aboutsummaryrefslogtreecommitdiff
path: root/chaos/src/chaos_dsp.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'chaos/src/chaos_dsp.hpp')
-rw-r--r--chaos/src/chaos_dsp.hpp532
1 files changed, 532 insertions, 0 deletions
diff --git a/chaos/src/chaos_dsp.hpp b/chaos/src/chaos_dsp.hpp
new file mode 100644
index 0000000..6ca9ce4
--- /dev/null
+++ b/chaos/src/chaos_dsp.hpp
@@ -0,0 +1,532 @@
+//
+//
+// chaos~
+// Copyright (C) 2004 Tim Blechmann
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 2 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; see the file COPYING. If not, write to
+// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+// Boston, MA 02111-1307, USA.
+
+#include "chaos_base.hpp"
+
+template <class system>
+class chaos_dsp
+ : public flext_dsp
+{
+ FLEXT_HEADER(chaos_dsp, flext_dsp);
+
+protected:
+ chaos_dsp(int argc, t_atom* argv)
+ {
+ m_sr = 44100; /* assume default sampling rate */
+ int size = m_system.get_num_eq();
+
+ m_values = new t_float[size];
+ m_slopes = new t_float[size];
+ m_nextvalues = new t_float[size];
+ m_nextmidpts = new t_float[size];
+ m_curves = new t_float[size];
+
+ /* create inlets and zero arrays*/
+ for (int i = 0; i != size; ++i)
+ {
+ AddOutSignal();
+ m_values[i] = 0;
+ m_slopes[i] = 0;
+ m_nextvalues[i] = 0;
+ m_nextmidpts[i] = 0;
+ m_curves[i] = 0;
+ }
+
+ FLEXT_ADDATTR_VAR("frequency", get_freq, set_freq);
+ FLEXT_ADDATTR_VAR("interpolation_method",get_imethod, set_imethod);
+
+ if (argc > 0)
+ {
+ CHAOS_INIT(freq, GetAInt(argv[0]));
+ }
+ else
+ {
+ CHAOS_INIT(freq, 440);
+ }
+
+ if (argc > 1)
+ {
+ CHAOS_INIT(imethod, GetAInt(argv[1]));
+ }
+ else
+ {
+ CHAOS_INIT(imethod, 0);
+ }
+ m_phase = 0;
+ }
+
+ ~chaos_dsp()
+ {
+ delete[] m_values;
+ delete[] m_slopes;
+ delete[] m_nextvalues;
+ delete[] m_nextmidpts;
+ delete[] m_curves;
+ }
+
+public:
+ /* signal functions: */
+ /* for frequency = sr */
+ void m_signal_(int n, t_sample *const *insigs,t_sample *const *outsigs);
+ /* sample & hold */
+ void m_signal_n(int n, t_sample *const *insigs,t_sample *const *outsigs);
+ /* sample & hold for high frequencies */
+ void m_signal_n_hf(int n, t_sample *const *insigs,t_sample *const *outsigs);
+ /* linear interpolation */
+ void m_signal_l(int n, t_sample *const *insigs,t_sample *const *outsigs);
+ /* linear interpolation for high frequencies */
+ void m_signal_l_hf(int n, t_sample *const *insigs,t_sample *const *outsigs);
+ /* cubic interpolation */
+ void m_signal_c(int n, t_sample *const *insigs,t_sample *const *outsigs);
+ /* cubic interpolation for high frequencies */
+ void m_signal_c_hf(int n, t_sample *const *insigs,t_sample *const *outsigs);
+
+ virtual void CbSignal()
+ {
+ (this->*m_routine)(Blocksize(),InSig(),OutSig());
+ }
+
+ virtual bool CbDsp()
+ {
+ m_sr = Samplerate();
+ set_freq(m_freq); /* maybe we have to change the interpolation mode */
+ return true;
+ }
+
+ void (thisType::*m_routine)(int n, t_sample *const *insigs,t_sample *const *outsigs);
+
+ /* local data for system, output and interpolation */
+ system m_system; /* the system */
+
+ t_sample * m_values; /* actual value */
+ t_sample * m_slopes; /* actual slope for cubic interpolation */
+
+ t_sample * m_nextvalues;
+ t_sample * m_nextmidpts;
+ t_sample * m_curves;
+
+ /* local data for signal functions */
+ float m_freq; /* frequency of oscillations */
