aboutsummaryrefslogtreecommitdiff
path: root/src/pix_opencv_of_hs.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/pix_opencv_of_hs.cc')
-rw-r--r--src/pix_opencv_of_hs.cc531
1 files changed, 531 insertions, 0 deletions
diff --git a/src/pix_opencv_of_hs.cc b/src/pix_opencv_of_hs.cc
new file mode 100644
index 0000000..b7e248e
--- /dev/null
+++ b/src/pix_opencv_of_hs.cc
@@ -0,0 +1,531 @@
+
+//
+// GEM - Graphics Environment for Multimedia
+//
+// zmoelnig@iem.kug.ac.at
+//
+// Implementation file
+//
+// Copyright (c) 1997-2000 Mark Danks.
+// Copyright (c) Günther Geiger.
+// Copyright (c) 2001-2002 IOhannes m zmoelnig. forum::für::umläute. IEM
+// Copyright (c) 2002 James Tittle & Chris Clepper
+// For information on usage and redistribution, and for a DISCLAIMER OF ALL
+// WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution.
+//
+/////////////////////////////////////////////////////////
+
+#include "pix_opencv_of_hs.h"
+#include <stdio.h>
+
+CPPEXTERN_NEW(pix_opencv_of_hs)
+
+/////////////////////////////////////////////////////////
+//
+// pix_opencv_of_hs
+//
+/////////////////////////////////////////////////////////
+// Constructor
+//
+/////////////////////////////////////////////////////////
+
+pix_opencv_of_hs :: pix_opencv_of_hs()
+{
+ comp_xsize=320;
+ comp_ysize=240;
+
+ m_meanout = outlet_new(this->x_obj, &s_anything);
+ m_maxout = outlet_new(this->x_obj, &s_anything);
+
+ x_nightmode=0;
+ x_threshold=100;
+ x_lambda=1.0;
+ x_useprevious = 0;
+ x_minblocks = 10;
+ x_velsize.width = comp_xsize;
+ x_velsize.height = comp_ysize;
+
+ // initialize font
+ cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, 1.0, 1.0, 0, 1, 8 );
+
+ rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 );
+ rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 );
+ grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+ prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+
+ x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+
+}
+
+/////////////////////////////////////////////////////////
+// Destructor
+//
+/////////////////////////////////////////////////////////
+pix_opencv_of_hs :: ~pix_opencv_of_hs()
+{
+ // Destroy cv_images
+ cvReleaseImage( &rgba );
+ cvReleaseImage( &rgb );
+ cvReleaseImage( &grey );
+ cvReleaseImage( &prev_grey );
+ cvReleaseImage( &x_velx );
+ cvReleaseImage( &x_vely );
+
+}
+
+/////////////////////////////////////////////////////////
+// processImage
+//
+/////////////////////////////////////////////////////////
+void pix_opencv_of_hs :: processRGBAImage(imageStruct &image)
+{
+ int px,py;
+ double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0;
+ int nbblocks=0;
+ CvPoint orig, dest;
+ double angle=0.0;
+ double hypotenuse=0.0;
+
+ if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize))
+ {
+
+ this->comp_xsize=image.xsize;
+ this->comp_ysize=image.ysize;
+
+ x_velsize.width = comp_xsize;
+ x_velsize.height = comp_ysize;
+
+ cvReleaseImage( &rgba );
+ cvReleaseImage( &rgb );
+ cvReleaseImage( &grey );
+ cvReleaseImage( &prev_grey );
+ cvReleaseImage( &x_velx );
+ cvReleaseImage( &x_vely );
+
+ rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 );
+ rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 );
+ grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+ prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+
+ x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ }
+
+ memcpy( rgba->imageData, image.data, image.xsize*image.ysize*4 );
+
+ // Convert to hsv
+ cvCvtColor(rgba, rgb, CV_BGRA2BGR);
+ cvCvtColor(rgb, grey, CV_BGR2GRAY);
+
+ if( x_nightmode )
+ cvZero( rgb );
+
+ cvCalcOpticalFlowHS( prev_grey, grey,
+ x_useprevious,
+ x_velx, x_vely,
+ x_lambda,
+ cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) );
+
+ nbblocks = 0;
+ globangle = 0;
+ globx = 0;
+ globy = 0;
+ for( py=0; py<x_velsize.height; py++ )
+ {
+ for( px=0; px<x_velsize.width; px++ )
+ {
+ orig.x = (px*comp_xsize)/x_velsize.width;
+ orig.y = (py*comp_ysize)/x_velsize.height;
+ dest.x = (int)(orig.x + cvGet2D(x_velx, py, px).val[0]);
+ dest.y = (int)(orig.y + cvGet2D(x_vely, py, px).val[0]);
+ angle = -atan2( (double) (dest.y-orig.y), (double) (dest.x-orig.x) );
+ hypotenuse = sqrt( pow((double)dest.y-orig.y, 2) + pow((double)dest.x-orig.x, 2) );
+
+ /* Now draw the tips of the arrow. I do some scaling so that the
+ * tips look proportional to the main line of the arrow.
