1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
void pmpd3d_iCylinder_i(t_pmpd3d *x, int i, t_float xc, t_float yc, t_float zc, t_float a, t_float b, t_float c, t_float d, t_float R, t_float K, t_float power, t_float Kt, t_float powert, t_float Rmin, t_float Rmax)
{
t_float profondeur, distance, rayon, Xb, Yb, Zb, Xt, Yt, Zt, tmp;
profondeur = a * x->mass[i].posX + b * x->mass[i].posY + c * x->mass[i].posZ - d;
Xb = x->mass[i].posX -xc - profondeur * a;
Yb = x->mass[i].posY -yc - profondeur * b;
Zb = x->mass[i].posZ -zc - profondeur * c;
rayon = sqrt ( sqr(Xb) + sqr(Yb) + sqr(Zb) );
distance = R - rayon;
if (rayon != 0)
{
Xb /= rayon; // normalisation
Yb /= rayon;
Zb /= rayon;
}
else
{
Xb = 0; // normalisation
Yb = 0;
Zb = 0;
}
Xt = b*Zb - c*Yb; // vecteur tengentiel au cercle
Yt = c*Xb - a*Zb;
Zt = a*Yb - b*Xb;
// Xb, Yb, Zb : vecteur unitaire normal au cercle
// Xt, Yt, Zt : vecteur unitaire tengent au cercle
// rayon : distance au centre.
if ( (rayon>Rmin) && (rayon<=Rmax) )
{
tmp = pow_ch(K * distance, power);
x->mass[i].forceX += Xb * tmp;
x->mass[i].forceY += Yb * tmp;
x->mass[i].forceZ += Zb * tmp;
tmp = pow_ch(Kt * distance, powert);
x->mass[i].forceX += Xt * tmp;
x->mass[i].forceY += Yt * tmp;
x->mass[i].forceZ += Zt * tmp;
}
}
void pmpd3d_iCylinder(t_pmpd3d *x, t_symbol *s, int argc, t_atom *argv)
{
// Argument :
// 0 : mass to apply this interactor
// 1,2,3 : XYZ : center vector of the cylinder
// 4,5,6 : XYZ : center point of the cylinder
// 7 : cylinder radius
// 8 : K
// [9] : power of the force
// [10] : Kt
// [11] : power of the force tengential force
// [12] : min radium of the interactor
// [13] : max radium of the interactor
if (!((argc>=9) && (argv[1].a_type == A_FLOAT)&& (argv[2].a_type == A_FLOAT)&& (argv[3].a_type == A_FLOAT)&& (argv[4].a_type == A_FLOAT)&& (argv[5].a_type == A_FLOAT)&& (argv[6].a_type == A_FLOAT)&& (argv[7].a_type == A_FLOAT)&& (argv[8].a_type == A_FLOAT)))
{
pd_error(x,"bad argument for iCylinder");
return;
}
t_float xc, yc, zc, a, b, c, d, r, K, Kt, power, powert, tmp, Rmin, Rmax;
t_int i;
a = atom_getfloatarg(1, argc, argv);
b = atom_getfloatarg(2, argc, argv);
c = atom_getfloatarg(3, argc, argv);
tmp = sqrt (a*a + b*b + c*c);
if (tmp != 0)
{
a /= tmp;
b /= tmp;
c /= tmp;
}
else
{
a=1;
b=0;
c=0;
}
xc = atom_getfloatarg(4, argc, argv);
yc = atom_getfloatarg(5, argc, argv);
zc = atom_getfloatarg(6, argc, argv);
d = a * xc + b * yc + c * zc;
r = atom_getfloatarg(7, argc, argv);
K = atom_getfloatarg(8, argc, argv);
power = atom_getfloatarg(9, argc, argv);
if (power == 0) power = 1;
Kt = atom_getfloatarg(10, argc, argv);
powert = atom_getfloatarg(11, argc, argv);
