
- <right_val>-0.6234250068664551</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 18 3 -1.</_>
- <_>6 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2120001316070557e-003</threshold>
- <left_val>-0.4988499879837036</left_val>
- <right_val>0.1923709958791733</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 18 -1.</_>
- <_>6 0 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3350000679492950e-003</threshold>
- <left_val>-0.7913119792938232</left_val>
- <right_val>-0.0141439996659756</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 3 6 10 -1.</_>
- <_>20 3 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0379379987716675</threshold>
- <left_val>0.7984129786491394</left_val>
- <right_val>-0.0337990000844002</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 6 10 -1.</_>
- <_>2 3 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7059999778866768e-003</threshold>
- <left_val>-0.3316340148448944</left_val>
- <right_val>0.2072629928588867</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 8 9 -1.</_>
- <_>10 5 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4499998912215233e-003</threshold>
- <left_val>-0.2725630104541779</left_val>
- <right_val>0.1840219944715500</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 8 9 -1.</_>
- <_>10 5 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2189999260008335e-003</threshold>
- <left_val>-0.5309600234031677</left_val>
- <right_val>0.0526079982519150</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 20 3 -1.</_>
- <_>3 3 20 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5399999991059303e-003</threshold>
- <left_val>-0.5648540258407593</left_val>
- <right_val>0.1926939934492111</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 13 4 -1.</_>
- <_>5 4 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0449699983000755</threshold>
- <left_val>-0.1741150021553040</left_val>
- <right_val>0.9538260102272034</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>17 0 7 14 -1.</_>
- <_>17 7 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142090003937483</threshold>
- <left_val>-0.0919490009546280</left_val>
- <right_val>0.2483610063791275</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 7 14 -1.</_>
- <_>0 7 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1638019979000092</threshold>
- <left_val>-0.0584970004856586</left_val>
- <right_val>-1.6404409408569336</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 10 6 -1.</_>
- <_>9 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5579999200999737e-003</threshold>
- <left_val>0.2344799935817719</left_val>
- <right_val>-0.0927340015769005</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 10 6 -1.</_>
- <_>10 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8499999791383743e-003</threshold>
- <left_val>0.1788070052862167</left_val>
- <right_val>-0.3584409952163696</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 18 -1.</_>
- <_>11 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252219997346401</threshold>
- <left_val>-0.4290300011634827</left_val>
- <right_val>0.2024450004100800</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 3 -1.</_>
- <_>0 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194150004535913</threshold>
- <left_val>0.5801630020141602</left_val>
- <right_val>-0.1880639940500259</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 18 3 -1.</_>
- <_>6 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144199999049306</threshold>
- <left_val>0.0328469984233379</left_val>
- <right_val>0.8198050260543823</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 9 10 -1.</_>
- <_>4 11 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0515829995274544</threshold>
- <left_val>0.0691760033369064</left_val>
- <right_val>-0.4586629867553711</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 15 4 -1.</_>
- <_>9 9 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0379600003361702</threshold>
- <left_val>-1.2553000450134277</left_val>
- <right_val>0.1433289945125580</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 6 -1.</_>
- <_>5 6 6 3 2.</_>
- <_>11 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0295609999448061</threshold>
- <left_val>0.5315179824829102</left_val>
- <right_val>-0.2059649974107742</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 9 -1.</_>
- <_>6 4 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391109995543957</threshold>
- <left_val>1.1658719778060913</left_val>
- <right_val>0.0538970008492470</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 6 12 -1.</_>
- <_>7 9 3 6 2.</_>
- <_>10 15 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0291590001434088</threshold>
- <left_val>0.3930760025978088</left_val>
- <right_val>-0.2218450009822846</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 13 6 -1.</_>
- <_>11 7 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0836170017719269</threshold>
- <left_val>-0.7374449968338013</left_val>
- <right_val>0.1426820009946823</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 22 13 -1.</_>
- <_>12 11 11 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4200400114059448</threshold>
- <left_val>-0.1427740007638931</left_val>
