aboutsummaryrefslogtreecommitdiff
path: root/chaos/src/bernoulli_map.hpp
blob: 821f24fb4f269cb0eb05670e2ace8bc08897fe22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// 
//  
//  chaos~
//  Copyright (C) 2004  Tim Blechmann
//  
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//  
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//  
//  You should have received a copy of the GNU General Public License
//  along with this program; see the file COPYING.  If not, write to
//  the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
//  Boston, MA 02111-1307, USA.

#include "map_base.hpp"

//  bernoulli map: x[n+1] = 2 * x[n] mod 1             
//                 0 <= x[n] <  1
//  taken from Willi-Hans Steeb: Chaos and Fractals

class bernoulli:
	public map_base
{
public:
	bernoulli()
	{
		m_num_eq = 1;
		m_data = new data_t[m_num_eq];
		CHAOS_SYS_INIT(x,0.5);
	}

	~bernoulli()
	{
		delete m_data;
	}

	virtual void m_step()
	{
		data_t x = m_data[0];
		
		if (x <= 0)
			x = 0.00001;  //stability

		if (x < 0.5f)
			m_data[0] = 2.f * x;
		else
			m_data[0] = 2.f * x - 1.f;
	}

	CHAOS_SYSVAR_FUNCS_PRED(x,0,m_pred_x);
	bool m_pred_x(t_float f)
	{
		return (f >= 0) && (f < 1);
	}
};


#define BERNOULLI_CALLBACKS						\
MAP_CALLBACKS;									\
CHAOS_SYS_CALLBACKS(x);


#define BERNOULLI_ATTRIBUTES					\
MAP_ATTRIBUTES;									\
CHAOS_SYS_ATTRIBUTE(x);