aboutsummaryrefslogtreecommitdiff
path: root/pix_opencv_of_bm.cc
diff options
context:
space:
mode:
authorN.N. <sevyves@users.sourceforge.net>2010-07-13 20:39:43 +0000
committerN.N. <sevyves@users.sourceforge.net>2010-07-13 20:39:43 +0000
commit5dc1d97357e3519da6c595c21682aa00a58624ff (patch)
tree2450acc4adf167e751fa8a1971015900720b6f89 /pix_opencv_of_bm.cc
parent07c9c742b5a7af4994cdccb39750eaf1edd886c2 (diff)
fixed angle calculations
svn path=/trunk/externals/pix_opencv/; revision=13712
Diffstat (limited to 'pix_opencv_of_bm.cc')
-rwxr-xr-xpix_opencv_of_bm.cc108
1 files changed, 60 insertions, 48 deletions
diff --git a/pix_opencv_of_bm.cc b/pix_opencv_of_bm.cc
index 00eb8fb..97bc9bf 100755
--- a/pix_opencv_of_bm.cc
+++ b/pix_opencv_of_bm.cc
@@ -86,7 +86,7 @@ pix_opencv_of_bm :: ~pix_opencv_of_bm()
void pix_opencv_of_bm :: processRGBAImage(imageStruct &image)
{
int px,py;
- double meanangle=0.0, meanx=0.0, meany=0.0, maxamp=0.0, maxangle=0.0;
+ double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0;
int nbblocks=0;
CvPoint orig, dest;
double angle=0.0;
@@ -132,6 +132,9 @@ void pix_opencv_of_bm :: processRGBAImage(imageStruct &image)
x_velx, x_vely );
nbblocks = 0;
+ globangle = 0;
+ globx = 0;
+ globy = 0;
for( py=0; py<x_velsize.height; py++ )
{
for( px=0; px<x_velsize.width; px++ )
@@ -140,8 +143,8 @@ void pix_opencv_of_bm :: processRGBAImage(imageStruct &image)
orig.y = (py*comp_ysize)/x_velsize.height;
dest.x = (int)(orig.x + cvGet2D(x_velx, py, px).val[0]);
dest.y = (int)(orig.y + cvGet2D(x_vely, py, px).val[0]);
- angle = -atan2( (double) cvGet2D(x_vely, py, px).val[0], (double) cvGet2D(x_velx, py, px).val[0] );
- hypotenuse = sqrt( pow(orig.y - dest.y, 2) + pow(orig.x - dest.x, 2) );
+ angle = -atan2( (double) (dest.y-orig.y), (double) (dest.x-orig.x) );
+ hypotenuse = sqrt( pow(dest.y-orig.y, 2) + pow(dest.x-orig.x, 2) );
/* Now draw the tips of the arrow. I do some scaling so that the
* tips look proportional to the main line of the arrow.
@@ -156,8 +159,9 @@ void pix_opencv_of_bm :: processRGBAImage(imageStruct &image)
orig.x = (int) (dest.x - (x_shiftsize.width/4) * cos(angle - M_PI / 4));
orig.y = (int) (dest.y + (x_shiftsize.height/4) * sin(angle - M_PI / 4));
cvLine( rgb, orig, dest, CV_RGB(0,0,255), (int)hypotenuse/10, CV_AA, 0 );
- meanx = (meanx*nbblocks+cvGet2D(x_velx, py, px).val[0])/(nbblocks+1);
- meany = (meanx*nbblocks+cvGet2D(x_vely, py, px).val[0])/(nbblocks+1);
+
+ globx = globx+cvGet2D(x_velx, py, px).val[0];
+ globy = globy+cvGet2D(x_vely, py, px).val[0];
if ( hypotenuse > maxamp )
{
maxamp = hypotenuse;
@@ -170,26 +174,26 @@ void pix_opencv_of_bm :: processRGBAImage(imageStruct &image)
}
}
- meanangle=-atan2( meany, meanx );
- // post( "pdp_opencv_of_bm : meanangle : %f", (meanangle*180)/M_PI );
-
if ( nbblocks >= x_minblocks )
{
+ globangle=-atan2( globy, globx );
+ // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI );
+
orig.x = (int) (comp_xsize/2);
orig.y = (int) (comp_ysize/2);
- dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(meanangle));
- dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(meanangle));
+ dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle));
+ dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle));
cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
- orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(meanangle + M_PI / 4));
- orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(meanangle + M_PI / 4));
+ orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(globangle + M_PI / 4));
+ orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(globangle + M_PI / 4));
cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
- orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(meanangle - M_PI / 4));
- orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(meanangle - M_PI / 4));
+ orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(globangle - M_PI / 4));
+ orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(globangle - M_PI / 4));
cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
// outputs the average angle of movement
- meanangle = (meanangle*180)/M_PI;
- SETFLOAT(&x_list[0], meanangle);
+ globangle = (globangle*180)/M_PI;
+ SETFLOAT(&x_list[0], globangle);
outlet_list( m_meanout, 0, 1, x_list );
// outputs the amplitude and angle of the maximum movement
@@ -208,7 +212,7 @@ void pix_opencv_of_bm :: processRGBAImage(imageStruct &image)
void pix_opencv_of_bm :: processRGBImage(imageStruct &image)
{
int px,py;
- double meanangle=0.0, meanx=0.0, meany=0.0, maxamp=0.0, maxangle=0.0;
+ double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0;
int nbblocks=0;
CvPoint orig, dest;
double angle=0.0;
@@ -254,6 +258,9 @@ void pix_opencv_of_bm :: processRGBImage(imageStruct &image)
x_velx, x_vely );
nbblocks = 0;
+ globangle = 0;
+ globx = 0;
+ globy = 0;
for( py=0; py<x_velsize.height; py++ )
{
for( px=0; px<x_velsize.width; px++ )
@@ -263,8 +270,8 @@ void pix_opencv_of_bm :: processRGBImage(imageStruct &image)
orig.y = (py*comp_ysize)/x_velsize.height;
dest.x = (int)(orig.x + cvGet2D(x_velx, py, px).val[0]);
dest.y = (int)(orig.y + cvGet2D(x_vely, py, px).val[0]);
- angle = -atan2( (double) cvGet2D(x_vely, py, px).val[0], (double) cvGet2D(x_velx, py, px).val[0] );
- hypotenuse = sqrt( pow(orig.y - dest.y, 2) + pow(orig.x - dest.x, 2) );
+ angle = -atan2( (double) (dest.y-orig.y), (double) (dest.x-orig.x) );
+ hypotenuse = sqrt( pow(dest.y-orig.y, 2) + pow(dest.x-orig.x, 2) );
/* Now draw the tips of the arrow. I do some scaling so that the
* tips look proportional to the main line of the arrow.
@@ -279,8 +286,9 @@ void pix_opencv_of_bm :: processRGBImage(imageStruct &image)
orig.x = (int) (dest.x - (x_shiftsize.width/4) * cos(angle - M_PI / 4));
orig.y = (int) (dest.y + (x_shiftsize.height/4) * sin(angle - M_PI / 4));
cvLine( rgb, orig, dest, CV_RGB(0,0,255), (int)hypotenuse/10, CV_AA, 0 );
- meanx = (meanx*nbblocks+cvGet2D(x_velx, py, px).val[0])/(nbblocks+1);
- meany = (meanx*nbblocks+cvGet2D(x_vely, py, px).val[0])/(nbblocks+1);
+
+ globx = globx+cvGet2D(x_velx, py, px).val[0];
+ globy = globy+cvGet2D(x_vely, py, px).val[0];
if ( hypotenuse > maxamp )
{
maxamp = hypotenuse;
@@ -293,26 +301,26 @@ void pix_opencv_of_bm :: processRGBImage(imageStruct &image)
}
}
- meanangle=-atan2( meany, meanx );
- // post( "pdp_opencv_of_bm : meanangle : %f", (meanangle*180)/M_PI );
-
if ( nbblocks >= x_minblocks )
{
+ globangle=-atan2( globy, globx );
+ // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI );
+
orig.x = (int) (comp_xsize/2);
orig.y = (int) (comp_ysize/2);
- dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(meanangle));
- dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(meanangle));
+ dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle));
+ dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle));
cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
- orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(meanangle + M_PI / 4));
- orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(meanangle + M_PI / 4));
+ orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(globangle + M_PI / 4));
+ orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(globangle + M_PI / 4));
cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
- orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(meanangle - M_PI / 4));
- orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(meanangle - M_PI / 4));
+ orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(globangle - M_PI / 4));
+ orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(globangle - M_PI / 4));
cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
// outputs the average angle of movement
