blob: 821f24fb4f269cb0eb05670e2ace8bc08897fe22 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
//
//
// chaos~
// Copyright (C) 2004 Tim Blechmann
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#include "map_base.hpp"
// bernoulli map: x[n+1] = 2 * x[n] mod 1
// 0 <= x[n] < 1
// taken from Willi-Hans Steeb: Chaos and Fractals
class bernoulli:
public map_base
{
public:
bernoulli()
{
m_num_eq = 1;
m_data = new data_t[m_num_eq];
CHAOS_SYS_INIT(x,0.5);
}
~bernoulli()
{
delete m_data;
}
virtual void m_step()
{
data_t x = m_data[0];
if (x <= 0)
x = 0.00001; //stability
if (x < 0.5f)
m_data[0] = 2.f * x;
else
m_data[0] = 2.f * x - 1.f;
}
CHAOS_SYSVAR_FUNCS_PRED(x,0,m_pred_x);
bool m_pred_x(t_float f)
{
return (f >= 0) && (f < 1);
}
};
#define BERNOULLI_CALLBACKS \
MAP_CALLBACKS; \
CHAOS_SYS_CALLBACKS(x);
#define BERNOULLI_ATTRIBUTES \
MAP_ATTRIBUTES; \
CHAOS_SYS_ATTRIBUTE(x);
|