- <right_val>1.7894840240478516</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 8 6 6 -1.</_>
- <_>18 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0600050017237663</threshold>
- <left_val>0.1197670027613640</left_val>
- <right_val>-1.8886189460754395</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 6 -1.</_>
- <_>0 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189810004085302</threshold>
- <left_val>-1.4148449897766113</left_val>
- <right_val>-0.0565229989588261</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 24 3 -1.</_>
- <_>0 7 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0049998573958874e-003</threshold>
- <left_val>0.4417079985141754</left_val>
- <right_val>-0.1020080000162125</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 10 6 -1.</_>
- <_>0 7 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0582140013575554</threshold>
- <left_val>-1.3918470144271851</left_val>
- <right_val>-0.0482689999043942</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 18 3 -1.</_>
- <_>6 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122710000723600</threshold>
- <left_val>0.5131769776344299</left_val>
- <right_val>-0.0936969965696335</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 6 -1.</_>
- <_>0 2 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465859994292259</threshold>
- <left_val>-0.0574840009212494</left_val>
- <right_val>-1.4283169507980347</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 0 3 19 -1.</_>
- <_>20 0 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2110000243410468e-003</threshold>
- <left_val>-0.0808919966220856</left_val>
- <right_val>0.3233320116996765</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 12 16 -1.</_>
- <_>4 6 6 8 2.</_>
- <_>10 14 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0886420011520386</threshold>
- <left_val>-0.8644909858703613</left_val>
- <right_val>-0.0331469997763634</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>19 6 4 18 -1.</_>
- <_>21 6 2 9 2.</_>
- <_>19 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231849998235703</threshold>
- <left_val>0.5216220021247864</left_val>
- <right_val>-0.0161680001765490</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 4 18 -1.</_>
- <_>1 6 2 9 2.</_>
- <_>3 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0430900007486343</threshold>
- <left_val>-0.1615380048751831</left_val>
- <right_val>1.0915000438690186</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 18 3 -1.</_>
- <_>3 22 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0599999697878957e-004</threshold>
- <left_val>-0.1709149926900864</left_val>
- <right_val>0.3123669922351837</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 9 4 -1.</_>
- <_>0 21 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9159999042749405e-003</threshold>
- <left_val>-6.7039998248219490e-003</left_val>
- <right_val>-0.6881039738655090</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 18 12 6 -1.</_>
- <_>18 18 6 3 2.</_>
- <_>12 21 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177529994398355</threshold>
- <left_val>0.6329280138015747</left_val>
- <right_val>-4.2360001243650913e-003</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 9 4 -1.</_>
- <_>7 20 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2299999408423901e-003</threshold>
- <left_val>-0.3363719880580902</left_val>
- <right_val>0.1279059946537018</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 10 8 -1.</_>
- <_>17 16 5 4 2.</_>
- <_>12 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227700006216764</threshold>
- <left_val>-0.0347039997577667</left_val>
- <right_val>0.3914180099964142</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 10 8 -1.</_>
- <_>2 16 5 4 2.</_>
- <_>7 20 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215349998325109</threshold>
- <left_val>0.6476510167121887</left_val>
- <right_val>-0.2009779959917069</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 10 12 -1.</_>
- <_>19 0 5 6 2.</_>
- <_>14 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0617589987814426</threshold>
- <left_val>0.0542970001697540</left_val>
- <right_val>0.9070010185241699</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 12 -1.</_>
- <_>0 0 5 6 2.</_>
- <_>5 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0780699998140335</threshold>
- <left_val>0.6552339792251587</left_val>
- <right_val>-0.1975439935922623</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 14 9 6 -1.</_>
- <_>15 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113150002434850</threshold>
- <left_val>0.1938530057668686</left_val>
- <right_val>-0.5170729756355286</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 9 6 -1.</_>
- <_>0 16 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255900006741285</threshold>
- <left_val>-0.9309650063514710</left_val>
- <right_val>-0.0315469987690449</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 14 10 6 -1.</_>
- <_>14 16 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380589999258518</threshold>
- <left_val>-0.6832690238952637</left_val>
- <right_val>0.1270910054445267</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 10 6 -1.</_>
