1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/* flib - PD library for feature extraction
Copyright (C) 2005 Jamie Bullock
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* calculates the wavelet dispersion vector from the output of dwt from creb*/
/* First argument gives the DSP block size, second argument gives the amount of data reduction in the output vector as a percentage */
#include "flib.h"
#define ISPOWEROFTWO(n) (!((n-1) & n))
static t_class *wdv_class;
typedef struct _coeff {
t_int scale;
t_float val;
} t_coeff;
static void divisi(t_float *, t_coeff **, int , int );
typedef struct _wdv {
t_object x_obj;
t_float f;
t_coeff **ranktab;
t_int **histo, *vector;
t_int N, M, scales, vecsize, offset;
t_outlet *out_vec;
} t_wdv;
static t_int compare(t_coeff *x, t_coeff *y){ /*sorts in descending order */
if( x->val > y->val)
return -1;
else if (x->val < y->val)
return 1;
else
return 0;
}
static t_int bitcount(t_int x){
t_int i=0;
while(!(x & 01)){
i++;
x >>= 1;
}
return i;
}
static void divisi(t_float *arrayin, t_coeff **arrayout, int N, int scales){
t_int row, elements, nelements, n, p, i, j, col;
t_float scaling;
row = N / 2;
col = scales;
nelements = elements = row;
n = N - 1;
scaling = arrayin[0] / scales; /* hmmm - include this or not ? */
for(i = 0; i < row; i++)
arrayout[i][0].val = scaling;
/* Copy the scaling function to all rows */
while(col--){
row = 0;
for(i = 0; i < elements; i++, n--){
p = nelements / elements;
for(j = 0; j < p; j++)
arrayout[row++][col].val =
arrayin[n] / (t_float)(scales - col);
/* divide by reverse scale no. to avg over the block */
}
elements /= 2;
}
}
static t_int *wdv_perform(t_int *w)
{
t_sample *in = (t_sample *)(w[1]);
t_int N = (t_int)(w[2]);
t_wdv *x = (t_wdv *)(w[3]);
t_int i, j, k, n, scale;
t_atom atom_list_out[x->vecsize];
/* ensure our blocksize matches block~ size */
if(N != x->N){
post("First argument must equal DSP block size!");
return (w+4);
}
/* Zero histogram and populate scale entries */
for (i = 0; i < x->scales; i++)
memset(&x->histo[i][0], 0, x->scales * sizeof(t_int));
for(i = 0; i < x->M; i++){
for(j = 0, scale = x->scales; j < x->scales; j++, scale--)
x->ranktab[i][j].scale = scale;
}
/* Tabulate data and average scales accross columns */
divisi(&in[0], &x->ranktab[0], x->N, x->scales);
/* Calulate the rank value for each scale in place. Array index gives rank */
for(i = 0; i < x->M; i++)
qsort(&x->ranktab[i][0], x->scales,
sizeof(t_coeff), (void *)compare);
/* Create rank/scale matrix */
for(i = 0; i < x->scales; i++){
for(j = 0; j < x->M; j++)
x->histo[x->ranktab[j][i].scale - 1][i]++;
}
/* Generate output vector */
k = x->scales - x->offset;
for(n = 0, i = x->offset; i < k; i++){
for(j = 0; j < x->scales; j++)
x->vector[n++] = x->histo[i][j];
}
for(i = 0; i < x->vecsize; i++)
SETFLOAT(atom_list_out+i, x->vector[i]);
outlet_list(x->out_vec, &s_list, x->vecsize, atom_list_out);
return (w+4);
}
static void wdv_dsp(t_wdv *x, t_signal **sp)
{
dsp_add(wdv_perform, 3,
sp[0]->s_vec, sp[0]->s_n, x);
}
static void *wdv_new(t_symbol *s, t_int argc, t_atom *argv)
{
t_wdv *x = (t_wdv *)pd_new(wdv_class);
x->out_vec = outlet_new(&x->x_obj, &s_list);
t_int i, j, m, scale, rowsize, compression;
x->N = (t_int)atom_getfloatarg(0, argc, argv);
x->M = x->N * .5f;
x->scales = bitcount(x->N) + 1;
compression = (t_int)atom_getfloatarg(1, argc, argv);
x->offset = rintf((100 - compression) * x->scales * .01 * .5);
x->vecsize = (x->scales - x->offset * 2) * x->scales;
rowsize = scale = x->scales;
m = x->M;
if(!ISPOWEROFTWO(x->N))
post("invalid blocksize, must be a power of two");
else
post("blocksize = %d, scales = %d, vectorsize = %d, offset = %d",
x->N, x->scales, x->vecsize, x->offset);
x->vector = (t_int *)getbytes(x->vecsize * sizeof(t_int));
x->ranktab = (t_coeff **)getbytes(x->M * sizeof(t_coeff *));
while(m--)
x->ranktab[m] = (t_coeff *)getbytes(x->scales * sizeof(t_coeff));
x->histo = (t_int **)getbytes(x->scales * sizeof(t_int *));
while(scale--)
x->histo[scale] = (t_int *)getbytes(x->scales * sizeof(t_int));
return (void *)x;
}
static void wdv_tilde_free(t_wdv *x){
t_int i;
for(i = 0; i < x->M; i++)
free(x->ranktab[i]);
free(x->ranktab);
for(i = 0; i < x->scales; i++)
free(x->histo[i]);
free(x->histo);
free(x->vector);
/* freebytes(x->buf, x->blocks * sizeof(t_coeff)); */
}
void wdv_tilde_setup(void) {
wdv_class = class_new(gensym("wdv~"),
(t_newmethod)wdv_new,
0, sizeof(t_wdv),
CLASS_DEFAULT, A_GIMME, 0);
class_addmethod(wdv_class, (t_method)wdv_dsp, gensym("dsp"), 0);
CLASS_MAINSIGNALIN(wdv_class, t_wdv,f);
class_sethelpsymbol(wdv_class, gensym("help-flib"));
}
|