1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/* flib - PD library for feature extraction
Copyright (C) 2005 Jamie Bullock
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*Calculate the cc correlation of two signal vectors*/
/*The time domain implementation is based on code by Phil Bourke
* the frequency domain version is based on code by Charles Henry
*
* Specify a time delay as an argument for the time domain implemenation, for example an argument of 32 will give the
* correlation coefficients for delays from -32 to 32 samples between the two input vectors
*
* Specify an argument of 'f' for the frequency domain implementation,
* or 'r' for the running cross covariance (not normalized) instead of the numerical delay argument
* these two methods both have got positive delays on 0,N/2-1 and the negative delays (-N/2, -1) are indexed on N/2,N-1 */
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <m_pd.h>
#define SQ(a) (a * a)
static t_class *cc_class;
typedef struct _cc {
t_object x_obj;
t_float f;
t_int delay;
t_int is_freq_domain;
t_float *bufferNsig1, *bufferNsig2;
t_float *output_prev_block;
t_int is_new_or_rszd;
t_int n;
} t_cc;
static t_int *cc_perform_time_domain(t_int *w)
{
t_sample *x = (t_sample *)(w[1]);
t_sample *y = (t_sample *)(w[2]);
t_sample *out = (t_sample *)(w[3]);
t_int N = (t_int)(w[4]),
i, j, delay;
t_int maxdelay = (t_int)(w[5]);
t_float mx, my, sx, sy, sxy, denom, r;
if(maxdelay > N * .5){
maxdelay = N * .5;
post("cc~: invalid maxdelay, must be <= blocksize/2");
}
/* Calculate the mean of the two series x[], y[] */
mx = 0;
my = 0;
for (i=0;i<N;i++) {
mx += x[i];
my += y[i];
}
mx /= N;
my /= N;
/* Calculate the denominator */
sx = 0;
sy = 0;
for (i=0;i<N;i++) {
sx += (x[i] - mx) * (x[i] - mx);
sy += (y[i] - my) * (y[i] - my);
}
denom = sqrt(sx*sy);
/* Calculate the correlation series */
for (delay=-maxdelay;delay<maxdelay;delay++) {
sxy = 0;
for (i=0;i<N;i++) {
j = i + delay;
/* circular correlation */
while (j < 0)
j += N;
j %= N;
sxy += (x[i] - mx) * (y[j] - my);
}
r = sxy / denom;
*out++ = r;
/* r is the correlation coefficient at "delay" */
}
return (w+6);
}
static t_int *cc_perform_freq_domain(t_int *w)
{
t_cc *x = (t_cc *)(w[1]);
t_sample *sig1 = (t_sample *)(w[2]);
t_sample *sig2 = (t_sample *)(w[3]);
t_sample *out = (t_sample *)(w[4]);
t_int size = (int) w[5];
t_int size2 = size*2;
t_int half = size/2;
t_int thrhalf = 3*half;
t_float *expsig1 = NULL;
t_float *revsig2 = NULL;
t_float temp, temp2;
t_int i=0;
if (x->n!=size)
{
x->n = size;
x->is_new_or_rszd=1;
}
// This stuff here sets up two buffers to hold the previous N samples
// To get the usual overlapping block (2) design on each input
if (x->is_new_or_rszd)
{
if (x->bufferNsig1!=NULL)
{
freebytes(x->bufferNsig1,size*sizeof(t_float));
freebytes(x->bufferNsig2,size*sizeof(t_float));
freebytes(x->output_prev_block,size*sizeof(t_float));
}
x->bufferNsig1=getbytes(size*sizeof(t_float));
x->bufferNsig2=getbytes(size*sizeof(t_float));
x->output_prev_block=getbytes(size*sizeof(t_float));
for(i=0; i<size; i++)
{
x->bufferNsig1[i]=0;
x->bufferNsig2[i]=0;
x->output_prev_block[i]=0;
}
x->is_new_or_rszd=0;
}
// The two signals are created, using a block size of 2N, --size2
// expsig1 is the expanded signal1 x->bufferNsig1 + sig1
// revsig2 is the reversed signal2 (reversed about i=0)
// it is made 0.0 on 0 to half and thrhalf to size2