- <_>0 16 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7970003262162209e-003</threshold>
- <left_val>0.0155239999294281</left_val>
- <right_val>-0.6334789991378784</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 18 2 -1.</_>
- <_>5 19 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138419996947050</threshold>
- <left_val>1.0060529708862305</left_val>
- <right_val>0.0628129988908768</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 18 3 -1.</_>
- <_>0 19 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3459997549653053e-003</threshold>
- <left_val>-0.2338320016860962</left_val>
- <right_val>0.3098269999027252</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 18 12 -1.</_>
- <_>12 5 9 6 2.</_>
- <_>3 11 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0714399963617325</threshold>
- <left_val>-0.7250540256500244</left_val>
- <right_val>0.1714829951524735</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 7 9 -1.</_>
- <_>5 6 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100060002878308</threshold>
- <left_val>-0.2207199931144714</left_val>
- <right_val>0.3526619970798492</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 19 15 -1.</_>
- <_>4 5 19 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1100530028343201</threshold>
- <left_val>0.1666200011968613</left_val>
- <right_val>-0.7431899905204773</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 16 4 -1.</_>
- <_>3 2 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0353109985589981</threshold>
- <left_val>-0.2398270070552826</left_val>
- <right_val>0.4143599867820740</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 16 12 -1.</_>
- <_>4 12 8 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1117469966411591</threshold>
- <left_val>0.5104539990425110</left_val>
- <right_val>2.2319999989122152e-003</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 12 15 -1.</_>
- <_>10 3 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1136780008673668</threshold>
- <left_val>0.9047520160675049</left_val>
- <right_val>-0.1661529988050461</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 4 2 19 -1.</_>
- <_>16 4 1 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166679993271828</threshold>
- <left_val>0.1402450054883957</left_val>
- <right_val>-0.5217850208282471</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 19 -1.</_>
- <_>7 4 1 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0340001732110977e-003</threshold>
- <left_val>-0.6617839932441711</left_val>
- <right_val>3.7640000227838755e-003</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 14 8 10 -1.</_>
- <_>17 14 4 5 2.</_>
- <_>13 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0330969989299774</threshold>
- <left_val>0.8018590211868286</left_val>
- <right_val>0.0593850016593933</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 8 10 -1.</_>
- <_>3 14 4 5 2.</_>
- <_>7 19 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125479996204376</threshold>
- <left_val>-0.3354550004005432</left_val>
- <right_val>0.1457860022783279</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 18 -1.</_>
- <_>12 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0420739986002445</threshold>
- <left_val>-0.5550910234451294</left_val>
- <right_val>0.1326660066843033</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 12 6 -1.</_>
- <_>5 11 6 3 2.</_>
- <_>11 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252219997346401</threshold>
- <left_val>-0.0616319999098778</left_val>
- <right_val>-1.3678770065307617</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 8 10 -1.</_>
- <_>14 5 4 5 2.</_>
- <_>10 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0242689996957779</threshold>
- <left_val>0.3418509960174561</left_val>
- <right_val>-7.4160001240670681e-003</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 10 -1.</_>
- <_>6 4 6 5 2.</_>
- <_>12 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122800003737211</threshold>
- <left_val>0.2774580121040344</left_val>
- <right_val>-0.3103390038013458</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 18 10 -1.</_>
- <_>15 8 9 5 2.</_>
- <_>6 13 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1137709990143776</threshold>
- <left_val>1.1719540357589722</left_val>
- <right_val>0.0836810022592545</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 18 10 -1.</_>
- <_>0 8 9 5 2.</_>
- <_>9 13 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0847719982266426</threshold>
- <left_val>0.8169479966163635</left_val>
- <right_val>-0.1783750057220459</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 18 -1.</_>
- <_>12 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245520006865263</threshold>
- <left_val>-0.1862729936838150</left_val>
- <right_val>0.1434009969234467</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 18 3 -1.</_>
- <_>0 15 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0269995853304863e-003</threshold>
- <left_val>0.3265919983386993</left_val>
- <right_val>-0.2354129999876022</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 3 18 -1.</_>
- <_>12 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111779998987913</threshold>