+ */
+ if (hypotenuse >= x_threshold)
+ {
+ cvLine( rgb, orig, dest, CV_RGB(0,255,0), 1, CV_AA, 0 );
+
+ orig.x = (int) (dest.x - (6) * cos(angle + M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(angle + M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(angle - M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(angle - M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 );
+
+ globx = globx+cvGet2D(x_velx, py, px).val[0];
+ globy = globy+cvGet2D(x_vely, py, px).val[0];
+ if ( hypotenuse > maxamp )
+ {
+ maxamp = hypotenuse;
+ maxangle = angle;
+ }
+ // post( "pdp_opencv_of_bm : block %d : amp : %f : angle : %f", nbblocks, hypotenuse, (angle*180)/M_PI );
+ nbblocks++;
+ }
+
+ }
+ }
+
+ if ( nbblocks >= x_minblocks )
+ {
+ globangle=-atan2( globy, globx );
+ // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI );
+
+ orig.x = (int) (comp_xsize/2);
+ orig.y = (int) (comp_ysize/2);
+ dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle));
+ dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle));
+ cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(globangle + M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(globangle + M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(globangle - M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(globangle - M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+
+ // outputs the average angle of movement
+ globangle = (globangle*180)/M_PI;
+ SETFLOAT(&x_list[0], globangle);
+ outlet_list( m_meanout, 0, 1, x_list );
+
+ // outputs the amplitude and angle of the maximum movement
+ maxangle = (maxangle*180)/M_PI;
+ SETFLOAT(&x_list[0], maxamp);
+ SETFLOAT(&x_list[1], maxangle);
+ outlet_list( m_maxout, 0, 2, x_list );
+ }
+
+ memcpy( prev_grey->imageData, grey->imageData, image.xsize*image.ysize );
+
+ cvCvtColor(rgb, rgba, CV_BGR2BGRA);
+ memcpy( image.data, rgba->imageData, image.xsize*image.ysize*4 );
+}
+
+void pix_opencv_of_hs :: processRGBImage(imageStruct &image)
+{
+ int px,py;
+ double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0;
+ int nbblocks=0;
+ CvPoint orig, dest;
+ double angle=0.0;
+ double hypotenuse=0.0;
+
+ if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize))
+ {
+
+ this->comp_xsize=image.xsize;
+ this->comp_ysize=image.ysize;
+
+ x_velsize.width = comp_xsize;
+ x_velsize.height = comp_ysize;
+
+ cvReleaseImage( &rgba );
+ cvReleaseImage( &rgb );
+ cvReleaseImage( &grey );
+ cvReleaseImage( &prev_grey );
+ cvReleaseImage( &x_velx );
+ cvReleaseImage( &x_vely );
+
+ rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 );
+ rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 );
+ grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+ prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+
+ x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ }
+
+ memcpy( rgb->imageData, image.data, image.xsize*image.ysize*3 );
+
+ // Convert to hsv
+ cvCvtColor(rgba, rgb, CV_BGRA2BGR);
+ cvCvtColor(rgb, grey, CV_BGR2GRAY);
+
+ if( x_nightmode )
+ cvZero( rgb );
+
+ cvCalcOpticalFlowHS( prev_grey, grey,
+ x_useprevious,
+ x_velx, x_vely,
+ x_lambda,
+ cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) );
+
+ nbblocks = 0;
+ globangle = 0;
+ globx = 0;
+ globy = 0;
+ for( py=0; py<x_velsize.height; py++ )
+ {
+ for( px=0; px<x_velsize.width; px++ )
+ {
+ // post( "pdp_opencv_of_bm : (%d,%d) values (%f,%f)", px, py, velxf, velyf );
+ orig.x = (px*comp_xsize)/x_velsize.width;
+ orig.y = (py*comp_ysize)/x_velsize.height;
+ dest.x = (int)(orig.x + cvGet2D(x_velx, py, px).val[0]);
+ dest.y = (int)(orig.y + cvGet2D(x_vely, py, px).val[0]);
+ angle = -atan2( (double) (dest.y-orig.y), (double) (dest.x-orig.x) );
+ hypotenuse = sqrt( pow((double)dest.y-orig.y, 2) + pow((double)dest.x-orig.x, 2) );
+
+ /* Now draw the tips of the arrow. I do some scaling so that the
+ * tips look proportional to the main line of the arrow.
