1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
/* flib - PD library for feature extraction
Copyright (C) 2005 Jamie Bullock
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope thcat it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should hcave received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Perform hcarmonic analysis on a signal given the fundamental frequency and the frequency/amplitude spectra */
/* Takes fundamental through right inlet and % allowed deviation from actual harmonic to be considered harmonic as argument. Outputs number of partials, number of harmonics, number of even harmonics */
#include "flib.h"
static t_class *hca_class;
typedef struct _hca {
t_object x_obj;
t_float f;
t_float fund, deviation;
t_outlet *p_out, *h_out, *e_out;
} t_hca;
static t_int *hca_perform(t_int *w)
{
t_sample *in = (t_sample *)(w[1]);
t_int N = (t_int)(w[2]),n;
t_hca *x = (t_hca *)(w[3]);
t_int npartials, nharmonics, neven, harmonic;
t_float partial, harmonicity;
neven = nharmonics = npartials = 0;
while(N--){
if(in[N]){
npartials++;
partial = in[N] / x->fund;
harmonic = (t_int)rintf(partial);
if(partial <= harmonic + x->deviation &&
partial >= harmonic - x->deviation){
nharmonics++;
if(harmonic / 2.0f == rint(harmonic / 2.0f))
neven++;
}
}
}
if(!npartials)
post("hca~: No partials found.");
outlet_float(x->p_out, npartials);
outlet_float(x->h_out, nharmonics);
outlet_float(x->e_out, neven);
return (w+4);
}
static void hca_dsp(t_hca *x, t_signal **sp)
{
dsp_add(hca_perform, 3,
sp[0]->s_vec, sp[0]->s_n, x);
}
static void *hca_new(t_floatarg f)
{
t_hca *x = (t_hca *)pd_new(hca_class);
if(!f)
x->deviation = 0;
else
x->deviation = f * .01;
post("deviation = %.2f", x->deviation);
if(!x->fund)
x->fund = 0;
floatinlet_new(&x->x_obj, &x->fund);
x->p_out = outlet_new(&x->x_obj, &s_float);
x->h_out = outlet_new(&x->x_obj, &s_float);
x->e_out = outlet_new(&x->x_obj, &s_float);
return (void *)x;
}
void hca_tilde_setup(void) {
hca_class = class_new(gensym("hca~"),
(t_newmethod)hca_new,
0, sizeof(t_hca),
CLASS_DEFAULT, A_DEFFLOAT, 0);
class_addmethod(hca_class,
(t_method)hca_dsp, gensym("dsp"), 0);
CLASS_MAINSIGNALIN(hca_class, t_hca,f);
class_sethelpsymbol(hca_class, gensym("help-flib"));
}
|