- <left_val>0.1976120024919510</left_val>
- <right_val>-0.0217010006308556</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 3 18 -1.</_>
- <_>9 12 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0293669998645782</threshold>
- <left_val>-0.9341480135917664</left_val>
- <right_val>-0.0217049997299910</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 18 3 -1.</_>
- <_>6 15 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3640000298619270e-003</threshold>
- <left_val>0.0255730003118515</left_val>
- <right_val>0.4641279876232147</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 18 3 -1.</_>
- <_>0 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140260001644492</threshold>
- <left_val>-0.2122859954833984</left_val>
- <right_val>0.4007880091667175</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 22 3 -1.</_>
- <_>2 6 22 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133419996127486</threshold>
- <left_val>0.7420269846916199</left_val>
- <right_val>0.0290019996464252</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 21 10 -1.</_>
- <_>7 0 7 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2842279970645905</threshold>
- <left_val>-0.1924359947443008</left_val>
- <right_val>0.4363119900226593</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 18 17 -1.</_>
- <_>12 3 6 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2372400015592575</threshold>
- <left_val>0.6973639726638794</left_val>
- <right_val>0.0693079978227615</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 18 17 -1.</_>
- <_>6 3 6 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1116970032453537</threshold>
- <left_val>0.3914720118045807</left_val>
- <right_val>-0.2092200070619583</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 24 11 -1.</_>
- <_>8 12 8 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1278750002384186</threshold>
- <left_val>-0.0725559964776039</left_val>
- <right_val>0.3608820140361786</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 16 6 -1.</_>
- <_>4 13 16 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0629009976983070</threshold>
- <left_val>0.9542499780654907</left_val>
- <right_val>-0.1540279984474182</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 6 8 -1.</_>
- <_>12 12 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174390003085136</threshold>
- <left_val>-0.0511349998414516</left_val>
- <right_val>0.2775030136108398</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 8 7 -1.</_>
- <_>10 14 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2319999514147639e-003</threshold>
- <left_val>0.0756279975175858</left_val>
- <right_val>-0.3645609915256500</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 10 6 14 -1.</_>
- <_>18 10 3 7 2.</_>
- <_>15 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0274950005114079</threshold>
- <left_val>0.0518440008163452</left_val>
- <right_val>0.4156259894371033</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 6 14 -1.</_>
- <_>3 10 3 7 2.</_>
- <_>6 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0435439981520176</threshold>
- <left_val>0.7196999788284302</left_val>
- <right_val>-0.1713220030069351</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 18 2 -1.</_>
- <_>6 13 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110259996727109</threshold>
- <left_val>0.1435460001230240</left_val>
- <right_val>-0.6540300250053406</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 10 6 -1.</_>
- <_>5 10 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0208659991621971</threshold>
- <left_val>0.0400890000164509</left_val>
- <right_val>-0.4574329853057861</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 11 9 4 -1.</_>
- <_>12 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223040003329515</threshold>
- <left_val>0.5385500192642212</left_val>
- <right_val>0.0716629996895790</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 9 6 -1.</_>
- <_>0 13 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0324920006096363</threshold>
- <left_val>-0.0459919981658459</left_val>
- <right_val>-1.0047069787979126</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 3 18 -1.</_>
- <_>12 2 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122699998319149</threshold>
- <left_val>0.0343349985778332</left_val>
- <right_val>0.4243179857730866</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 3 18 -1.</_>
- <_>11 2 1 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3820000290870667e-003</threshold>
- <left_val>-0.2585060000419617</left_val>
- <right_val>0.2626349925994873</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 6 10 -1.</_>
- <_>11 12 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373539999127388</threshold>
- <left_val>0.1569249927997589</left_val>
- <right_val>-1.0429090261459351</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 6 9 -1.</_>
- <_>1 13 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141110001131892</threshold>
- <left_val>-0.7317770123481751</left_val>
- <right_val>-0.0202769991010427</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 16 6 -1.</_>
- <_>14 9 8 3 2.</_>
- <_>6 12 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0570669993758202</threshold>
