aboutsummaryrefslogtreecommitdiff
path: root/pmpd2d_interactor.c
blob: fabef678a62aa69bdd2b25632c0d9fcd1d4c2ac9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
void pmpd2d_iCircle_i(t_pmpd2d *x, int i, t_float a, t_float b, t_float r, t_float K, t_float power, t_float Kt, t_float powert, t_float Rmin, t_float Rmax)
{
	t_float distance, X, Y, rayon, tmp;

	X = x->mass[i].posX - a;
	Y = x->mass[i].posY - b;

	rayon = sqrt ( sqr(X) + sqr(Y) );
	distance = rayon - r;
	
	if (rayon != 0)
	{
		X /= rayon;  // normalisation
		Y /= rayon;
	}
	else
	{
		X = 0;  // normalisation
		Y = 0;
	}
	
// X, Y : vecteur unitaire normal au cercle
// rayon : distance au centre.
	
	if ( (distance>Rmin) && (distance<=Rmax) )
	{
		tmp = -pow_ch(K * distance, power);
		x->mass[i].forceX += X * tmp;
		x->mass[i].forceY += Y * tmp;
		tmp = -pow_ch(Kt * distance, power);
		x->mass[i].forceX += -Y * tmp;
		x->mass[i].forceY += X * tmp;
		
	}
}

void pmpd2d_iCircle(t_pmpd2d *x, t_symbol *s, int argc, t_atom *argv)
{
	// Argument : 
	// 0 : mass to apply this interactor
	// 1,2 : XY : center of the Circle
	// 3 : Circle radius
	// 4 : K
	// [5] : power of the force
	// [6] : Kt
	// [7] : power of the tengential force
	// [8] : min radium of the interactor
	// [9] : max radium of the interactor
	
	
	t_float a, b, R, K, power, Kt, powert, Rmin, Rmax;
	t_int i;

	if (!((argc>=5) && (argv[1].a_type == A_FLOAT)&& (argv[2].a_type == A_FLOAT)&& (argv[3].a_type == A_FLOAT) ))
	{
		post("bad argument for iCircle");
		return;
	}
	
	a = atom_getfloatarg(1, argc, argv);
	b = atom_getfloatarg(2, argc, argv);

	R = atom_getfloatarg(3, argc, argv);

	K = atom_getfloatarg(4, argc, argv);
	power = atom_getfloatarg(5, argc, argv);
	if (power == 0) power = 1;
	
	Kt = atom_getfloatarg(6, argc, argv);
	powert = atom_getfloatarg(7, argc, argv);
	if (powert == 0) power = 1;
	
	Rmin = 0;
	if ((argc>=9) && (argv[6].a_type == A_FLOAT)) { Rmin = (atom_getfloatarg(8,argc,argv));}
	Rmax =  1000000;
	if ((argc>=10) && (argv[7].a_type == A_FLOAT)) { Rmax = (atom_getfloatarg(9,argc,argv));}

	if ((argc>0) && (argv[0].a_type == A_FLOAT) && (atom_getfloatarg(0,argc,argv) == -1)) // all
	{
		for (i=0; i < x->nb_mass; i++)
		{
			pmpd2d_iCircle_i(x, i, a, b, R, K, power, Kt, powert, Rmin, Rmax);
		}
	}
	else if (((argc>0) && argv[0].a_type == A_FLOAT))
	{
		pmpd2d_iCircle_i(x, atom_getfloatarg(0,argc,argv), a, b, R, K, power, Kt, powert, Rmin, Rmax);
	}
	else if ((argc>0) && (argv[0].a_type == A_SYMBOL))
	{
		for (i=0; i < x->nb_mass; i++)
		{
			if (atom_getsymbolarg(0,argc,argv) == x->mass[i].Id)
			{
				pmpd2d_iCircle_i(x, i, a, b, R, K, power, Kt, powert, Rmin, Rmax);
			}
		}
	}	
}

// --------------------------------------------------------

void pmpd2d_iLine_i(t_pmpd2d *x, int i, t_float a, t_float b, t_float c, t_float K, t_float power, t_float Rmin, t_float Rmax)
{
    t_float distance, force;

    distance = ( (a * x->mass[i].posX)  + (b * x->mass[i].posY) )  - c;

	if ( (distance>Rmin) && (distance<=Rmax) )
	{
		force = -pow_ch(K * distance, power);
		x->mass[i].forceX += a * force;
		x->mass[i].forceY += b * force;
	}
}

void pmpd2d_iLine(t_pmpd2d *x, t_symbol *s, int argc, t_atom *argv)
{
	// Argument : 
	// 0 : mass to apply this interactor
	// 1, 2 : X1 Y1 : 1st point of the line
	// 3, 4 : X2 Y2 : 2nd point of the line
	// 5 : K
	// [6] : power of the force
	// [7] : min radium of the interactor
	// [8] : max radium of the interactor
	
	
	t_float a, b, c, X1, X2, Y1, Y2, K, power, tmp, Rmin, Rmax;
	t_int i;

	if (!((argc>=6) && (argv[1].a_type == A_FLOAT) && (argv[2].a_type == A_FLOAT) && (argv[3].a_type == A_FLOAT) && (argv[4].a_type == A_FLOAT) && (argv[5].a_type == A_FLOAT) ))
	{
		post("bad argument for iLine");
		return;
	}
	
	X1 = atom_getfloatarg(1, argc, argv);
	Y1 = atom_getfloatarg(2, argc, argv);

	X2 = atom_getfloatarg(3, argc, argv);
	Y2 = atom_getfloatarg(4, argc, argv);

    a = Y2 - Y1;
    b = X1 - X2;
    tmp = sqrt(a*a + b*b);
    if (tmp == 0)
    {
        a = 1;
        b = 0;
        tmp = 1;
    }
    a /= tmp;
    b /= tmp;
    c = - (a * X1 + b * Y1); 
    // line equation : aX + bY + c = 0 

	K = atom_getfloatarg(5, argc, argv);
	power = atom_getfloatarg(6, argc, argv);
	if (power == 0) power = 1;
	
	Rmin = -1000000;
	if ((argc>=8) && (argv[7].a_type == A_FLOAT)) { Rmin = (atom_getfloatarg(7,argc,argv));}
	Rmax =  1000000;
	if ((argc>=9) && (argv[8].a_type == A_FLOAT)) { Rmax = (atom_getfloatarg(8,argc,argv));}

	if ((argc>0) && (argv[0].a_type == A_FLOAT) && (atom_getfloatarg(0,argc,argv) == -1)) // all
	{
		for (i=0; i < x->nb_mass; i++)
		{
			pmpd2d_iLine_i(x, i, a, b, c, K, power, Rmin, Rmax);
		}
	}
	else if (((argc>0) && argv[0].a_type == A_FLOAT))
	{
		pmpd2d_iLine_i(x, atom_getfloatarg(0,argc,argv), a, b, c, K, power, Rmin, Rmax);
	}
	else if ((argc>0) && (argv[0].a_type == A_SYMBOL))
	{
		for (i=0; i < x->nb_mass; i++)
		{
			if (atom_getsymbolarg(0,argc,argv) == x->mass[i].Id)
			{
				pmpd2d_iLine_i(x, i, a, b, c, K, power, Rmin, Rmax);
			}
		}
	}	
}