expsig1=(t_float *) getbytes(size2*sizeof(t_float));
revsig2=(t_float *) getbytes(size2*sizeof(t_float));
// Loops for assignment of old values in new block + buffer
for (i=0; i < half ; i++)
{
expsig1[i]=x->bufferNsig1[i];
revsig2[i]=0.0;
}
for (i=half; i < size ; i++)
{
expsig1[i]=x->bufferNsig1[i];
revsig2[i]=sig2[size-i];
}
expsig1[size]=sig1[0];
revsig2[size]=sig2[0];
for (i=size+1; i < thrhalf ; i++)
{
expsig1[i]=sig1[i-size];
revsig2[i]=x->bufferNsig2[size2-i];
}
for (i=thrhalf; i < size2 ; i++)
{
expsig1[i]=sig1[i-size];
revsig2[i]=0.0;
}
// Here we set the buffers for the next round
for(i=0; i < size; i++)
{
x->bufferNsig1[i]=(t_float) sig1[i];
x->bufferNsig2[i]=(t_float) sig2[i];
}
// fft the two blocks and multiply them
mayer_realfft(size2, expsig1);
mayer_realfft(size2, revsig2);
expsig1[0]*=revsig2[0];
expsig1[size]*=revsig2[size];
for(i=1; i < size; i++)
{
temp=expsig1[i];
temp2=expsig1[size2-i];
expsig1[i]=temp*revsig2[i]-temp2*revsig2[size2-i];
expsig1[size2-i]=-1.0*(temp*revsig2[size2-i]+temp2*revsig2[i]);
}
// ifft
mayer_realifft(size2, expsig1);
// format the output: this section formats the ouptut either as
// a simple cc or as a running cc
if (x->is_freq_domain == 1)
{
for(i=0; i < half; i++)
{
out[i]=expsig1[thrhalf+i]/size2;
out[half + i]=expsig1[i]/size2;
}
}
else
{
for(i=0; i < half; i++)
{
out[i]=x->output_prev_block[i] + expsig1[thrhalf+i]/size2;
out[half + i]=x->output_prev_block[half + i] + expsig1[i]/size2;
x->output_prev_block[i] = out[i];
x->output_prev_block[half + i] = out[half + i];
}
}
freebytes(expsig1, size2*sizeof(t_float));
freebytes(revsig2, size2*sizeof(t_float));
return(w+6);
}
static void cc_dsp(t_cc *x, t_signal **sp)
{
if(!x->is_freq_domain)
dsp_add(cc_perform_time_domain, 5,
sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n, x->delay);
else
dsp_add(cc_perform_freq_domain, 5, x,
sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}
// For using with running calculation, send a bang to clear the buffer
// and start over with calculations
static void cc_bang(t_cc *x)
{
int i;
for(i=0;i<x->n;i++)
x->output_prev_block[i]=0;
}
static void *cc_new(t_symbol *s, t_int argc, t_atom *argv)
{
t_cc *x = (t_cc *)pd_new(cc_class);
if(atom_getsymbol(argv) == gensym("f")){
x->is_freq_domain = 1;
post("flib: cc: Frequency domain selected");
}
else if(atom_getsymbol(argv) == gensym("r")){
x->is_freq_domain = 2;
post("flib: cc: Running frequency domain selected");
}
else {
x->delay = atom_getfloat(argv);
post("flib: cc: Time domain selected");
}
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
outlet_new(&x->x_obj, &s_signal);
x->is_new_or_rszd=1;
x->bufferNsig1=NULL;
x->bufferNsig2=NULL;
x->output_prev_block=NULL;
return (void *)x;
}
static void cc_free(t_cc *x)
{
if (x->bufferNsig1 != NULL)
freebytes(x->bufferNsig1, x->n*sizeof(t_float));
if (x->bufferNsig2 != NULL)
freebytes(x->bufferNsig2, x->n*sizeof(t_float));
if (x->output_prev_block != NULL)
freebytes(x->output_prev_block, x->n*sizeof(t_float));
}
void cc_tilde_setup(void) {
cc_class = class_new(gensym("cc~"),
(t_newmethod)cc_new,
(t_method)cc_free, sizeof(t_cc),
CLASS_DEFAULT, A_GIMME, 0);
class_addbang(cc_class, (t_method)cc_bang);
class_addmethod(cc_class,
(t_method)cc_dsp, gensym("dsp"), 0);
CLASS_MAINSIGNALIN(cc_class, t_cc,f);
class_sethelpsymbol(cc_class, gensym("help-flib"));
}
|