- <left_val>0.0833600014448166</left_val>
- <right_val>1.5661499500274658</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 9 6 -1.</_>
- <_>1 10 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9680001102387905e-003</threshold>
- <left_val>-0.3531819880008698</left_val>
- <right_val>0.1469839960336685</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 16 6 -1.</_>
- <_>7 9 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244929995387793</threshold>
- <left_val>0.2832590043544769</left_val>
- <right_val>-3.4640000667423010e-003</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 3 -1.</_>
- <_>0 1 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112549997866154</threshold>
- <left_val>-0.8401749730110169</left_val>
- <right_val>-0.0362519994378090</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 6 9 -1.</_>
- <_>12 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0345330014824867</threshold>
- <left_val>0.1499850004911423</left_val>
- <right_val>-0.8736709952354431</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 6 -1.</_>
- <_>12 5 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243030004203320</threshold>
- <left_val>-0.1878750026226044</left_val>
- <right_val>0.5948399901390076</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>12 6 2 9 2.</_>
- <_>10 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8790001571178436e-003</threshold>
- <left_val>0.4431569874286652</left_val>
- <right_val>-0.0565709993243217</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 9 -1.</_>
- <_>10 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0351420007646084</threshold>
- <left_val>-0.0564949996769428</left_val>
- <right_val>-1.3617190122604370</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 9 -1.</_>
- <_>9 4 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6259998343884945e-003</threshold>
- <left_val>-0.3116169869899750</left_val>
- <right_val>0.2544769942760468</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 18 9 -1.</_>
- <_>1 3 18 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0831310003995895</threshold>
- <left_val>1.6424349546432495</left_val>
- <right_val>-0.1442939937114716</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 24 3 -1.</_>
- <_>0 4 24 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140159996226430</threshold>
- <left_val>-0.7781950235366821</left_val>
- <right_val>0.1717330068349838</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 9 4 -1.</_>
- <_>6 16 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2450000504031777e-003</threshold>
- <left_val>-0.2319139987230301</left_val>
- <right_val>0.2852790057659149</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 8 10 -1.</_>
- <_>12 9 4 5 2.</_>
- <_>8 14 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168030001223087</threshold>
- <left_val>-0.3596509993076325</left_val>
- <right_val>0.2041299939155579</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 13 9 -1.</_>
- <_>5 5 13 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0767479985952377</threshold>
- <left_val>0.7805050015449524</left_val>
- <right_val>-0.1561280041933060</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 16 9 -1.</_>
- <_>4 7 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2367199957370758</threshold>
- <left_val>1.1813700199127197</left_val>
- <right_val>0.0781119987368584</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 14 9 -1.</_>
- <_>4 7 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1005740016698837</threshold>
- <left_val>-0.4710409939289093</left_val>
- <right_val>0.0791729986667633</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 9 6 -1.</_>
- <_>8 7 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3239999534562230e-003</threshold>
- <left_val>0.2226269990205765</left_val>
- <right_val>-0.3709979951381683</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 16 6 -1.</_>
- <_>1 9 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221529994159937</threshold>
- <left_val>-0.0386490002274513</left_val>
- <right_val>-0.9227499961853027</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 13 9 -1.</_>
- <_>10 8 13 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1124619990587235</threshold>
- <left_val>0.4189960062503815</left_val>
- <right_val>0.0804110020399094</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 13 9 -1.</_>
- <_>1 8 13 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164810009300709</threshold>
- <left_val>-0.1675669997930527</left_val>
- <right_val>0.7184240221977234</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 24 6 -1.</_>
- <_>12 4 12 3 2.</_>
- <_>0 7 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0681139975786209</threshold>
- <left_val>0.1571989953517914</left_val>
- <right_val>-0.8768110275268555</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 10 9 -1.</_>
- <_>1 17 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160119999200106</threshold>
- <left_val>-4.1600000113248825e-003</left_val>
- <right_val>-0.5932779908180237</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 18 3 -1.</_>