+ float m_invfreq; /* inverse frequency */
+ float m_phase; /* phase */
+ float m_sr; /* sample rate */
+
+ int m_imethod; /* interpolation method */
+
+ void get_imethod(int &i)
+ {
+ i = m_imethod;
+ }
+
+ void set_imethod(int i)
+ {
+ int imethod = m_imethod;
+ if( (i >= 0) && (i <= 2) )
+ {
+ m_imethod = i;
+ switch (i)
+ {
+ case 0:
+ m_routine = &thisType::m_signal_n;
+ break;
+ case 1:
+ m_routine = &thisType::m_signal_l;
+ break;
+ case 2:
+ m_routine = &thisType::m_signal_c;
+ break;
+ }
+ }
+ else
+ {
+ post("interpolation method out of range");
+ return;
+ }
+
+ if (imethod == 0)
+ for (int j = 0; j != m_system.get_num_eq(); ++j)
+ {
+ m_values[j] = m_system.get_data(j);
+ m_slopes[j] = 0;
+ }
+
+ if(i == 2 && imethod != 2)
+ {
+ for (int j = 0; j != m_system.get_num_eq(); ++j)
+ {
+ m_phase = 0; /* reschedule to avoid click, find a better way later*/
+ m_nextvalues[j] = m_values[j];
+ m_nextmidpts[j] = m_values[j];
+ }
+ }
+ set_freq(m_freq);
+ }
+
+ void get_freq(float &f)
+ {
+ f = m_freq;
+ }
+
+ void set_freq(float f)
+ {
+ if (f < 0) /* we can't go back in time :-) */
+ f = -f;
+
+ if( f <= m_sr * 0.01 )
+ {
+ switch(m_imethod)
+ {
+ case 0:
+ m_routine = &thisType::m_signal_n;
+ break;
+ case 1:
+ m_routine = &thisType::m_signal_l;
+ break;
+ case 2:
+ m_routine = &thisType::m_signal_c;
+ break;
+ default:
+ assert(false);
+ }
+ }
+ else
+ {
+ switch(m_imethod)
+ {
+ case 0:
+ m_routine = &thisType::m_signal_n_hf;
+ break;
+ case 1:
+ m_routine = &thisType::m_signal_l_hf;
+ break;
+ case 2:
+ m_routine = &thisType::m_signal_c_hf;
+ break;
+ default:
+ assert(false);
+ }
+ }
+
+ m_freq = f;
+ m_invfreq = 1.f / f;
+ }
+
+ FLEXT_CALLVAR_F(get_freq, set_freq);
+ FLEXT_CALLVAR_I(get_imethod, set_imethod);
+};
+
+
+
+/* create constructor / destructor */
+#define CHAOS_DSP_INIT(SYSTEM, ATTRIBUTES) \
+FLEXT_HEADER(SYSTEM##_dsp, chaos_dsp<SYSTEM>) \
+ \
+SYSTEM##_dsp(int argc, t_atom* argv): \
+ chaos_dsp<SYSTEM>(argc, argv) \
+{ \
+ ATTRIBUTES; \
+} \
+ \
+FLEXT_ATTRVAR_F(m_freq); \
+FLEXT_ATTRVAR_I(m_imethod);
+
+
+
+template <class system>
+void chaos_dsp<system>::m_signal_(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ for (int i = 0; i!=n; ++i)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+ for (int j = 0; j != outlets; ++j)
+ {
+ outsigs[j][i] = m_system.get_data(j);
+ }
+ }
+}
+
+
+template <class system>
+void chaos_dsp<system>::m_signal_n_hf(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ float phase = m_phase;
+
+ int offset = 0;
+ while (n)
+ {
+ while (phase <= 0)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+ phase += m_sr * m_invfreq;
+ }
+ int next = (phase < n) ? int(ceilf (phase)) : n;
+ n -= next;
+ phase -=next;
+
+ for (int i = 0; i != outlets; ++i)
+ {
+ SetSamples(outsigs[i]+offset, next, m_system.get_data(i));
+ }
+ offset += next;
+ }
+ m_phase = phase;
+}
+
+
+template <class system>
+void chaos_dsp<system>::m_signal_n(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ int phase = int(m_phase);
+
+ int offset = 0;
+ while (n)
+ {
+ if (phase == 0)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+ phase = int (m_sr * m_invfreq);
+ }
+
+ int next = (phase < n) ? phase : n;
+ n -= next;
+ phase -=next;
+
+ for (int i = 0; i != outlets; ++i)
+ {
+ SetSamples(outsigs[i]+offset, next, m_system.get_data(i));
+ }
+ offset += next;