if (powert == 0) powert = 1;
Rmin = -1;
Rmax = 1000000;
if (argc > 12) { Rmin = atom_getfloatarg(12, argc, argv); }
if (argc > 13) { Rmax = atom_getfloatarg(13, argc, argv); }
if ((argc>0) && (argv[0].a_type == A_FLOAT) && (atom_getfloatarg(0,argc,argv) == -1)) // all
{
for (i=0; i < x->nb_mass; i++)
{
pmpd3d_iCylinder_i(x, i, xc, yc, zc, a, b, c, d, r, K, power, Kt, powert, Rmin, Rmax);
}
}
else if ((argc>0) && (argv[0].a_type == A_FLOAT))
{
pmpd3d_iCylinder_i(x, atom_getfloatarg(0,argc,argv), xc, yc, zc, a, b, c, d, r, K, power, Kt, powert, Rmin, Rmax);
}
else if ((argc>0) && (argv[0].a_type == A_SYMBOL))
{
for (i=0; i < x->nb_mass; i++)
{
if (atom_getsymbolarg(0,argc,argv) == x->mass[i].Id)
{
pmpd3d_iCylinder_i(x, i, xc, yc, zc, a, b, c, d, r, K, power, Kt, powert, Rmin, Rmax);
}
}
}
}
void pmpd3d_iPlane_i(t_pmpd3d *x, int i, t_float a, t_float b, t_float c, t_float d, t_float K, t_float power, t_float Pmin, t_float Pmax)
{
t_float profondeur, force;
profondeur = a * x->mass[i].posX + b * x->mass[i].posY + c * x->mass[i].posZ - d;
if ((profondeur <= Pmax) && (profondeur > Pmin) )
{
force = K * pow_ch(-profondeur, power);
x->mass[i].forceX += a * force;
x->mass[i].forceY += b * force;
x->mass[i].forceZ += c * force;
}
}
void pmpd3d_iPlane(t_pmpd3d *x, t_symbol *s, int argc, t_atom *argv)
{
// Argument :
// 0 : mass to apply this interactor
// 1,2,3 : XYZ : vector perpendicular to the plane
// 4,5,6 : XYZ : one point of the plane
// 7 : K
// [8] : power of the force
// [9] : Pmin
// [10] : Pmax
// ax+by+cz-d=0
// d est tel que aXcenter +bYcenter + cYcenter = d
t_float a, b, c, d, K, power, tmp, Pmin, Pmax;
t_int i;
if (!((argc>=8) && (argv[1].a_type == A_FLOAT)&& (argv[2].a_type == A_FLOAT)&& (argv[3].a_type == A_FLOAT)&& (argv[4].a_type == A_FLOAT)&& (argv[5].a_type == A_FLOAT)&& (argv[6].a_type == A_FLOAT)&& (argv[7].a_type == A_FLOAT)))
{
pd_error(x,"bad argument for iPlane");
return;
}
a = atom_getfloatarg(1, argc, argv);
b = atom_getfloatarg(2, argc, argv);
c = atom_getfloatarg(3, argc, argv);
tmp = sqrt (a*a + b*b + c*c);
if (tmp != 0)
{
a /= tmp;
b /= tmp;
c /= tmp;
}
else
{
a=1;
b=0;
c=0;
}
d = a * atom_getfloatarg(4, argc, argv) + b * atom_getfloatarg(5, argc, argv) + c * atom_getfloatarg(6, argc, argv);
K = atom_getfloatarg(7, argc, argv);
power = atom_getfloatarg(8, argc, argv);
if (power == 0) power = 1;
Pmin = -1000000;
if ((argc>=10) && (argv[9].a_type == A_FLOAT)) { Pmin = (atom_getfloatarg(9,argc,argv));}
Pmax = 1000000;
if ((argc>=11) && (argv[9].a_type == A_FLOAT)) { Pmax = (atom_getfloatarg(10,argc,argv));}
if ((argc>0) && (argv[0].a_type == A_FLOAT) && (atom_getfloatarg(0,argc,argv) == -1)) // all