- <_>5 18 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6640001237392426e-003</threshold>
- <left_val>-0.0301539991050959</left_val>
- <right_val>0.4834530055522919</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 3 -1.</_>
- <_>0 17 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7579997703433037e-003</threshold>
- <left_val>-0.2266740053892136</left_val>
- <right_val>0.3366230130195618</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>9 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7289999201893806e-003</threshold>
- <left_val>-0.0603739991784096</left_val>
- <right_val>0.3145810067653656</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 22 4 -1.</_>
- <_>1 20 11 2 2.</_>
- <_>12 22 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5869999080896378e-003</threshold>
- <left_val>-0.2987259924411774</left_val>
- <right_val>0.1778749972581863</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 8 6 -1.</_>
- <_>8 17 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8989999555051327e-003</threshold>
- <left_val>0.2189020067453384</left_val>
- <right_val>-0.2956709861755371</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 15 -1.</_>
- <_>8 11 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300539992749691</threshold>
- <left_val>1.2150429487228394</left_val>
- <right_val>-0.1435499936342239</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 18 3 -1.</_>
- <_>5 5 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0141810001805425</threshold>
- <left_val>0.0124519998207688</left_val>
- <right_val>0.5549010038375855</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 5 10 -1.</_>
- <_>9 8 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0605270005762577</threshold>
- <left_val>-1.4933999776840210</left_val>
- <right_val>-0.0652270019054413</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 12 3 -1.</_>
- <_>6 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198829993605614</threshold>
- <left_val>-0.3852640092372894</left_val>
- <right_val>0.1976120024919510</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 18 6 -1.</_>
- <_>2 6 9 3 2.</_>
- <_>11 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312189999967813</threshold>
- <left_val>-0.2128120064735413</left_val>
- <right_val>0.2944650053977966</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 18 -1.</_>
- <_>12 6 2 9 2.</_>
- <_>10 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182719994336367</threshold>
- <left_val>9.7200000891461968e-004</left_val>
- <right_val>0.6681420207023621</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 6 -1.</_>
- <_>10 5 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1089999461546540e-003</threshold>
- <left_val>-0.6246790289878845</left_val>
- <right_val>-1.6599999507889152e-003</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 5 2 18 -1.</_>
- <_>14 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0367139987647533</threshold>
- <left_val>-0.4233390092849731</left_val>
- <right_val>0.1208470016717911</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 2 18 -1.</_>
- <_>8 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120440004393458</threshold>
- <left_val>0.0258820001035929</left_val>
- <right_val>-0.5073239803314209</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 10 6 -1.</_>
- <_>9 2 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0747490003705025</threshold>
- <left_val>0.1318469941616058</left_val>
- <right_val>-0.2173960059881210</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 18 12 -1.</_>
- <_>12 1 9 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2347320020198822</threshold>
- <left_val>1.1775610446929932</left_val>
- <right_val>-0.1511469930410385</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 17 22 -1.</_>
- <_>5 13 17 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1409649997949600</threshold>
- <left_val>0.0339910015463829</left_val>
- <right_val>0.3992309868335724</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 12 6 -1.</_>
- <_>4 2 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1789997853338718e-003</threshold>
- <left_val>-0.3180670142173767</left_val>
- <right_val>0.1168169975280762</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 16 6 -1.</_>
- <_>14 9 8 3 2.</_>
- <_>6 12 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0572169981896877</threshold>
- <left_val>0.8439909815788269</left_val>
- <right_val>0.0838890001177788</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 5 18 -1.</_>
- <_>9 9 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0552270002663136</threshold>
- <left_val>0.3688830137252808</left_val>
- <right_val>-0.1891340017318726</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 9 -1.</_>
- <_>14 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215830001980066</threshold>
- <left_val>-0.5216180086135864</left_val>
- <right_val>0.1577260047197342</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 9 -1.</_>
- <_>8 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0257479995489120</threshold>
- <left_val>-0.0599219985306263</left_val>
- <right_val>-1.0674990415573120</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 12 -1.</_>