+ */
+ if (hypotenuse >= x_threshold)
+ {
+ cvLine( rgb, orig, dest, CV_RGB(0,255,0), 1, CV_AA, 0 );
+
+ orig.x = (int) (dest.x - (6) * cos(angle + M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(angle + M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(angle - M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(angle - M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 );
+
+ globx = globx+cvGet2D(x_velx, py, px).val[0];
+ globy = globy+cvGet2D(x_vely, py, px).val[0];
+ if ( hypotenuse > maxamp )
+ {
+ maxamp = hypotenuse;
+ maxangle = angle;
+ }
+ // post( "pdp_opencv_of_bm : block %d : amp : %f : angle : %f", nbblocks, hypotenuse, (angle*180)/M_PI );
+ nbblocks++;
+ }
+
+ }
+ }
+
+ if ( nbblocks >= x_minblocks )
+ {
+ globangle=-atan2( globy, globx );
+ // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI );
+
+ orig.x = (int) (comp_xsize/2);
+ orig.y = (int) (comp_ysize/2);
+ dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle));
+ dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle));
+ cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(globangle + M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(globangle + M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(globangle - M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(globangle - M_PI / 4));
+ cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+
+ // outputs the average angle of movement
+ globangle = (globangle*180)/M_PI;
+ SETFLOAT(&x_list[0], globangle);
+ outlet_list( m_meanout, 0, 1, x_list );
+
+ // outputs the amplitude and angle of the maximum movement
+ maxangle = (maxangle*180)/M_PI;
+ SETFLOAT(&x_list[0], maxamp);
+ SETFLOAT(&x_list[1], maxangle);
+ outlet_list( m_maxout, 0, 2, x_list );
+ }
+
+ memcpy( prev_grey->imageData, grey->imageData, image.xsize*image.ysize );
+
+ memcpy( image.data, rgb->imageData, image.xsize*image.ysize*3 );
+}
+
+void pix_opencv_of_hs :: processYUVImage(imageStruct &image)
+{
+ post( "pix_opencv_of_hs : yuv format not supported" );
+}
+
+void pix_opencv_of_hs :: processGrayImage(imageStruct &image)
+{
+ int px,py;
+ double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0;
+ int nbblocks=0;
+ CvPoint orig, dest;
+ double angle=0.0;
+ double hypotenuse=0.0;
+
+ if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize))
+ {
+
+ this->comp_xsize=image.xsize;
+ this->comp_ysize=image.ysize;
+
+ x_velsize.width = comp_xsize;
+ x_velsize.height = comp_ysize;
+
+ cvReleaseImage( &rgba );
+ cvReleaseImage( &rgb );
+ cvReleaseImage( &grey );
+ cvReleaseImage( &prev_grey );
+ cvReleaseImage( &x_velx );
+ cvReleaseImage( &x_vely );
+
+ rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 );
+ rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 );
+ grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+ prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 );
+
+ x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 );
+ }
+
+ memcpy( grey->imageData, image.data, image.xsize*image.ysize );
+
+ if( x_nightmode )
+ cvZero( grey );
+
+ cvCalcOpticalFlowHS( prev_grey, grey,
+ x_useprevious,
+ x_velx, x_vely,
+ x_lambda,
+ cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) );
+
+ nbblocks = 0;
+ globangle = 0;
+ globx = 0;
+ globy = 0;
+ for( py=0; py<x_velsize.height; py++ )
+ {
+ for( px=0; px<x_velsize.width; px++ )
+ {
+ // post( "pdp_opencv_of_bm : (%d,%d) values (%f,%f)", px, py, velxf, velyf );
+ orig.x = (px*comp_xsize)/x_velsize.width;
+ orig.y = (py*comp_ysize)/x_velsize.height;
+ dest.x = (int)(orig.x + cvGet2D(x_velx, py, px).val[0]);
+ dest.y = (int)(orig.y + cvGet2D(x_vely, py, px).val[0]);
+ angle = -atan2( (double) (dest.y-orig.y), (double) (dest.x-orig.x) );
+ hypotenuse = sqrt( pow((double)dest.y-orig.y, 2) + pow((double)dest.x-orig.x, 2) );
+
+ /* Now draw the tips of the arrow. I do some scaling so that the
+ * tips look proportional to the main line of the arrow.