- meanangle = (meanangle*180)/M_PI;
- SETFLOAT(&x_list[0], meanangle);
+ globangle = (globangle*180)/M_PI;
+ SETFLOAT(&x_list[0], globangle);
outlet_list( m_meanout, 0, 1, x_list );
// outputs the amplitude and angle of the maximum movement
@@ -335,7 +343,7 @@ void pix_opencv_of_bm :: processYUVImage(imageStruct &image)
void pix_opencv_of_bm :: processGrayImage(imageStruct &image)
{
int px,py;
- double meanangle=0.0, meanx=0.0, meany=0.0, maxamp=0.0, maxangle=0.0;
+ double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0;
int nbblocks=0;
CvPoint orig, dest;
double angle=0.0;
@@ -377,6 +385,9 @@ void pix_opencv_of_bm :: processGrayImage(imageStruct &image)
x_velx, x_vely );
nbblocks = 0;
+ globangle = 0;
+ globx = 0;
+ globy = 0;
for( py=0; py<x_velsize.height; py++ )
{
for( px=0; px<x_velsize.width; px++ )
@@ -386,8 +397,8 @@ void pix_opencv_of_bm :: processGrayImage(imageStruct &image)
orig.y = (py*comp_ysize)/x_velsize.height;
dest.x = (int)(orig.x + cvGet2D(x_velx, py, px).val[0]);
dest.y = (int)(orig.y + cvGet2D(x_vely, py, px).val[0]);
- angle = -atan2( (double) cvGet2D(x_vely, py, px).val[0], (double) cvGet2D(x_velx, py, px).val[0] );
- hypotenuse = sqrt( pow(orig.y - dest.y, 2) + pow(orig.x - dest.x, 2) );
+ angle = -atan2( (double) (dest.y-orig.y), (double) (dest.x-orig.x) );
+ hypotenuse = sqrt( pow(dest.y-orig.y, 2) + pow(dest.x-orig.x, 2) );
/* Now draw the tips of the arrow. I do some scaling so that the
* tips look proportional to the main line of the arrow.
@@ -402,8 +413,9 @@ void pix_opencv_of_bm :: processGrayImage(imageStruct &image)
orig.x = (int) (dest.x - (x_shiftsize.width/4) * cos(angle - M_PI / 4));
orig.y = (int) (dest.y + (x_shiftsize.height/4) * sin(angle - M_PI / 4));
cvLine( grey, orig, dest, CV_RGB(0,0,255), (int)hypotenuse/10, CV_AA, 0 );
- meanx = (meanx*nbblocks+cvGet2D(x_velx, py, px).val[0])/(nbblocks+1);
- meany = (meanx*nbblocks+cvGet2D(x_vely, py, px).val[0])/(nbblocks+1);
+
+ globx = globx+cvGet2D(x_velx, py, px).val[0];
+ globy = globy+cvGet2D(x_vely, py, px).val[0];
if ( hypotenuse > maxamp )
{
maxamp = hypotenuse;
@@ -416,26 +428,26 @@ void pix_opencv_of_bm :: processGrayImage(imageStruct &image)
}
}
- meanangle=-atan2( meany, meanx );
- // post( "pdp_opencv_of_bm : meanangle : %f", (meanangle*180)/M_PI );
-
if ( nbblocks >= x_minblocks )
{
+ globangle=-atan2( globy, globx );
+ // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI );
+
orig.x = (int) (comp_xsize/2);
orig.y = (int) (comp_ysize/2);
- dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(meanangle));
- dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(meanangle));
+ dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle));
+ dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle));
cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
- orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(meanangle + M_PI / 4));
- orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(meanangle + M_PI / 4));
+ orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(globangle + M_PI / 4));
+ orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(globangle + M_PI / 4));
cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
- orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(meanangle - M_PI / 4));
- orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(meanangle - M_PI / 4));
+ orig.x = (int) (dest.x - (x_shiftsize.width/2) * cos(globangle - M_PI / 4));
+ orig.y = (int) (dest.y + (x_shiftsize.height/2) * sin(globangle - M_PI / 4));
cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
// outputs the average angle of movement
- meanangle = (meanangle*180)/M_PI;
- SETFLOAT(&x_list[0], meanangle);
+ globangle = (globangle*180)/M_PI;
+ SETFLOAT(&x_list[0], globangle);
outlet_list( m_meanout, 0, 1, x_list );
// outputs the amplitude and angle of the maximum movement