- <_>11 1 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130989998579025</threshold>
- <left_val>0.7895839810371399</left_val>
- <right_val>0.0520999990403652</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 13 4 -1.</_>
- <_>5 11 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2799998987466097e-003</threshold>
- <left_val>-1.1704430580139160</left_val>
- <right_val>-0.0593569986522198</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 19 3 -1.</_>
- <_>5 9 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8060004636645317e-003</threshold>
- <left_val>0.0417179986834526</left_val>
- <right_val>0.6635259985923767</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 6 8 -1.</_>
- <_>9 13 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9699998497962952e-003</threshold>
- <left_val>-0.3586269915103912</left_val>
- <right_val>0.0604580007493496</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 9 4 15 -1.</_>
- <_>11 14 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0230001322925091e-003</threshold>
- <left_val>0.2097939997911453</left_val>
- <right_val>-0.2480600029230118</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 14 -1.</_>
- <_>2 0 3 7 2.</_>
- <_>5 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250170007348061</threshold>
- <left_val>-0.1879590004682541</left_val>
- <right_val>0.3954710066318512</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 1 6 14 -1.</_>
- <_>18 1 3 7 2.</_>
- <_>15 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9009999968111515e-003</threshold>
- <left_val>0.2566390037536621</left_val>
- <right_val>-0.0949190035462379</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 14 -1.</_>
- <_>3 1 3 7 2.</_>
- <_>6 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3850000947713852e-003</threshold>
- <left_val>0.0331390015780926</left_val>
- <right_val>-0.4607540071010590</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 18 4 -1.</_>
- <_>12 20 9 2 2.</_>
- <_>3 22 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0337719991803169</threshold>
- <left_val>-0.9888160228729248</left_val>
- <right_val>0.1463689953088760</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 20 -1.</_>
- <_>5 0 2 10 2.</_>
- <_>7 10 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0445230007171631</threshold>
- <left_val>-0.1328669935464859</left_val>
- <right_val>1.5796790122985840</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 8 8 12 -1.</_>
- <_>20 8 4 6 2.</_>
- <_>16 14 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0409290008246899</threshold>
- <left_val>0.3387709856033325</left_val>
- <right_val>0.0749709978699684</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 8 12 -1.</_>
- <_>0 8 4 6 2.</_>
- <_>4 14 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0393519997596741</threshold>
- <left_val>-0.1832789927721024</left_val>
- <right_val>0.4698069989681244</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 13 10 8 -1.</_>
- <_>18 13 5 4 2.</_>
- <_>13 17 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0703229978680611</threshold>
- <left_val>-0.9832270145416260</left_val>
- <right_val>0.1180810034275055</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 10 8 -1.</_>
- <_>1 13 5 4 2.</_>
- <_>6 17 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0357430018484592</threshold>
- <left_val>-0.0330509990453720</left_val>
- <right_val>-0.8361089825630188</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 4 15 -1.</_>
- <_>15 13 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0429619997739792</threshold>
- <left_val>1.1670809984207153</left_val>
- <right_val>0.0806920006871223</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 15 -1.</_>
- <_>5 13 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210079997777939</threshold>
- <left_val>0.6386979818344116</left_val>
- <right_val>-0.1762630045413971</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 16 12 -1.</_>
- <_>6 15 16 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1574220061302185</threshold>
- <left_val>-0.2330249994993210</left_val>
- <right_val>0.1251749992370606</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 16 12 -1.</_>
- <_>2 15 16 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8659998252987862e-003</threshold>
- <left_val>-0.2203799933195114</left_val>
- <right_val>0.2719680070877075</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 7 9 -1.</_>
- <_>14 15 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0236220005899668</threshold>
- <left_val>0.1612730026245117</left_val>
- <right_val>-0.4332900047302246</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 3 21 -1.</_>
- <_>10 8 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0746920034289360</threshold>
- <left_val>-0.1699199974536896</left_val>
- <right_val>0.5888490080833435</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 9 4 -1.</_>
- <_>13 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4799998654052615e-004</threshold>
- <left_val>0.2584289908409119</left_val>
- <right_val>-0.0359119996428490</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 17 9 -1.</_>
- <_>3 13 17 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162909999489784</threshold>