+ }
+ m_phase = phase;
+}
+
+/* linear and cubic interpolation adapted from supercollider by James McCartney */
+template <class system>
+void chaos_dsp<system>::m_signal_l(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ int phase = int(m_phase);
+
+ int i = 0;
+
+ while (n)
+ {
+ if (phase == 0)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+ phase = int (m_sr * m_invfreq);
+
+ for (int j = 0; j != outlets; ++j)
+ m_slopes[j] = (m_system.get_data(j) - m_values[j]) / phase;
+ }
+
+ int next = (phase < n) ? phase : n;
+ n -= next;
+ phase -=next;
+
+ while (next--)
+ {
+ for (int j = 0; j != outlets; ++j)
+ {
+ outsigs[j][i] = m_values[j];
+ m_values[j]+=m_slopes[j];
+ }
+ ++i;
+ }
+ }
+ m_phase = phase;
+}
+
+
+
+template <class system>
+void chaos_dsp<system>::m_signal_l_hf(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ float phase = m_phase;
+
+ int i = 0;
+
+ while (n)
+ {
+ if (phase <= 0)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+ phase = m_sr * m_invfreq;
+
+ for (int j = 0; j != outlets; ++j)
+ m_slopes[j] = (m_system.get_data(j) - m_values[j]) / phase;
+ }
+
+ int next = (phase < n) ? int(ceilf (phase)) : n;
+ n -= next;
+ phase -=next;
+
+ while (next--)
+ {
+ for (int j = 0; j != outlets; ++j)
+ {
+ outsigs[j][i] = m_values[j];
+ m_values[j]+=m_slopes[j];
+ }
+ ++i;
+ }
+ }
+ m_phase = phase;
+}
+
+
+template <class system>
+void chaos_dsp<system>::m_signal_c(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ int phase = int(m_phase);
+
+ int i = 0;
+
+ while (n)
+ {
+ if (phase == 0)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+ phase = int (m_sr * m_invfreq);
+ phase = (phase > 2) ? phase : 2;
+
+ for (int j = 0; j != outlets; ++j)
+ {
+ t_sample value = m_nextvalues[j];
+ m_nextvalues[j]= m_system.get_data(j);
+
+ m_values[j] = m_nextmidpts[j];
+ m_nextmidpts[j] = (m_nextvalues[j] + value) * 0.5f;
+
+ float fseglen = (float)phase;
+ m_curves[j] = 2.f * (m_nextmidpts[j] - m_values[j] -
+ fseglen * m_slopes[j])
+ / (fseglen * fseglen + fseglen);
+ }
+ }
+
+ int next = (phase < n) ? phase : n;
+ n -= next;
+ phase -=next;
+
+ while (next--)
+ {
+ for (int j = 0; j != outlets; ++j)
+ {
+ outsigs[j][i] = m_values[j];
+ m_slopes[j]+=m_curves[j];
+ m_values[j]+=m_slopes[j];
+ }
+ ++i;
+ }
+ }
+ m_phase = phase;
+}
+
+
+template <class system>
+void chaos_dsp<system>::m_signal_c_hf(int n, t_sample *const *insigs,
+ t_sample *const *outsigs)
+{
+ int outlets = m_system.get_num_eq();
+
+ float phase = m_phase;
+
+ int i = 0;
+
+ while (n)
+ {
+ if (phase == 0)
+ {
+ m_system.m_step();
+ m_system.m_bash_denormals();
+ m_system.m_verify();
+
+
+ phase = int (m_sr * m_invfreq);
+ phase = (phase > 2) ? phase : 2;
+
+ for (int j = 0; j != outlets; ++j)
+ {
+ t_sample value = m_nextvalues[j];
+ m_nextvalues[j]= m_system.get_data(j);
+
+ m_values[j] = m_nextmidpts[j];
+ m_nextmidpts[j] = (m_nextvalues[j] + value) * 0.5f;
+
+ float fseglen = (float)phase;
+ m_curves[j] = 2.f * (m_nextmidpts[j] - m_values[j] -
+ fseglen * m_slopes[j])
+ / (fseglen * fseglen + fseglen);
+ }
+ }
+
+ int next = (phase < n) ? int(ceilf (phase)) : n;
+ n -= next;
+ phase -=next;
+
+ while (next--)
+ {
+ for (int j = 0; j != outlets; ++j)
+ {
+ outsigs[j][i] = m_values[j];
+ m_slopes[j]+=m_curves[j];
+ m_values[j]+=m_slopes[j];
+ }
+ ++i;
+ }
+ }
+ m_phase = phase;
+}