blob: a5ee327f9f6521ded708488f24322abba5bacaf8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
#N canvas 331 134 656 710 10;
#N canvas 85 7 622 478 physical 0;
#X text 23 268 Generated force is the sum of 3 differents forces :
;
#X text 102 142 eL[t] = L[t] - L[0];
#X text 78 166 -> Elongation-Speed of a link :;
#X text 101 184 speedOf(eL[t]) = eL[t] - eL[t-1];
#X text 78 106 -> Elongation of a link (eL) is equal to the length
of the link minus its initial length :;
#X text 78 46 -> Length of a link (L) is equal to the difference between
positions of Masses (M1 \, M2) :;
#X text 102 79 L[t] = positionOf(M1[t]) - positionOf(M2[t]);
#X text 78 206 -> Speed of a mass :;
#X text 77 346 -> Damping of a link (proportional to) :;
#X text 77 385 -> Damping of a mass is proportional to :;
#X text 102 224 speedOf(M[t]) = positionOf(M[t-1]) - positionOf(M[t])
;
#X text 77 306 -> Rigidity of a link (proportional to) :;
#X text 100 403 Fdm :: D2 * speedOf(M[t]);
#X text 100 364 Fdl :: D * speedOf(eL[t]);
#X text 100 324 Frl :: K * eL[t];
#X text 24 8 Notation (at time t) :;
#X restore 239 679 pd physical equations;
#X text 217 593 value range :;
#X text 260 13 link between 2 masses;
#X text 88 562 1 : force to apply to mass 1 (float);
#X text 89 530 2 : force to apply to mass 2 (float);
#X text 257 381 if the size of the link is < Lmin then force of the
link will be null;
#X text 263 432 if the size of the link is > Lmax then force of the
link will be null;
#X text 242 622 K \, D \, D2 are positive. Negative values make strange
(non physical) things. High values can cause numerical instability.
;
#X obj 25 501 link;
#X text 127 471 2 : position of mass 2 (float);
#X floatatom 25 562 5 0 0 0 - - -;
#X floatatom 44 529 5 0 0 0 - - -;
#X text 225 68 1 : name;
#X floatatom 93 471 5 0 0 0 - - -;
#X msg 105 125 setL 0;
#X msg 105 154 setK 0;
#X msg 105 184 setD 0;
#X msg 104 214 setD2 0;
#X text 226 122 2 : Lenght;
#X text 250 139 change Length of the link;
#X text 226 153 3 : rigidity;
#X text 249 168 change rigidity;
#X text 230 238 change position of mass 1;
#X msg 106 265 bang;
#X text 228 258 compute and output forces \, according to the last
masses positions;
#X msg 107 291 reset;
#X msg 109 316 resetF;
#X msg 109 338 resetL;
#X msg 110 366 setLmin 0;
#X text 229 185 4 : Damping of the link deformation;
#X text 231 214 5 : Damping of the masses speed;
#X obj 105 240 0;
#X text 227 288 reset position of masses and set speed of the link
to zero;
#X text 230 314 reset damping and inertial force of the link.;
#X text 228 339 set the length of the liaison to it's curent lengh
;
#X text 234 363 set the minimum size of the link;
#X text 233 416 set the maximum size of the link;
#X msg 110 416 setLmax 10000;
#X text 250 84 you can use it in pd to send messages / bang / etc to
the lia. this is for simplifying connection.;
#N canvas 292 12 556 402 Lmin 0;
#X text 23 14 Lmin and Lmax are useful for non-linear links;
#X text 24 42 If the length of the link is < Lmin then force of the
link will be null;
#X text 24 86 If the length of the link is > Lmax then force of the
link will be null;
#X text 13 137 Case Lmin = 0 and Lmax = 10 :;
#X text 38 163 At L = 0 \, links can break (a bit like a magnet.);
#X text 38 183 At L = 10 \, this is a repulsive-only link useful for
interaction between two structures.;
#X text 12 237 Case Lmin = 10 and Lmax = very positive :;
#X text 38 262 At L = 10 \, this is an attractive link only;
#X text 13 304 note : D2 is damping associated with the mass but not
the link. So it's not affected by Lmin and Lmax;
#X restore 477 456 pd Lmin Lmax exemple;
#N canvas 0 0 231 186 name 0;
#X obj 23 6 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 -1
;
#X obj 23 27 s lia_foo;
#X obj 116 102 lia lia_foo;
#X obj 19 125 print lia1;
#X obj 116 126 print lia2;
#X obj 19 101 lia lia_foo;
#X connect 0 0 1 0;
#X connect 2 0 4 0;
#X connect 5 0 3 0;
#X restore 496 117 pd name example;
#X text 138 33 link : get position of masses \, output forces to apply
;
#X connect 8 0 10 0;
#X connect 8 1 11 0;
#X connect 13 0 8 1;
#X connect 14 0 8 0;
#X connect 15 0 8 0;
#X connect 16 0 8 0;
#X connect 17 0 8 0;
#X connect 23 0 8 0;
#X connect 25 0 8 0;
#X connect 26 0 8 0;
#X connect 27 0 8 0;
#X connect 28 0 8 0;
#X connect 31 0 8 0;
#X connect 37 0 8 0;
|