- <left_val>-0.7676439881324768</left_val>
- <right_val>-0.0204729996621609</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 8 15 -1.</_>
- <_>13 13 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331339985132217</threshold>
- <left_val>-0.2718009948730469</left_val>
- <right_val>0.1432570070028305</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 8 15 -1.</_>
- <_>3 13 8 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0487979985773563</threshold>
- <left_val>0.0764089971780777</left_val>
- <right_val>-0.4144519865512848</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 10 8 -1.</_>
- <_>16 14 5 4 2.</_>
- <_>11 18 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2869999520480633e-003</threshold>
- <left_val>-0.0386289991438389</left_val>
- <right_val>0.2075379937887192</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 22 6 -1.</_>
- <_>0 18 11 3 2.</_>
- <_>11 21 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0453040003776550</threshold>
- <left_val>-0.1777790039777756</left_val>
- <right_val>0.6346139907836914</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 24 4 -1.</_>
- <_>0 16 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1070580035448074</threshold>
- <left_val>0.1897229999303818</left_val>
- <right_val>-0.5123620033264160</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 20 12 3 -1.</_>
- <_>12 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0405250005424023</threshold>
- <left_val>0.7061499953269959</left_val>
- <right_val>-0.1780329942703247</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>18 12 6 12 -1.</_>
- <_>21 12 3 6 2.</_>
- <_>18 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319689996540546</threshold>
- <left_val>0.0681499987840652</left_val>
- <right_val>0.6873310208320618</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 12 -1.</_>
- <_>0 12 3 6 2.</_>
- <_>3 18 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0576170012354851</threshold>
- <left_val>0.7517049908638001</left_val>
- <right_val>-0.1576499938964844</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135939996689558</threshold>
- <left_val>0.1941190063953400</left_val>
- <right_val>-0.2456189990043640</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 22 10 -1.</_>
- <_>1 6 11 5 2.</_>
- <_>12 11 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0713960006833076</threshold>
- <left_val>-0.0468810014426708</left_val>
- <right_val>-0.8819829821586609</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148959998041391</threshold>
- <left_val>-0.4453240036964417</left_val>
- <right_val>0.1767989993095398</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 18 2 -1.</_>
- <_>0 19 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100260004401207</threshold>
- <left_val>0.6512269973754883</left_val>
- <right_val>-0.1670999974012375</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 19 3 -1.</_>
- <_>3 16 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7589999847114086e-003</threshold>
- <left_val>-0.0583010017871857</left_val>
- <right_val>0.3448329865932465</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 18 3 -1.</_>
- <_>0 14 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162630006670952</threshold>
- <left_val>-0.1558150053024292</left_val>
- <right_val>0.8643270134925842</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 17 9 6 -1.</_>
- <_>15 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0401760004460812</threshold>
- <left_val>-0.6102859973907471</left_val>
- <right_val>0.1179639995098114</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 9 6 -1.</_>
- <_>0 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270809996873140</threshold>
- <left_val>-0.0496019981801510</left_val>
- <right_val>-0.8999000191688538</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 17 9 6 -1.</_>
- <_>12 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0524200014770031</threshold>
- <left_val>0.1129719987511635</left_val>
- <right_val>-1.0833640098571777</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 9 6 -1.</_>
- <_>3 19 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191600006073713</threshold>
- <left_val>-0.7988010048866272</left_val>
- <right_val>-0.0340790003538132</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 2 3 20 -1.</_>
- <_>17 2 1 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7730000913143158e-003</threshold>
- <left_val>-0.1912409961223602</left_val>
- <right_val>0.2153519988059998</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 24 8 -1.</_>
- <_>0 17 24 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0757620036602020</threshold>
- <left_val>-0.1342169940471649</left_val>
- <right_val>1.6807060241699219</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 6 22 -1.</_>
- <_>12 1 3 11 2.</_>
- <_>9 12 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221730004996061</threshold>
- <left_val>0.4860099852085114</left_val>
- <right_val>3.6160000599920750e-003</right_val></_></_></trees>
- <stage_threshold>-2.9928278923034668</stage_threshold>
- <parent>23</parent>
- <next>-1</next></_></stages></haarcascade_frontalface_default>
-</opencv_storage>