{
for (i=0; i < x->nb_mass; i++)
{
pmpd3d_iPlane_i(x, i, a, b, c, d, K, power, Pmin, Pmax);
}
}
else if (((argc>0) && argv[0].a_type == A_FLOAT))
{
pmpd3d_iPlane_i(x,atom_getfloatarg(0,argc,argv), a, b, c, d, K, power, Pmin, Pmax);
}
else if ((argc>0) && (argv[0].a_type == A_SYMBOL))
{
for (i=0; i < x->nb_mass; i++)
{
if (atom_getsymbolarg(0,argc,argv) == x->mass[i].Id)
{
pmpd3d_iPlane_i(x, i, a, b, c, d, K, power, Pmin, Pmax);
}
}
}
}
void pmpd3d_iSphere_i(t_pmpd3d *x, int i, t_float a, t_float b, t_float c, t_float r, t_float K, t_float power, t_float Rmin, t_float Rmax)
{
t_float distance, X, Y, Z, rayon, tmp;
X = x->mass[i].posX - a;
Y = x->mass[i].posY - b;
Z = x->mass[i].posZ - c;
rayon = sqrt ( sqr(X) + sqr(Y) + sqr(Z) );
distance = r - rayon;
if (rayon != 0)
{
X /= rayon; // normalisation
Y /= rayon;
Z /= rayon;
}
else
{
X = 0; // normalisation
Y = 0;
Z = 0;
}
// X, Y, Z : vecteur unitaire normal au cercle
// rayon : distance au centre.
if ( (rayon>Rmin) && (rayon<=Rmax) )
{
tmp = pow_ch(K * distance, power);
x->mass[i].forceX += X * tmp;
x->mass[i].forceY += Y * tmp;
x->mass[i].forceZ += Z * tmp;
}
}
void pmpd3d_iSphere(t_pmpd3d *x, t_symbol *s, int argc, t_atom *argv)
{
// Argument :
// 0 : mass to apply this interactor
// 1,2,3 : XYZ : center of the sphere
// 4 : sphere radius
// 5 : K
// [6] : power of the force
// [7] : min radium of the interactor
// [8] : max radium of the interactor
t_float a, b, c, R, K, power, Rmin, Rmax;
t_int i;
if (!((argc>=6) && (argv[1].a_type == A_FLOAT)&& (argv[2].a_type == A_FLOAT)&& (argv[3].a_type == A_FLOAT)&& (argv[4].a_type == A_FLOAT)))
{
pd_error(x,"bad argument for iSphere");
return;
}
a = atom_getfloatarg(1, argc, argv);
b = atom_getfloatarg(2, argc, argv);
c = atom_getfloatarg(3, argc, argv);
R = atom_getfloatarg(4, argc, argv);
K = atom_getfloatarg(5, argc, argv);
power = atom_getfloatarg(6, argc, argv);
if (power == 0) power = 1;
Rmin = 0;
if ((argc>=8) && (argv[7].a_type == A_FLOAT)) { Rmin = (atom_getfloatarg(7,argc,argv));}
Rmax = 1000000;
if ((argc>=9) && (argv[8].a_type == A_FLOAT)) { Rmax = (atom_getfloatarg(8,argc,argv));}
if ((argc>0) && (argv[0].a_type == A_FLOAT) && (atom_getfloatarg(0,argc,argv) == -1)) // all
{
for (i=0; i < x->nb_mass; i++)
{
pmpd3d_iSphere_i(x, i, a, b, c, R, K, power, Rmin, Rmax);
}
}
else if (((argc>0) && argv[0].a_type == A_FLOAT))
{
pmpd3d_iSphere_i(x, atom_getfloatarg(0,argc,argv), a, b, c, R, K, power, Rmin, Rmax);
}
else if ((argc>0) && (argv[0].a_type == A_SYMBOL))
{
for (i=0; i < x->nb_mass; i++)
{
if (atom_getsymbolarg(0,argc,argv) == x->mass[i].Id)
{
pmpd3d_iSphere_i(x, i, a, b, c, R, K, power, Rmin, Rmax);
}
}
}
}
|