+ */
+ if (hypotenuse >= x_threshold)
+ {
+ cvLine( grey, orig, dest, CV_RGB(0,255,0), 1, CV_AA, 0 );
+
+ orig.x = (int) (dest.x - (6) * cos(angle + M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(angle + M_PI / 4));
+ cvLine( grey, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(angle - M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(angle - M_PI / 4));
+ cvLine( grey, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 );
+
+ globx = globx+cvGet2D(x_velx, py, px).val[0];
+ globy = globx+cvGet2D(x_vely, py, px).val[0];
+ if ( hypotenuse > maxamp )
+ {
+ maxamp = hypotenuse;
+ maxangle = angle;
+ }
+ // post( "pdp_opencv_of_bm : block %d : amp : %f : angle : %f", nbblocks, hypotenuse, (angle*180)/M_PI );
+ nbblocks++;
+ }
+
+ }
+ }
+
+ if ( nbblocks >= x_minblocks )
+ {
+ globangle=-atan2( globy, globx );
+ // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI );
+
+ orig.x = (int) (comp_xsize/2);
+ orig.y = (int) (comp_ysize/2);
+ dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle));
+ dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle));
+ cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(globangle + M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(globangle + M_PI / 4));
+ cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+ orig.x = (int) (dest.x - (6) * cos(globangle - M_PI / 4));
+ orig.y = (int) (dest.y + (6) * sin(globangle - M_PI / 4));
+ cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 );
+
+ // outputs the average angle of movement
+ globangle = (globangle*180)/M_PI;
+ SETFLOAT(&x_list[0], globangle);
+ outlet_list( m_meanout, 0, 1, x_list );
+
+ // outputs the amplitude and angle of the maximum movement
+ maxangle = (maxangle*180)/M_PI;
+ SETFLOAT(&x_list[0], maxamp);
+ SETFLOAT(&x_list[1], maxangle);
+ outlet_list( m_maxout, 0, 2, x_list );
+ }
+
+ memcpy( prev_grey->imageData, grey->imageData, image.xsize*image.ysize );
+
+ memcpy( image.data, grey->imageData, image.xsize*image.ysize );
+}
+
+/////////////////////////////////////////////////////////
+// static member function
+//
+/////////////////////////////////////////////////////////
+
+void pix_opencv_of_hs :: obj_setupCallback(t_class *classPtr)
+{
+ class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::nightModeMessCallback,
+ gensym("nightmode"), A_FLOAT, A_NULL);
+ class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::tresholdMessCallback,
+ gensym("threshold"), A_FLOAT, A_NULL);
+ class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::lambdaMessCallback,
+ gensym("lambda"), A_FLOAT, A_NULL);
+ class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::usePreviousMessCallback,
+ gensym("useprevious"), A_FLOAT, A_NULL);
+ class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::minBlocksMessCallback,
+ gensym("minblocks"), A_FLOAT, A_NULL);
+}
+
+void pix_opencv_of_hs :: nightModeMessCallback(void *data, t_floatarg nightmode)
+{
+ GetMyClass(data)->nightModeMess((float)nightmode);
+}
+
+void pix_opencv_of_hs :: tresholdMessCallback(void *data, t_floatarg threshold)
+{
+ GetMyClass(data)->tresholdMess((float)threshold);
+}
+
+void pix_opencv_of_hs :: lambdaMessCallback(void *data, t_floatarg lambda)
+{
+ GetMyClass(data)->lambdaMess((float)lambda);
+}
+
+void pix_opencv_of_hs :: usePreviousMessCallback(void *data, t_floatarg previous)
+{
+ GetMyClass(data)->usePreviousMess((float)previous);
+}
+
+void pix_opencv_of_hs :: minBlocksMessCallback(void *data, t_floatarg minblocks)
+{
+ GetMyClass(data)->minBlocksMess((float)minblocks);
+}
+
+void pix_opencv_of_hs :: nightModeMess(float nightmode)
+{
+ if ( ( (int)nightmode==0 ) || ( (int)nightmode==1 ) ) x_nightmode = (int)nightmode;
+}
+
+void pix_opencv_of_hs :: tresholdMess(float threshold)
+{
+ if ( (int)threshold>0 ) x_threshold = (int)threshold;
+}
+
+void pix_opencv_of_hs :: lambdaMess(float lambda)
+{
+ if (lambda>0.0) x_lambda = (double)lambda;
+}
+
+void pix_opencv_of_hs :: usePreviousMess(float previous)
+{
+ if ((previous==0.0)||(previous==1.0)) x_useprevious = (int)previous;
+}
+
+void pix_opencv_of_hs :: minBlocksMess(float minblocks)
+{
+ if (minblocks>=1.0) x_minblocks = (int)minblocks;
+}
+